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A general equation for sensory magnitude

WILLIAM H. ATKINSON
Pennsylvania State University, University Park, Pennsylvania 16802

For the majority of experiments on sensory response, S. S. Stevens's power law provides a
satisfactory description of the relationship between stimulus and sensory magnitudes. In its
original form, it has proved to be inaccurate near the absolute threshold, when the sense
organ is not in a neutral state of adaptation, when sensory noise is present, or when the sense
organ is adapted to the particular stimulus under observation. This paper introduces a more
general sensory law which also describes response under the conditions listed above. Stevens's
power law is a special case of this more general equation. In this general formulation, sensory
magnitude is considered to be the product of excitatory and inhibitory processes. Excitation
can be described by power functions and inhibition by exponential functions. The general
equation is applicable to response at both the electrophysiological and psychophysical levels.

The question of the relationship between stimulus
intensity and magnitude of sensation has occupied
scientists for more than a century. The first mathe­
matical expression was introduced by Fechner (1860)
when he advanced the proposition that magnitude of
sensation is a linear function of the logarithm of the
stimulus intensity.

Even before the turn of the century, some doubts
were expressed concerning the accuracy of Fechner's
law; Plateau (1872) suggested that equal stimulus
ratios would generate equal sensory ratios. Nearly 50
years ago, an increased awareness began to develop
that this logarithmic relationship might be inade­
quate; Marks (1974a) describes this development. It
was during this early period that S. S. Stevens ini­
tiated a series of experiments to determine a more
adequate metric for sensory magnitude; the evolution
of his approach is outlined in S. S. Stevens (1975).
Nearly 30 years ago, following the suggestions made
by Plateau nearly a century earlier, S. S. Stevens
(1953) introduced another law which stated that the
logarithm of the sensation magnitude is a linear func­
tion of the logarithm of the stimulus intensity.

A host of experiments by S. S. Stevens and other
researchers have demonstrated that the power law that
he developed provides an accurate description of the
relationship between stimulation and sensory magni­
tude over a wide variety of conditions; both Marks
(1974a) and S. S. Stevens (1975) consider a number
of these studies. Despite this agreement, however,
there are many experiments in which, contrary to ex­
pectation, the power law does not hold.

Several examples of this lack of correspondence
may be noted. As the threshold is approached, the
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slope of the function relating the logarithm of the
sensation magnitude to the logarithm of the stimulus
intensity increases in value. Lochner and Burger
(1961) and S. S. Stevens (1961a) have proposed modi­
fications that would restore linearity. The two opera­
tions differ slightly in their effect but they are nearly
equivalent. In both cases, the correction is achieved
with the subtraction of a constant.

Another type of deviation is less tractable. At the
higher concentrations, the magnitude of response to
gustatory stimulation is less than would be expected
from the power law. This departure from linearity
can be observed in the paper by S. S. Stevens (1969)
on scales of taste intensity; similar effects appear in
research on taste by other investigators. An even
more marked deviation can be observed with esti­
mates of brightness. J. C. Stevens and S. S. Stevens
(1963) have found that the power law holds when
stimuli are presented for short periods of time but
not when the eye is adapted to the luminance to
which it is exposed. For the latter condition, the ap­
parent brightness appears to approach an asymptote.
In electrophysiological measures, the lack of corre­
spondence with the power law is even more apparent.
Atkinson (1976, 1978) has reported a nonmonotonic
relationship between the amplitude of the click-evoked
response and the intensity of the click when record­
ings are made from subcortical nuclei in the cat. The
appearance of a nonmonotonic function is a com­
mon occurrence in auditory electrophysiology.

Moreover, even in research in which Stevens's law
appears to be valid, there is a disconcerting lability
in the value of the exponent. It fluctuates with the
state of adaptation or in the presence of other stimu­
lation, such as noise. If a visual stimulus is viewed in
the presence of a glare source or if loudness is esti­
mated for a tone embedded in noise, there is an ap­
parent change in the exponent. For example, if the
brightness of a light seen alone is matched to that of
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a light seen in the presence of glare, the logarithms of
these two variables will appear to be linearly related,
but the slope will be greater than unity; this suggests
an increase of the exponent in the presence of glare.
A similar effect is observed for speech floating in a
background of noise. Adaptation to light or to a
tactual stimulus seems to increase the value of the ex­
ponent. S. S. Stevens (1966) has designated this ap­
parent change in the exponent as a power group
transformation.

Unfortunately, the introduction of this type of
transformation generates an awkward difficulty. If
the exponent varies, then the ratio between sensa­
tions will also vary. For example, let us assume that
two stimuli have an energy ratio of 16:1 and the ex­
ponent is 0.25. Then the magnitude of one sensation
will be twice that of another. Now, if we retain the
same physical ratio but increase the exponent to 0.50,
then the magnitude of one sensation will be four
times that of the other.

Any theory of sensory magnitude should be com­
patible with the principle that the balance among sen­
sations must be maintained. Plateau (1872) estab­
lished this principle in his critique of Fechner's law,
and more recently Yilmaz (1967) adopted a similar
position. Moreover, as S. S. Stevens(1975) has stressed,
a power law is a consequence of this type of percep­
tual stability. Multiplicative transforms will preserve
both sensory ratios and sensory distances, while lin­
ear transforms will maintain equal sense distances.
However, if the exponent is permitted to vary, then
both ratios and distances will be distorted by adapta-
tion and by noise. .

Since there are a number of circumstances in which
the power law appears to be inadequate, it is tempt­
ing to conclude that Stevens's law is no more effec­
tive than Fechner's law in elucidating the relationship
between stimulus and sensory response. However,
this judgment ignores the myriad of experiments in
which Stevens's law has proved to be accurate. A
more fruitful approach would be to postulate that
Stevens's law is a special case of a more general sen­
sory law. To borrow an analogy from S. S. Stevens
(1961b), it is not necessary to repeal his law but to
amend it.

Because sensory distances and ratios are disturbed
by an exponential transformation, the one critical
condition for a general law is that, for a given sen­
sory response such as loudness or brightness, the ex­
ponent will remain invariant under conditions of
noise or adaptation. The first section of this paper,
on excitation, will examine the evidence for the con­
stancy of the exponent in vision and audition when
the sense organ is considered to be in a neutral state
of adaptation and free of the encumbrance of other
stimulation. The second section, on overall state of
adaptation, will show that the effect of this process
can be described by a linear transform. With such an

operation, magnitude differences are preserved al­
though magnitude ratios will change in the neighbor­
hood of the absolute threshold. The third section
concentrates upon external masking. It will be dem­
onstrated that the effect of noise is a multiplicative
transform that conserves magnitude ratios. Since
linear and multiplicative transforms preserve sen­
sory distance, our perceptual world should be stable
in the face of wide variations in the level of adapta­
tion and in the presence of extraneous stimulation.
The following section, on internal masking, will
examine the effect of adaptation to the stimulus
whose effect is being measured. It will be shown that
the exponent remains invariant under this type of
adaptation. In the final section, these special cases
are unified and a general sensory law is constructed.

For all overall states of adaptation, excitation is a
power function of the intensity of the stimulus. Ex­
ternal masking is an exponential function of the
noise-to-signal ratio. Internal masking is an expo­
nential function of the level of the signal. If we con­
sider excitation in the general case of any overall
state of adaptation, the relationship among the vari­
ables is:

Sensory magnitude

Excitation
(External masking) (Internal masking)

In the physical sciences, many variables are com­
bined through the operations of multiplication and
division; the relationship above is framed in a similar
form. Since the time of Fechner, many researchers
have sought to shape the study of sensory processes
in the image of the physical sciences. The general
equation for sensory magnitude that will be pre­
sented is one more step in that journey.

Most of the examples to be cited have appeared
in research on audition. However, the principles to
be described are common to all of the senses and
their applicability to vision, touch, and taste will also
be considered.

Since the purpose of this paper is the modification
of the power law, let us examine it first in its pristine
form. We can write:

(1)

where S is the magnitude of sensory response and I
is the magnitude of the physical variable. It is cus­
tomary to determine the empirical constants rand q
by plotting log S as a function of log I; from the re­
sultant linear equation, the values of the constants
can be specified.

When stimulus values are in the vicinity of the ab­
solute threshold, the accuracy of the power law be-
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where 10 is the absolute threshold. In the same year,
Lochner and Burger (1961) suggested the equation:

gins to deteriorate. If the variables S and I are plotted
on logarithmic coordinates, as the threshold is ap­
proached there is a departure from linearity with the
slope of the function increasing. To describe this
phenomenon, S. S. Stevens (1961a) proposed the
equation:
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with a mean of 0.28. There is, therefore, a gratifying
agreement with the constants calculated by Stevens
(1970) for the eye of Limulus. We will encounter
the value of 0.29 for the exponent for vision in Figures
3 and 7 of this paper.

Fiaure 1. Amplitude of tbe click-evoked action potential re­
corded at the cochlea of tbe aamea pig as a function of tbe cube
root of tbe sound pressure of tbe click. Reference level is .0002
dynes/cm'. Points were measured from Fipre 11 of Teas, Eldredge,
and Davis (1962).

Exponent for Audition
An exponent of 0.33 recurs in a number of experi­

ments in auditory electrophysiology. Teas, Eldredge,
and Davis (1962) measured the click-evoked action
potential recorded from the cochlea of the guinea pig;
the amplitude of the first peak is a linear function of
the cube root of the sound pressure. Figure 1 depicts
their results. Atkinson (1976, 1978) determined the
peak-to-peak amplitude of the click-evoked response
recorded from the superior colliculus and medial
geniculate body of the cat; at low-to-moderate levels
of stimulus intensity, the amplitude is again a linear
function of the cube root of the sound pressure. In
Figure 10, we will be discussing the results of Dallos
and Wang (1974), who recorded the magnitude of the
action potential in the auditory nerve of the guinea
pig; for stimulus levels up to 100 dB SPL, the re­
lationship between electrical response and the cube
root of the stimulus pressure is linear.

The evidence for a cube root function in auditory
psychophysics is somewhat controversial. It appears
to be present if one calculates the cube roots of the
equal loudness matches determined by Robinson and
Dadson (1956). For levels below 100 dB SPL, the re­
lationship between values for a particular frequency
and those for the I-kHz standard is linear. Moreover,
as we will see in a later section, loudness matches
made to assess the effect of a masking source also
support a cube root function. On the other hand,
scaling and cross-modality studies suggest an expo-

(2)

(3)

'qS=r(l-Io) ,

Although the two equations are similar, there are
important differences in their interpretation. To pre­
serve a ratio scale on the right-hand side of Equa­
tion 2, the zero point of the physical scale has been re­
defined as the value of the physical variable at which
sensory response disappears. Equation 3 is also consis­
tent with the hypothesis that sensory magnitude van­
ishes at the absolute threshold. Marks and Stevens
(1968) examine the implications of some of the tech­
niques for correcting for the absolute threshold.
When one is applying Equations 2 and 3, it is cus­
tomary to estimate 10 from the data rather than to
apply an independent measure. It should, therefore,
be realized that, in a mathematical sense, Equation 3
would still be valid if S were scaled on an interval
rather than on a ratio scale. Since, as Atkinson and
Ward (1972) have demonstrated, there is some doubt
that subjects always judge on the basis of sensory
ratios, Equation 3 permits a greater latitude of inter­
pretation. Throughout this paper, Equation 3 will be
considered the basic equation for excitation.

Exponent for Vision
There is a generally satisfactory stability of the ex­

ponent in studies of visual response. S. S. Stevens
(1970), in a review of the evidence for power func­
tions in sensory electrophysiology, examined five
studies of electrical response in Limulus. He calcu­
lated exponents that ranged from 0.21 through 0.32.
J. C. Stevens and S. S. Stevens (1963)determined the
effect of a number of experimental conditions; some
of this work will appear in Figure 3 when we examine
the effects of adaptation. Their Table 1 lists the re­
sults of five experiments in which one of the measure­
ments was the brightness of a pulse of light viewed
monocularly with the dark-adapted eye. The mean
value of theexponent was 0.29, with a range from
0.26 through 0.32. In a later paper, J. C. Stevens
(1967) reported more precise values of 0.272 for
monocular stimulation and 0.276 for binocular stim­
ulation. Marks (1966, 1968) measured the size of the
exponent for various locations on the retina in the
dark-adapted eye and for several levels of light adap­
tation; his values ranged from 0.24 through 0.34,
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Figure 2. Magnitude of sensation as a function of tbe square
root of tbe displacement of a vibrotactile stimulus. Eacb line is for
a different period of recovery following complete adaptation. Tbe
recovery times are: squares (S sec) and circles (360 sec). Original
experiment Is by Gescbelder and Wrlgbt (1%1). Points "ere mea·
sured from Fllure S.I of Gesc:belder (1976).

where S is the magnitude of sensation, A is the dis­
placement or vibration amplitude, Ao is the threshold
displacement for a particular recovery interval, and
R is a constant whose value is also dependent upon
the recovery interval.

The linear relationships in Figure 2 indicate that
the effect of adaptation for one interval is a simple
linear transform of the values for another interval.
This linear transform preserves sensory distances,
whereas the power group transform suggested by

estimated the magnitude of sensation generated by
particular amplitudes of vibration at intervals rang­
ing from 5 to 360 sec following the cessation of the
adapting stimulus. When they plotted the logarithm
of sensation magnitude as a function of the logarithm
of the amplitude of vibration, the points for each re­
covery period appeared to lie on straight lines with
slopes ranging from 0.64 for a S-sec recovery period
to 0.54 for a 360-sec recovery period.

But does the exponent really vary? The same data
are plotted in Figure 2, in which subjective magni­
tude is expressed as a function of the square root of
the vibration amplitude. The upper line is for the
360-sec interval, and the lower is for the 5-sec inter­
val. Both sets of points can be fit with straight lines.
With reference to the form of Equation 3, adapta­
tion produces a change in the rand 10 constants but
the exponent remains invariant. The three interme­
diate recovery times can also be fit with straight lines.
Moreover, all five recovery times conform to the
simple equation:

(4)
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S =R(N' sO
- A~·50),
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nent of approximately 0.60. The exponents in scaling
experiments are usually determined by plotting the
logarithm of subjective loudness as a function of the
logarithm of the stimulus intensity. In contrast with
the narrow range found for the exponent for bright­
ness, there is a wide variation among slopes. Marks
(1974b) has catalogued the extent of this dispersion,
reporting exponents that range from 0.37 to 0.85.

The discrepancy between the exponent for the
physiological and matching experiments, on the one
hand, and that for the scaling studies, on the other,
generates a dilemma. In vision, the exponent derived
from scaling exhibits minor scatter and is in agree­
ment with physiological studies; in audition, the ex­
ponent derived from scaling exhibits major scatter
and is in disagreement with physiological studies.
This suggests that it might be wise to reexamine the
procedure for calculating the exponent for audition.

Since the physiological and matching experiments
support an exponent of 0.33, Atkinson (1977) re­
analyzed a number of these studies by plotting sub­
jective loudness as a function of the cube root of
sound pressure. In all cases, the points could be fitted
with two straight-line segments with a break near
70 dB SPL. There is independent evidence from both
physiological and psychophysical experiments that
there may be a division in audition similar to the rodl
cone dichotomy in vision; they indicate that the high­
level process has a threshold near 70 dB SPL. The
slope of the line at pressures greater than the break
point is always steeper than the slope below that
point, and the mean ratio of the slopes is approxi­
mately 2:1. However, the ratio of the slopes of the
two cube-root segments is not constant. The greater
the ratio, the greater would be the apparent exponent
in double logarithmic coordinates. Since the scaling
results can be reconciled with those from physio­
logical and matching studies on the basis of dual
processes for loudness, the exponent of 0.33 has been
adopted for audition.

Touch
We can begin with a report by Gescheider and

Wright (1968) on the recovery of function following
adaptation to a vibrotactile stimulus. Their subjects

ADAPTATION

Although the exponent for vision seems to be sta­
ble for the dark-adapted eye and when other visual
stimulation is absent, there have been reports that the
exponent increases if the overall state of adaptation is
altered or if visual noise is introduced. Similar effects
havebeen reported for auditory and tactual stimulation.
In this and the next section, we will review evidence
suggesting that the increase in the exponent is an illu­
sion generated by the common practice of plotting
magnitude estimations on logarithmic scales.
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where Ao and R have the same definitions as in Equa­
tion 4 and hand j are empirical constants whose ab­
solute values are equal to the coordinates of the co­
punctal point.

Figure 3. Brigbtness (B) in brils as a function of tbe 0.29 power
of luminance (L) In mtllllambertl wltb monocular viewing using
tbe natnral pupU. Stimuli were 1-sec exposures. Points In tbe left
section were obtained wltb tbe eye adapted to complete darkneu.
Points In tbe rlgbt section were obtained wltb tbe eye adapted to
4,000 mL. Data were measured from Figure 8 of J. C. Stevens and
S. S. Stevens (1963).

Adaptation involves a change in the sensitivity of
a sensory system. In external masking, we may con­
sider the sensitivity to be unaffected, but the presence
of one stimulus alters the response to a second stimu­
lus. Since the interaction of two stimuli is less com­
plex in audition than in vision, let us begin with an
examination of this sense.

Audition
In the presence of a masking source, there is an ele­

vation of the absolute threshold and a reduction in
apparent loudness. As the intensity of the signal is in­
creased, loudness grows until, at very high signal lev­
els, the loudness of the signal under conditions of
masking approaches that of the signal heard in quiet.
Qualitatively similar effects are present in cases of re­
cruitment deafness.

There have been a number of attempts to formu­
late a quantitative expression for the effects of a
masking source. Steinberg and Gardner (1937) sug­
gested that the effect of an external masker might be
the subtraction of a constant amount of loudness ir­
respective of the particular level of loudness. Lochner
and Burger (1961) based their formulation upon
Stevens's power law.' In terms of Equation 3, they
suggested that the constants rand q remain constant
under masking but that there is a change in 10 ,

The proposal by S. S. Stevens (1966) is based upon
Equation 2. He assumed that r, 10 , and q would all

EXTERNAL MASKING

light adaptation is an increase in 10 and a decrease in
r; the exponent remains invariant.

Are the values of I~ and the reciprocal of R for dif­
ferent levels of adaptation linearly related? It is not
possible to evaluate this proposition with only the
two lines of Figure 3, but other data presented by
Stevens and Stevens provide a test. In their Table 2,
they report the results of using the method of con­
stant stimuli to obtain interocular matches between
the dark-adapted eye and an eye adapted to one of
three light levels. As predicted, the 0.29 powers of the
matching pairs were linearly related; the three lines
also converged toward a point. Therefore, in both
the visual and cutaneous senses, the effect of adapta­
tion can be described by a simple linear transform of
the equation for the unadapted sense organ; in both
cases, there is a linear relationship between I~ and the
reciprocal of R.

The results reported in these two papers suggest
that equal sense distances remain equal under all lev­
els of adaptation. The special case of adaptation to
the stimulus under observation requires a different
type of transformation and exhibits features similar
to the effects of masking. Therefore, before we con­
sider this circumstance, let us examine a number of
studies of masking.

(5)

B

2t

2S
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A~50= (h/R) + j,

..
B

Vision
Let us examine another study of the effects of

adaptation. In a comprehensive determination of the
effects of light adaptation, J. C. Stevens and S. S.
Stevens (1963) compared brightness estimates made
with the dark-adapted eye and with an eye adapted to
4,000 mL. They found that the exponent appeared to
increase from 0.33 to 0.47 as a consequence of adap­
tation to the high level of luminance. However, if the
growth of subjective brightness is plotted as a func­
tion of the 0.29 power of the luminance for the two
extreme conditions of adaptation, a different picture
emerges. As Figure 3 shows, except for one errant
point at the lowest luminance presented to the light­
adapted eye, both sets of points are fit very well with
straight lines. In terms of Equation 3, the effect of

Gescheider and Wright distorts both sensory ratios
and sensory distances.

One other aspect of the Gescheider and Wright
data is of particular interest. The five lines relating
magnitude of sensation to the square root of vibra­
tion amplitude converge toward a point. In this cir­
cumstance, there will be a linear relationship between
the intercept on the abscissa and the reciprocal of the
slope. This means that the absolute threshold will be
a function of the slope and we can write:
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vary with the level of the masker. Since in this for­
mulation the exponent q increases in the presence of a
masking source, at high signal levels the predicted
loudness of the signal under masking would exceed
that of a signal heard in quiet. To circumvent this
prediction, Stevens postulated a discontinuity in the
function relating loudness and the intensity of the
masked stimulus. Where the predicted value of the
masked function equals that of the unmasked func­
tion, there is an abrupt decrease in slope.

The equation to be introduced in this section re­
tains the basic form of Stevens's power law as ex­
pressed in Equation 3. There are, however, two im­
portant differences from Stevens's approach: the ex­
ponent remains invariant under conditions of mask­
ing, and the growth of loudness is considered to be
continuous. The equation for external masking can
be written:

(6)

where S is the magnitude of response, P, is the pres­
sure of the signal, Pn is the pressure of the masker,
Po is the threshold pressure of the signal in the ab­
sence of masking, and rand k, are empirical con­
stants.

If Pn is equal to zero, then the exponential term be­
comes unity and Equation 6 reduces to Equation 3.
If Pn is constant, then, as P, increases, the exponen­
tial term approaches unity and again Equation 3 will
emerge; this effect occurs in cases of recruitment
deafness. A third special case of particular interest is
that in which the signal-to-noise ratio is maintained
at a constant level; in this instance, the exponential
term will be equivalent to a multiplicative constant
and Equation 3 will again appear. This is similar to
the effect observed with adaptation, but in the pres­
ent case the threshold constant does not change.

This third condition can be tested with data from
a recent paper by Hellman (1978). When the signal­
to-noise ratio is constant, subjective loudness should
be a linear function of the cube root of sound pres­
sure. Hellman's data, plotted in Figure 4, confirm
this prediction. The striking similarity between Fig­
ure I and Figure 4 should be noted. The deduction
tested explicitly with the data in Figure 4 can be dem­
onstrated with the results of experiments in matching.
If the loudness of a tone heard in quiet is matched to
that of a tone embedded in noise set to maintain a
constant signal-to-noise ratio, the cube roots of the
matching pairs should be linearly related and the
slope of the line should decrease as the signal-to­
noise ratio becomes smaller. In a mathematical sense,
this is setting equal the right-hand sides of Equa­
tions 3 and 6. Both predictions can be confirmed with
results obtained by Hellman (1978) for a loo-Hz tone

. at two different signal-to-noise ratios and by Scharf
(1964) for an 830-Hz tone at four different signal-to-

Figure 4. Relationship between tbe direct numerical estimation
of loudness and tbe cube root of pressure of a tOO-Hz signal.
Tbe tone "IS mixed "Itb noise, and at eacb pressure a constant
-to-dB SIN ratIo "IS maIntaIned. Data "ere measured from
Figure 2 of Hellman (1978).

noise ratios. Hellman's data for a 2S0-Hz signal with
a O-dB ratio is also linear; at -lO-dB, matches at the
two highest signal levels are underestimated.

A different test of Equation 6 can be made using
data reported by Pollack (1949). His listeners matched
the apparent loudness of speech mixed with noise to
that of speech heard under quiet conditions. For a
constant signal-to-noise ratio, if the cube root of the
signal pressure of the speech heard in quiet is plotted
as a function of the cube root of the signal pressure
of the speech heard in noise, the points lie along a
straight line; it was noted earlier that the same effect
is present for pure tones in the experiments by Hellman
(1978) and Scharf (1964). In Pollack's data, the points
for different signal-to-noise ratios form a family of
linear equations that all pass through the point (2.7S,
2.7S). This estimate is'only slightly larger than 1.78,
which is the cube root of Pollack's measured thresh­
old for the detectability of speech.

The matches made by the listeners in the experi­
ments by Hellman, Pollack, and Scharf can all be ex­
pressed by the following equation:

(POmJJ _ p~JJ) =(~.JJ _ P~JJ)lO-kIPi P" (7)

where Pm is the pressure of the matching stimulus
and the other symbols have the same meaning as in
Equation 6. At pressures large with respect to the
threshold, the logarithm of the ratio of the signal and
matching pressures will be proportional to the recip­
rocal of the signal-to-noise ratio expressed as pressure.

In order to demonstrate that k, is a constant, we
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must take logarithms of both sides of Equation 7.
The form of equation which emerges is:

log (P~33 - P~33) -log (~.33 - P~33) = -kiPniP S' (8)

This equation is plotted as the solid line in Figure 5,
with Po equal to 2.75 and k, equal to 0.214. It is based
upon 87 different combinations of signal and noise,
with levels of the matching stimulus ranging from 30
through 105 dB SPL. With only two constants in
Equation 8, the standard deviation of the errors of
prediction is 1.9 dB. This is of the same order of
magnitude as the error involved in measuring the il­
lustrations in the original publication.

The study by Scharf (1964) was similar to that of
Pollack, with the exception that he was investigating
the loudness of pure tones rather than that of speech.
As noted earlier, the cube roots of the match and
masked pressures are linearly related. Since he did
not investigate as many combinations of signal and
noise as did Pollack, his results will not be examined
to the same degree in this paper. It is worth noting
that an equation similar in form to (8) is also applica­
ble to his data with an 830-Hz tone; the coefficient of
Pn/Ps is -0.076.

A third test of Equation 7 can be made for the case
in which the signal takes on a range of values but the
level of the noise remains constant. In an experiment

0.0
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Fipre 5. UDltson the ordinate represent tbe left-band side of
Eqnation 8. URits OD the abscissa represent the rilbt-band side of
Equation 8. The oripnal data were obtained by matcbing tbe lond­
nesl of speecb beard in quiet (P.) to the londaesa of speecb beard
in noise (p.). Noise is symbolized by (P.),ud all quantities are
in terms of sound pressure. Eaeb point is based upon four or five
measurements at a particDlar signai-to-noise ratio witb different
values of signal ud noise pressure. Data were measured from
Figure 1 of Pollack (1949), and the values for botb listenen were
anraaed.

by Hellman and Zwislocki (1964), listeners matched
the apparent loudness of a tone mixed with noise to
that of a tone presented alone. In one portion of their
study, Pn was not constant for each listener but was
set at a level sufficient to produce a 6O-dB threshold
shift. By following a procedure similar to that em­
ployed in estimating the k, constant in the Pollack
data, the value of klPn was estimated to be 2.66 x 103.
Because Pn was defined in terms of threshold shift,
the value of k, could not be determined indepen­
dently. Since their sound pressures were expressed in
terms of sensation level, the Po constant could be set
equal to 1.00. For this data, then, Equation 8 con­
tains a single arbitrary constant. The degree to which
it predicts matches is illustrated in Figure 6. The
standard deviation of the errors of prediction is only
1.12 dB. The slight reverse curvature near threshold
should be noted; we will observe a similar effect in
Figure 10 when voltages from an animal devoid of
most of the outer hair cells in the cochlea are plotted.

This would be an appropriate point to comment
upon one feature of Equation 6 which at first sight
appears to be a contradiction. The term Po is defined
as the absolute threshold in the absence of a masking
source. Therefore, it seems that it would be necessary
to conclude that the absolute threshold is constant
even when a masker is present. However, we know
from the research of Hawkins and S. S. Stevens (1950)
that the threshold does increase with the level of a
white noise masker. This apparent paradox can be re­
solved if we examine Equation 6. For a constant
value of Pn, as P, decreases, the exponential term
becomes smaller and approaches zero. We can see
this process in Figure 6. When P, has a value of
60 dB SL, Pm has a calculated value of 0.5 dB SL,
which is very close to the anticipated value of 0 dB SL.

Equation 7 predicts that the value of Pm will ap­
proach that of P, at very high levels of Ps; this is the
familiar recruitment effect. There is, however, one
experiment in which this expectation is not fulfilled .
S. S. Stevens and Guirao (1967) measured the change
in loudness of a I-kHz tone embedded in levels of
white noise ranging from SO through 100 dB SPL.
Tone alone and tone plus noise were alternated tem­
porally, and either Pm or P, was adjusted in separate
experiments. However, at large values of Ps, Pm falls
consistently below P, for both modes of adjustment.
The discrepancy becomes progressively larger at the
higher levels of the noise.

The data, however, are still lawful. For each of the
six conditions of noise, we can write:

This is very similar to Equation 8, with the exception
of the additive constant k1 • Using a value of 1.8 for
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first is that masking is dependent, not only on the
luminance of the masker, but also upon the geo­
metrical relationships between the signal and noise
sources. Horeman (1965) has demonstrated that dif­
ferent configurations of these sources generate marked
changes in the influence exerted by the noise upon the
signal. The second is that the noise source not only
inhibits the signal source but also contributes to the
excitatory process. Excitation is usually engulfed by
its inhibitory twin, but when the source luminance is
low, the noise will produce an enhancement in the ap­
parent brightness of the source. This elevation can be
discerned in the results obtained by Heinemann (1955)
and in the replication of his research by Horeman.
This concept of concurrent excitatory and inhibitory
processes was proposed by Rodieck and Stone (1965)
in their analysis of receptive fields in retinal ganglion
cells of the cat. And later, when we examine the pro­

.cesses of internal masking, this concept will reappear.
In vision, then, sensory magnitude is the sum of

two processes. It will simplify the discussion if we
consider each separately before evaluating the effect
of their sum. The first process can be written:

S, = r(L~·29 - L~29)1O-K,v'Ln/L., (10)
".10 gO7.
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Figure 6. Equal loudness matcbes between a I-kHz tone (p.)
embedded in wbite noise sufficient to produce a 6O-dB tbresbold
sbift and a I-kHz tone (Pm) heard in quiet. On botb axes, P is in
terms of sound pressure and is specified witb respect to tbe abso­
lute tbreshold in quiet. Data were measured from tbe original
drawing of Figure 14 in HeUman and Zwislocki (1964).

p~.33, which is close to the absolute threshold for a
I-kHz tone, Equation 9 was plotted for each of the
six levelsof noise. All were linear, exhibiting a degree
of scatter comparable to that observed for a similar
plot in Figure 5. As Pn becomes larger, k, increases.
A more accurate formulation of the relationship be­
tween Pnand kz was not possible, since all subjects
did not contribute data at all six levels.

From Equation 9, we can see that, as P, becomes
very large, the term k,Pn/Ps will approach zero. How­
ever, kz is a function of Pn alone, so that under these
conditions, Pm will be a constant fraction of Ps. The
most reasonable interpretation of k2 is that it repre­
sents an adaptation to Pn. However, it must be a
change that operates only during the period that Pn
is presented, since the response to Pm is unaffected.
It is possible that this represents an auditory analog
to the rapid neurally mediated changes in visual sen­
sitivity observed by Werblin (1971).

Vision
The same mechanisms that we observed in audition

can also be identified in vision. Sensory magnitude is
again the product of terms representing excitation,
adaptation, and external masking. There are, how­
ever, two complications encountered in vision. The

where S is the magnitude of sensory response, L, is
the luminance of the source, Ln is the luminance of
the noise, Lo is the absolute threshold in the absence
of noise, and rand K, are empirical constants. K,
varies with the geometrical relationships between the
signal and noise sources.

There are strong similarities betweenEquation 10for
vision and Equation 6 for audition. L~·29 - L~29 is the
analog of p~.33 - P~33. In the exponential, the term
v'Ln/Ls corresponds to Pn/Ps. However, in vision, the
exponent is the square root of the ratio of the two lumi­
nances rather than the simple ratio we found in audi­
tion. The stimulus in vision is usually expressed in
terms of energy, which is the square of pressure. Since
Ln and L, in Equation 10 are in terms of energy, the
radical sign means that masking in vision is also an
exponential functionof the ratio of the noise and sig-
nal pressures. .

For the second process we can write:

where the terms have the same definition as for Equa­
tion 10 and K3is an empirical constant. As in Equa­
tion 10, we can express sensory magnitude as the
product of excitatory and inhibitory processes. How­
ever, with the second component, the excitatory term
is a fraction of the luminance of the noise source.
If this fraction were constant, the effect might be
attributed to the presence of scattered light. How­
ever, the fraction is also a function of the noise-to-
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signal ratio. As the source luminance becomes large,
the fraction diminishes to zero. This accords with the
observation that the enhancement effect disappears
at the higher source luminances.

The equation for visual brightness in the presence
of a masking source can therefore be written as:

S =r(L~·19 - L~19 + K3L~19v' Ln/Ls)IO-K.YLn/Ls. (12)

The similarities between Equation 6 for audition
and Equation 12 for vision should be noted. In both
cases, sensory magnitude is proportional to the prod­
uct of excitatory and inhibitory processes. The major
difference is that, in vision, the excitatory process also
contains a component contributed by the noise source.

In the four experiments on vision that we will ex­
amine, L, and Ln were presented to one eye and a
matching luminance Lm was presented to the other
eye. An equation for vision similar to Equation 7 for
audition can be written:

(L~19 _ L~19)

=(q.19 _ L~19 + K3L~19v' Ln/Ls)10-K.YLn/Ls. (13)

For a constant value of Ln, as L, becomes larger,
the ratio Ln/Ls approaches zero. Under this condi­
tion, not only does the excitation contributed by Ln
diminish toward zero, but the value of the expo­
nential term approaches unity. There is, therefore, an
effect in vision similar to recruitment in audition.
This processcan be observed in the papers by Diamond
(1953) and by Heinemann (1955), in which the mask­
ing effect becomes progressively weaker at the higher
source luminances.

There is no simple procedure for the evaluation of
the constants K1 and K3. The approach adopted here
is first to estimate Lo, which can vary only within
narrow limits imposed by the data. Then trial values
of K3 are inserted in Equation 13 and logarithms are
taken of both sides of the equation to determine K1 •

At first sight, Equation 13 appears to be complex,
but under certain conditions it reduces to a simple
form. If Ln/Ls is a constant, then L~r will be a linear
function of q.19. Therefore, the subjective bright­
nesses for the matching and masked sources will be
linearly related. In the introduction, it was proposed
that the touchstone for any equation of sensory mag­
nitude should be the preservation of equal sense dis­
tances or equal sense ratios under conditions of adap­
tation or masking. Equation 13 fulfills this require­
ment. The effect of constant noise-to-signal ratios in
vision was determined by Diamond (1953); his results
exhibit the predicted linearity.

We will return to Diamond's (1953) paper shortly,
but let us first examine a study by S. S. Stevens and

Diamond (1965), since we must build upon the rela­
tionships present in this body of data. The signal and
noise sources were very small squares, 6.5 min on a
side. There were 14 angles of separation coupled with
9 levels of source luminance for a total of 100 condi­
tions. The noise luminance was constant at 4.8 log mL.

Since their noise source was at an extremely high
level of luminance, some adaptation was present.
Earlier, we noted the same type of effect in audition
in the results of S. S. Stevens and Guirao (1967).
Therefore, we must add one more constant to Equa­
tion 13and write:

(14)

Lg-19 has a value of 0.32; the measured thresholds
were 0.29 with the glare source absent and 0.34 with
the glare at its greatest angle of separation. The K
constants are all proportional to the reciprocal of the
tangent of the angle separating the two sources. The
three equations can be written:

Let us first examine the adaptation term that is a
function of K1; k1 is equal to 1.50x 10-3. It would be
anticipated that k1is an increasing function of Ln and
probably also of the size of the source. There are no
visual data to evaluate these possibilities, but in the
experiment by S. S. Stevens and Guirao (1967), k1 is
an increasing function of Pn in audition. As the angle
of separation increases, tan (J becomes larger and K1
decreases. As (J approaches 90 deg, K1 approaches
zero and the exponential approaches unity. In other
words, the adaptation effect decreases as the angle
between the t., and Ln sources becomes larger.

A similar effect is present with the K1 constant;
k, is equal to 5.98 x 10-5 • A study by Diamond (1955)
suggests that K1 increases with the area of the noise
source, although the report also reveals that large in­
dividual differences are present. The only experiment
to consider the effect of the area of the signal source
is by Diamond (1962), and it indicates that this vari­
able is of negligible influence. As the angle of separa­
tion increases, we have the same type of change ob­
servable with adaptation. When (J is equal to 90 deg,
the exponential has a value of unity.

As tan (J becomes very large, K3 also approaches
zero, and, as a consequence, the excitatory compo­
nent from Ln also approaches zero. The constant k,
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has a value of 4.04 x 10-6 • Therefore, at very large
angles, Equation 14 will be a function of excitation
alone.

How well are the results of S. S. Stevens and
Diamond predicted by Equation 141 With only the
three k constants free to vary, the standard deviation
of the errors of prediction of the 100 matches is only
1.04 dB; this is comparable to the accuracy in audi­
tion attained with the results by Pollack (1949) and
by Hellman and Zwislocki (1964). If the five cases at
.06 mL, the lowest signal luminance, are omitted
from the calculations, the error of prediction drops
to .86 dB.

In their experiment, the independent variables
were the signal luminance and the angle of separation
between the signal and the noise. Since the noise lu­
minance was constant, we have still not demonstrated
that the terms containing Ln in Equations 12, 13, and
14 are correct. What we now need is a set of data in
which the angle between the sources is constant and
Ln is varied. Diamond (19S3) used 33-min square
sources placed next to each other and varied both L,
and Ln. There were seven levels of L, ranging from
-.39 to 2.71 log mL, and the values of Ln were se­
lected to form a limited set of Ln/Ls ratios. It will be
recalled that according to Equation 13, if this ratio is
constant, then L~r will be a linear function of L~·19;

Diamond's data confirm this expectation.
In the S. S. Stevens and Diamond experiment, the

signal and noise sources were viewed with the left eye
and the match source by the right eye. In the absence
of noise, Lm was consistently set to be slightly less
than Ls, so the tabulated values of Lm were adjusted
to correct for this imbalance. In Diamond's experi­
ment, Lm was on the left and was adjusted by the
subject to be slightly more than Ls• Both experiments
suggest that, for equal source luminances, the one
seen by the left eye will appear slightly less bright
than the one seen by the right.

To analyze Diamond's data, it was therefore nec­
essary to multiply Lftr by the constant 0.9S2 to align
the brightnesses seen by the two eyes. When this is
done, Equation 13 provides a satisfactory fit, with
L~19 equal to 0.20, k, equal to 7.8 X 10-4 , and ka equal
to 4.8 x HJ4

• Both of these constants are larger than
their counterparts in the S. S. Stevens and Diamond
experiment. Since the area of the sources in the
Diamond study was approximately 26 times that of
those in the S. S. Stevens and Diamond work and
since the Diamond (19SS) study showed that the in­
hibitory effect increases with the area of the Ln source,
it seems reasonable to conclude that the contribution
of Ln to excitation is also a function of the area of the
noise source. For the present study by Diamond, the
standard deviationof the errors of predictionis 1.2S dB
for all 60 measurements and .99 dB if the data for the
- .39 log mL condition is omitted. The error is slightly
larger than that for Stevens and Diamond, but it

should be noted that data for a single subject were
used in this study.

In the preceding pair of experiments, L, was one of
the independent variables and Lm was the dependent
variable. In the next pair by Fry and Alpern (19S3)
and Leibowitz, Mote, and Thurlow (19S3), the inde­
pendent variables are Ln and the angle of separation
between signal and noise sources. However, Lm is
fixed at a single value in each experiment and L, is
the dependent variable .

The experiment by Leibowitz, Mote, and Thurlow
used apparatus similar to that employed by Diamond.
Lm was maintained constant at 1 mL, and the subject
adjusted Ls• Stimuli were squares 30 min on a side,
with six center-to-center separations ranging from 30
through S70 min. There were 10 levels of Ln, ranging
from 0 through 400 mL.

The area of the sources was 21.3 times larger than
those in the Stevens and Diamond study. Despite this
difference,inagreementwithwhatStevensand Diamond
had observed, the inhibitory effect wanes for 30
through 40,60, and 90 min of separation. However,
when the distance changes from 90 to 210 min, L,
increases for all values of Ln, and at S70 min it is still
higher than for 90 min at the larger values of Ln.
This inversion does not appear in the data of Stevens
and Diamond.

Equation 13 is valid for all six separations. More­
over, for the first four, the Lo and k constants are the
sameand are verysimilar to those obtained by Diamond
(19S3). L~19 is again equal to 0.20, k, is 7.2 x 10-\
and k, is equal to 4.4 x 10-4 •

If we exclude the two largest separations from the
analysis, we can calculate the accuracy of fit. Since
Ls, the independent variable, is an implicit function
of Ln and e, we cannot easily calculate the accuracy
of prediction of Ls. However, if we substitute the
constants in Equation 13, the right-hand side should
be equal to 0.800. The mean value of the constant is
0.792 with a standard deviation of 0.066.

In the experiment by Fry and Alpern (19S3), the
sources were vertical. rectangles 106.S times greater
than those used by Stevens and Diamond. There were
two noise sources flanking the signal. They present
data for only two subjects, who could not be com­
bined since different values of Ln were used for each.
A preliminary analysis suggests that Equation 13
would also be valid for their results with constants
comparable to those in the Diamond and in the
Leibowitz, Mote, and Thurlow studies. However, the
variability of the subjects is too great to permit an ac­
curate estimate.

The L, and Ln sources are usually white light. This
raises the question of whether the Sl component would
be present if L, and Ln were complementary hues. In
a similar vein, one can conjecture that the chromatic
cancellation that occurs when complements are mixed
may be another example of visual masking.
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Fiaure 7. Left-hand seetion depicts the impulse frequency in a
single fiber of Limulus as a function of the 0.29 power of the rela­
tive luminaDc:e. Counts were made between 15 and 20 see after the
onset of light stimulation. Measurements were made from Figure 6
of Fuortes (1958) using the uDit denoted by solid lines in that il­
lustration. The solid line in the present illustration is a theoretical
function described by Equation 16. The right-hand seetion por­
trays the brightness in brils of a source to which the human eye was
adapted during the estimation. Since tbe original measurements
bad been made witb a natural pupil, tbe light levels presented to
tbe eye bave been converted into trolands. The units on tbe ab­
scissa are trolands to the 0.29 power. The data points were mea­
sured from Figure 7 of J. C. Stevens and S. S. Stevens (1963).
Tbe solid line is a theoretical function described by Equation IS.
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stant, and r is a constant to match the units of B.
It should be noted that the same exponent value, 0.29,
is used in Figures 3 and 7.

The left-hand section of Figure 7 depicts the re­
sponse of Limulus under steady state conditions.
Spike frequency is expressed as a function of lumi­
nance to the 0.29 power. These measurements were
made by Fuortes (1958) over a period of 15 to 20 sec
after the onset of the stimulus. The response is linear
for the lower luminances, but it departs from lin­
earity at the higher levels. The solid line is an equa­
tion which exhibits the form:

where F is the frequency of discharge, L is the lumi­
nance of the stimulus, Lo is the threshold luminance
of the stimulus, c is an empirical constant, and r is a
constant used to match the units of F. Equation 16
has exactly the same form as Equation 15, except for
the threshold constant which could not be estimated
for the J. C. Stevens and S. S. Stevens data.

It is interesting to note that the exponent of 0.29
holds for both Limulus and for humans. As in Equa­
tions 10-14, the exponential is a function of the square
root of luminance, since the units are expressed in
terms of energy. Equations 15 and 16 are similar in
a mathematical sense to Equation 11. If Ln in Equa­
tion 11 is held constant, then there will be a value of
Ln/Ls where S is a maximum.

(15)

INTERNAL MASKING

Taste
Masking is also a multiplicative function in taste.

Beebe-Center, Rogers, Atkinson, and O'Connell
(1959) reported data on masking in solutions of su­
crose and sodium chloride. For a given concentration
of sodium chloride, the matching concentration of
sucrose is always a constant percentage of the sucrose
concentration in the mixture. A similar effect is pres­
ent for a given concentration of sucrose as masker.
This type of relationship is similar to that noted ear­
lier for high levels of speech with a constant noise-to­
signal ratio. However, it should be noted that, in
taste, masking is a function of the concentration of
the noise component alone rather than of the ratio of
noise-to-signal concentrations.

Similar conclusions can be drawn from a more
recent study by Moskowitz (1971). His subjects per­
formed magnitude estimations for the four basic
tastes: sweet, sour, salty, and bitter. The judgments
were made for the basic tastes in isolation and in
pairs. His results suggest that a particular masking
concentration reduces the magnitude of taste by the
same percentage at all concentrations of the signal.
One inference that can be drawn from both studies is
that an effect similar to recruitment does not occur
in taste. However, Beebe-Center, Rogers, Atkinson,
and O'Connell suggest that masking in taste may also
be an exponential function; this possibility could not
be evaluated with the data of Moskowitz.

where B is the subjective brightness in brils, L is the
retinal illuminance in trolands, c is an empirical con-

There are similarities between internal masking, on
the one hand, and both adaptation and external mask­
ing, on the other. In common with adaptation, in­
ternal masking involves a reduction in sensitivity.
However, internal masking is adaptation to the par­
ticular stimulus being observed. In common with ex­
ternal masking, internal masking is an exponential
function of the masker level.

In the experiment illustrated in Figure 3, subjects
were adapted either to darkness or to 4,000 mL. The
stimuli to be judged were brief flashes of light which
did not alter the state of adaptation. However, when
subjects are adapted to the stimuli to be evaluated,
the linearity evident in Figure 3 does not emerge.

J. C. Stevens and S. S. Stevens also measured ap­
parent brightness when the subject was adapted to
the stimulus; their results are depicted in the right­
hand section of Figure 7. Since they employed a nat­
ural pupil, their luminance values were converted to
trolands using the pupil areas measured by Reeves
(1920). The solid line is an expression of the equation:
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Figure 8. Relative log sensation magnitude as a function of
relative log concentration. The values for tbe three basic tastes
bave been converted to a common scale by adding constants to tbe
log sensation magnitudes and to tbe log concentrations for sodium
chloride and for quinine sulfate. Tbe solid line is a tbeoretical
function wbicb appears as Equation 17 in tbe text. Data points
were measured from Figures 3, 8, and 10 of S. S. Stevens (1969).
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pressure. In the preceding section, it was demon­
strated that visual and auditory noise would attenu­
ate the response to a stimulus. Since adaptation to
the stimulus has a similar effect, it is reasonable to
suspect that a similar mechanism may be involved.

Figure 9 illustrates the processes involved in re­
sponding to an auditory stimulus to which the or­
ganism is adapted. The straight line in the upper left­
hand corner portrays an excitatory process which is
a linear function of the cube root of the sound pres­
sure; this is Equation 3. The curved line in the lower
left-hand corner illustrates an inhibitory process
which is an exponential function of the sound pres­
sure. The product of these two processes produces
the nonmonotonic function on the right. This form
of curve is quite common in auditory electrophysiol­
ogy, and Atkinson (1976, 1978)has demonstrated its
applicability to subcortical structures in the cat. The
equation introduced in these papers is:

where V is the peak-to-peak voltage of the click­
evoked response and P is the pressure of the stimulus.
The constants rand c were defined in Equation 15.

Equation 18 is not limited to click stimulation or
to the higher levels of the auditory nervous system in
the cat. Figure 10 depicts the magnitude of the action
potential in the auditory nerve of the guinea pig re­
corded by Dallos and Wang (1974) using an 8-kHz
tone burst. For the moment, we can confine our at­
tention to the data represented by circles, which were
recorded from an animal with a normal cochlea. The

Taste
In many studies of taste, when the logarithm of

magnitude of response is plotted as a function of the
logarithm of concentration, the upper portion of the
curve will appear to be negatively accelerated rather
than linear. This decrement can be observed in the re­
ports by Bartoshuk and Cleveland (1977), Borg
Diament, Strom, and Zotterman (1967), Moskowit~
(1970), Pfaffman (1955), and S. S. Stevens (1969).
Attenuated response is observed at high concentra­
tions for both judgments of sensory magnitude and
for the electrical response of the gustatory nervous
system in rats and humans. Although it is possible
that this waning could be a consequence of physical
factors with sucrose such as viscosity, it also appears
when sodium chloride is the stimulus. Figure 8 de­
picts some of the results obtained by S. S. Stevens
(1969) for three basic tastes. The solid line has the
mathematical form:

100

80

50

40

p.33 _ p~'33

[XC ITATION

(18)

(17) 20
40

where S is the relative subjective magnitude of taste
and W is the relative concentration in grams per
100 cc of water. The constant r matches the units of
S, and c is an empirical constant.
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Audition
To understand Equations IS, 16, and 17, it is nec­

essary to return to the section on external masking
and to analyze Equation 6. This equation can be con­
sidered to be the product of two processes. One, which
is excitatory, is a linear function of the cube root of the
pressure of the stimulus; Equation 3 expresses the pure
excitatory process. The other, which is inhibitory, is an
exponential function of the ratio of the noise-to-signal

.4

.2

Fllure 9. Tbeoretic.l components of resP01lle to stimul.tion to
wblcb tile o....nlsm Is .d.pted. Tbe product of tbe excItatory
and inbibitory processes on tbe left generates tbe nonmonotonic
curve on tbe rigbt. Tbis is tlie type of function desctibed in tbe
text by Equations 15, 16, 17, 18, and 20.
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Figure 10. Action potential of tbe auditory nerve recorded from
tbe cocblea of tbe guinea pig. Tbe stimulus was an 8·kHz tone
burst. Tbe circlesrepresent tbe voltages from an animal witb a nor­
mal cochlea, and tbe squares denote tbe voltages from an animal
in whicb tbe majority of tbe outer bair cells in tbe basal tum bad
been destroyed. Units on tbe abscissa are tbe cube roots of tbe
sound pressure of tbe bursts. Tbe solid lines are tbeoretical func­
tions described by Equations 18 and 19. Data were measured from
Figure 5 in Dallos and Wang (1974).

solid line through these points is Equation 18, with r
equal to 18, pt;33 equal to 6, and c equal to 0.36x 1<J6.
Except for the four highest pressures, which ranged
from 100 through 115 dB SPL, the relationship be­
tween electrical response and the cube root of pres­
sure is linear; as noted earlier, in Figure 1, the same
function appears for the same species in the data of
Teas, Eldredge, and Davis (1962).

Equations 6 and 18 differ only in the exponential
term. In the auditory nervous system of the cat and
the guinea pig, the signal masks itself. In human
psychophysical judgments in vision and audition, the
masker is the ratio of the noise and signal pressures.
The formal similarity between Equations 6 and 18 re­
inforces the hypothesis that internal and external
masking may be a function of similar mechanisms.

The lower curve in Figure 10 represented by squares
provides a clue for the mechanism of auditory mask­
ing. The points were derived from an animal in which
most of the outer hair cells of the cochlea had been
destroyed by the drug Kanamycin; the inner hair cells
remained intact. If we compare voltages at the same
sound levels for normal and Kanamycin-treated ani­
mals, we can write an equation of the form:

where Vt and Vu are tone-evoked voltages from the
Kanamycin treated and untreated animals, respec­
tively, P, is the pressure of the stimulus, and k, and
k1 are empirical constants. In a formal sense, this is
very similar to Equation 9, which described loudness
matches in the presence of a constant level of noise in
the experiment by S. S. Stevens and Guirao (1967).
The correspondence becomes even more striking
when it is noted that in Figure 1 it was demonstrated
that click-evoked voltage at the cochlea of the guinea
pig is a linear function of the cube root of sound pres­
sure and that in Figure 4 it was shown that scaled loud­
ness in humans is also a linear function of the cube
root of sound pressure. Since the effect of damage to
the outer hair cellscan be represented by the same form
of equation as the effect of a masking noise in human
psychophysical judgments, it is not unreasonable to
suggest that a masking noise may temporarily disable
the outer hair cell population in humans.

THE GENERAL EQUATION

To write a general equation, we first need to ex­
amine the question of the proper physical units to
employ. The stimulus in audition is usually expressed
in terms of pressure or occasionallyin terms of energy,
which is usually proportional to the square of pres­
sure. The stimulus in vision is commonly expressed in
terms of energy. The stimulus for touch is usually
given in terms of amplitude displacement and for
taste in terms of weight of solute per liter of solu­
tion or per 100 cc of solvent.

In the equations for external and internal masking in
vision, the use of energy units required an additional ex­
ponent. It would, therefore, produce a more simple
equation if the stimulus in visionwereexpressedas pres­
sure. The stimulus for taste in Equation 17 is expressed
in units of weight of solute with respect to weight of sol­
vent. This is in contrast to the usual chemical practice
of specifyingconcentration in terms of number of gram
molecular weights per volume of solution. There is no
a priori reason for favoring either convention and, in
dilutesolutions, the two concentrations are proportional.
However, for the deftnition of concentration employed
in Equation 17, osmotic pressure is more nearly pro­
portional to the concentration. Therefore, stimulus
pressure again appears to be the optimum unit for pre­
dicting sensory magnitude.

The general equation for magnitude of response as
a function of pressure under all conditions can be
written as:

(20)

where S is the magnitude of the response, P is the
pressure of the stimulus, and Po is the threshold pres­
sure of the stimulus. Rand c are empirical constants.
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Most of the evidence seems to support a value of
0.29 for the exponent for vision when the stimulus is
expressed in terms of energy; therefore, q would be
0.58 for vision if the stimulus is considered in terms
of pressure. Physiological and some psychophysical
experiments support a value of 0.33 for audition,
and the results of scaling studies are also in agree­
ment if the hypothesis of dual processes for loudness
is accepted. There is some doubt concerning the ex­
ponent for taste, since it may vary for different sen­
sory qualities and even for different testing proce­
dures. There is general agreement that it is probably
greater than unity, and the Stevens data depicted in
Figure 8 suggest an exponent of 1.33. The data on
vibrotaction illustrated in Figure 2 suggest an expo­
nent of 0.50, but this value should be considered ten­
tative. The value of R is a function of the choice of
units for S, the level of adaptation, and the magni­
tude of an external masker.

In vision, the data of J. C. Stevens and S. S. Stevens
(1963) show that the R constant becomes smaller as
the level of light adaptation increases. In touch, the
data of Gescheider and Wright (1968) indicate that
the R constant becomes smaller as the state of tactual
adaptation increases. It would be anticipated that
similar effects would appear in audition and in taste.

In audition, the results of Pollack (1949) demon­
strate that the R constant is a decreasing exponential
function of the noise-to-signal pressures. The data of
S. S. Stevens and Guirao (1967) suggest that, under
certain conditions, this constant may be a decreasing
function of the noise pressure alone, but this effect
is not consistent with the body of research on ex­
ternal masking in audition. On the contrary, the
results of Hellman (1978), Hellman and Zwislocki
(1964), and Scharf (1964) support the premise that R
is a function of the noise-to-signal pressure ratio.

In taste, the results of Beebe-Center, Rogers,
Atkinson, and O'Connell (1959) suggest that the R
constant is a decreasing function of a power of the
osmotic pressure of the masker concentration. The
relationship between R and masking in touch could
not be established.

In vision, the relationship between R and charac­
teristics of the masker is complicated by the compo­
nent of excitation contributed by the noise source.
By an algebraic rearrangement of the right-hand side
of Equation 12, we can express R as:

The function of the r constant is to adjust for the
units of S. If the noise-to-signal ratio is maintained
at a constant value, then the term within brackets is
a linear function of the cotangent of the angle be­
tween the signal and noise sources. If this angle is
kept constant, then the term within brackets is a lin-

ear function of the 0.79 power of the ratio of the
noise and signal luminances. If the noise-to-signal
ratio is maintained at a constant value, then the mag­
nitude of the exponential term will be an exponential
function of the cotangent of the angle between the
signaland noise sources. If this angle is kept constant,
then the exponential term will be an exponential
function of the square root of the ratio of the noise
and signal luminances.

Although this relationship appears to be complex,
it should be noted that when both the noise-to-signal
ratio and the angle between noise and signal sources
is constant, then R will be a constant. Under this con­
dition, S will be a simple linear function of a power
of the physical stimulus and an equation similar to
(3) will emerge. Except for values of L, close to the
absolute threshold, the subjective brightness ratio of
L, and Ln will remain invariant with changes in Ls.

In vision, the Po constant increases as the level of
lightadaptation increases. In touch, the Po constant in­
creases as the state of tactual adaptation increases. In
both of these senses, there is a simple relationship in
which Po is a linear function of the reciprocal of R.

In vision, Po is an inverse function of the noise-to­
signalratio and the separation betweenthe two sources
under conditions of masking. In audition, Po is the
absolute threshold in the absence of noise and is in­
variant with changes in the levelof a masking source.
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