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Parallel coding of conjunctions in visual search

ANDREW FOUND
Birkbeck College, University of London, London, England

Two experiments investigated whether the conjunctive nature of nontarget items influenced search
for a conjunction target. Each experiment consisted of two conditions. In both conditions, the target
item was a red bar tilted to the right, among white tilted bars and vertical red bars. As well as color and
orientation, display items also differed in terms of size. Size was irrelevant to search in that the size of
the target varied randomly from trial to trial. In one condition, the size of items correlated with the other
attributes of display items (e.g., all red items were big and all white items were small). In the other con-
dition, the size of items varied randomly (i.e., some red items were small and some were big, and some
white items were big and some were small). Search was more efficient in the size-correlated condition,
consistent with the parallel coding of conjunctions in visual search.

In a visual search experiment, observers are required
to determine the presence or absence of a specific target
item among a variable number of nontarget items. When
the target item differs from nontargets in terms of a sin-
gle attribute, search is generally unaffected by increases
in the number of nontargets. In contrast, when the target
shares its attributes with nontarget items, search is more
difficult, becoming increasingly more difficult as the num-
ber of nontargets increase. These and other factors known
to influence search efficiency (such as variation of non-
target items and foreknowledge of the target) have been
embodied in two competing models of search: Guided
Search (Wolfe, 1994) and similarity theory (Duncan &
Humphreys, 1989). Both are capable of accounting for a
wide range of search data; however, they differ quite strik-
ingly from one another in how search processes locate and
select a target item.

Guided Search assumes that the entire visual field is
initially processed into a limited set of basic visual fea-
tures, such as color and orientation. This information is
then used to generate dimension-specific (i.e., color, ori-
entation, etc.) likelihoods of target presence, which are
represented on spatially organized maps. These dimension-
specific likelihoods are then summed, in parallel, onto
the master map of activations. Attention is deployed to a
location based on these summed likelihoods represented
on the master map. The deployment of attention to a lo-
cation results in the transmission of visual information at
that location to further attentive stages of processing and
response mechanisms (as in Treisman & Gelade’s, 1980,
Seature-integration theory). The dimension-specific sa-
liency signals are generated both by bottom-up feature
contrast mechanisms and by top-down activation of loca-
tions containing target features. Attention is deployed to
the location on the master map with the greatest activa-
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tion. If the attended location contains a target item, a pre-
sent response is elicited. If the attended location does not
contain a target, then another location likely to contain
the target (i.e., above a certain threshold) is attended to.
If a target item is not encountered after a certain number
of locations have been attended to (possibly all), a default
absent response is elicited.

In comparison, Duncan and Humphreys’s (1989) model
of search—similarity theory—proposes that the segmen-
tation and description of visual entities (objects) occurs
in parallel and is not slowed by limited processing re-
sources. Whereas in Guided Search, preattentive vision
“knows” that something red is at location (x,y), accord-
ing to similarity theory, preattentive vision delivers a set
of bound attributes that belong to the same object [e.g.,
a red, tilted, small object at location (x,y)]. This parallei
processing of “objects” (termed structural units by Dun-
can and Humphreys) is not something that we are aware
of, however, and we cannot elicit responses based on the
outcome of preattentive processes. For a structural unit to
form the basis of an action, it must enter visual short-term
memory (VSTM).

The storage capacity of VSTM is limited, and so ac-
cess to VSTM is also limited. Therefore, structural units
derived in preattentive vision compete with one another
for access to VSTM. Structural units differ in how likely
they are to enter VSTM, with the likelihood of a given
structural unit entering VSTM called its weight. This
weight can be altered by two processes. First, top-down
knowledge of the target specification (termed template)
can enhance the weight of a structural unit that possesses
one or more of the target attributes (e.g., location, color,
etc.). Second, the weight of a unit can be affected by the
weight of other units, by the process of weight linkage.
According to similarity theory, units that share attributes
(i.e., are similar to one another) are linked, such that the
weights of linked units alter together. Thus, as the weight
of a unit increases, the weights of other units that it is
linked to also increase, and vice versa. Both weight link-
age and template enhancement are illustrated in Figure 1.
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Efficient search will occur when the target unit’s weight
is much greater than the weights of nontarget units. Ac-
cording to similarity theory, this will happen when the
targets identity is predictable in advance (allowing top-
down information to enhance the target unit’s weight).
However, the target unit’s weight is also modulated by
the extent to which the target unit is linked to nontarget
units, since the weights of linked units tend to alter to-
gether. Hence, search will be more efficient if the target
and nontarget units do not share attributes with one an-
other (i.e., are dissimilar), since they will not be linked.
In addition, search efficiency is also modulated by the
extent to which nontarget units are linked. According to
Duncan and Humphreys, weight linkage between similar
nontargets is essential for the efficient rejection of linked
nontarget units en masse—a process they call spreading
suppression.

Guided Search and similarity theory provide two very
different accounts of search. They differ both in the “rep-
resentational medium” upon which search is based and
in the mechanisms that drive search. Guided Search rep-
resents featural information in dimension-specific mod-
ules and uses bottom-up saliency signals and top-down
activation to “guide” attention to the target. In contrast,
according to similarity theory, search processes operate
on bound sets of features (termed structural units), with

selection of the target object modulated by grouping pro-
cesses between items. Thus, they differ in terms of the
preattentive representation, dimension-specific features,
or bundles of features (i.e., objects). They also differ in
terms of saliency or grouping as the “engine” of search.
In an attempt to distinguish between these two accounts,
the focus of debate has centered on saliency versus group-
ing in visual search. However, this has proved a largely
fruitless approach, since saliency and grouping are func-
tionally equivalent. As a target item becomes more sim-
ilar to nontargets, it also becomes less salient.
According to Duncan (1995), there are numerous ex-
amples of perceptual grouping between nontargets in-
fluencing visual search. Two such examples cited by Dun-
can are Farmer and Taylor (1980) and Bundesen and
Pedersen (1983). Both of these studies reported effects of
the similarity of nontarget items on search. For example,
Farmer and Taylor instructed observers to search for an
achromatic target among colored nontargets. When the
nontargets were a range of different colors (e.g., red, yel-
low, green, blue, and purple), search was significantly
less efficient than when nontargets were relatively uni-
form in color (e.g., five “shades” of blue/green). Simi-
larly, Bundesen and Pedersen reported that, when ob-
servers searched for a prespecified color target, response
times (RTs) increased linearly as the number of nontar-
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Figure 1. Illustration of the processes involved in visual search as postulated by similarity theory (Duncan
& Humphreys, 1989). The basic “units” of search are bound sets of features belonging to the same object
(structural units), which compete for entry into visual short-term memory (their likelihood of entry, or
weight). This competition is modulated by interactions between structural units (weight linkage) embodying
similarity-based grouping between structural units that have similar features. In addition, advanced knowl-
edge of the target item (template) enhances the weights of structural units possessing the target features.
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get colors increased. They concluded that observers se-
quentially searched each color group in turn, until a group
that matched the target color was found.

The results of both of these studies are explicable in
terms of similarity-based grouping between nontargets.
As nontargets become more similar, they are more likely
to group with one another. According to Duncan and
Humphreys (1989), nontarget groups can be rejected as
candidate targets en masse, generating more efficient
search compared with the one-by-one rejection of indi-
vidual nontargets. However, both Farmer and Taylor’s
study and Bundesen and Pedersen’s study are also ex-
plicable in terms of saliency differences between nontar-
gets, without the need to postulate any interactive group-
ing of nontargets.

According to the Guided Search model, search effi-
ciency is determined by two additive sources of infor-
mation that guide attention to the likely location of a target
item: bottom-up information based on dimension-specific
saliency signals, and top-down information based on
foreknowledge of the targets identity. In Bundesen and
Pedersen’s (1983) study, for example, observers were al-
ways informed of the target color; thus, top-down knowl-
edge of the target was the same in all conditions. However,
the number of nontarget colors influenced bottom-up in-
formation used to guide attention. Bottom-up signals in
Guided Search are computed for the locations of each
display item. Each signal is based on the sum of signals
generated by differences between a given item and all
other items in the display, modulated by the distance be-
tween items. Thus, increasing the number of nontarget
colors in Bundesen and Pedersen’s study increased the
number of nontargets from which any other nontarget
differed. In Guided Search, this will increase the bottom-
up signals at nontarget locations. Since nontarget saliency
signals compete with the target saliency signal to attract
attention, bigger nontarget saliency signals would have
impeded search. This is precisely what Bundesen and
Pedersen reported. Thus, both grouping and saliency are
equally able to explain effects of nontarget heterogene-
ity. As nontargets become more similar (increasing group-
ing), they become less salient (thereby reducing potential
interference), both predicting improved search efficiency.

According to Duncan (1995), the results of Driver,
McLeod, and Dienes (1992b) provide a means of distin-
guishing between grouping and saliency as the determi-
nant of search efficiency. In Driver et al.’s (1992b) study,
observers searched for a target X oscillating top-left to
bottom-right (termed the minor axis) among Os also os-
cillating top-left to bottom-right and Xs oscillating top-
right to bottom-left (the major axis). Display items
moved at 2.1%second and reversed motion direction every
100 msec. Driver et al. (1992b) manipulated the “phase”
of both motion directions. For either motion direction,
items could all move in phase or out of phase with each
other. When items moved in phase, they moved upward
and downward at the same time. When items were out of
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phase, at any one time, half the items in a given direction
moved up and half moved down. When items in both mo-
tion directions oscillated in phase, search was relatively
efficient (present slope of 8 msec/item). However, Driver
et al. (1992b) found that items out of phase in either the
target or the nontarget motion direction adversely af-
fected search performance.

Driver et al. (1992b) proposed that their findings are
explicable in terms of revised FIT/Guided Search mod-
els as inhibition of nontarget features and excitation of
target features in a location-by-location manner. How-
ever, Duncan (1995) queried this interpretation, sug-
gesting that the manipulation of phase was more sug-
gestive of relations between items in a given display. To
determine whether items are in or out of phase is not de-
rivable locally on the basis of information concerning
one item. Instead, Duncan argued that “phase is defined
by relationships between one element and another within
the display.” Duncan also argued that such relations be-
tween items are contrary to the item-by-item approach
of revised FIT/ Guided Search and, instead, are indica-
tive of grouping interactions between items.

However, Duncan’s (1995) interpretation can be ques-
tioned, given that observers can search for motion-
direction feature targets (Driver, McLeod, & Dienes,
1992a). At any one time, when items in both motion di-
rection groups moved out of phase, there would have
been four motion directions, whereas when both motion
groups were in phase, there would have been only two.
Thus, less efficient search can easily be explained in
terms of bottom-up motion saliency signals that would
be stronger when the display contained four motion di-
rection groups, compared with only two. Any one item
would have differed from 75% of the other items in
terms of motion direction when displays contained four
motion directions. In contrast, any one item would differ
from 50% of the items when displays contained only two
motion directions. In addition, it is possible that motion
differences along the same axis may be particularly
salient, given that, relative to each other, items would be
moving twice as fast as their actual speed. At present,
our limited understanding of the representation of and
interaction between complex motion features suggests
that the results of Driver et al. (1992b) are eminently ex-
plicable in terms of an item-by-item influence of bottom-
up saliency differences between items.

The present experiments provide a novel means of dis-
tinguishing between accounts of search that postulate
dimension-specific saliency and interitem grouping.
Rather than manipulating the similarity of items in the
display (which will also influence saliency), the present
experiments attempted to distinguish between the repre-
sentational media of search—namely, dimension-specific
features or a bound set of features. More specifically, sim-
ilarity theory postulates that all feature conjunctions are
coded prior to grouping processes that drive search. In
contrast, in Guided Search, feature values are represented
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in dimension-specific modules. For example, the color
module “knows” that an item at a given location is red, but
it does not “know” whether the same item is also tilted
or big and so on. The present experiments investigated
whether, in search for a conjunction target, the conjunc-
tive nature of nontargets influences search.

EXPERIMENT 1

Experiment 1 consisted of two conditions, both of
which included variation between items along three di-
mensions: color, orientation, and size. On each of these
dimensions, items could have one of two feature values.
For color, they were either red or white; for orientation,
they were either vertical or tilted 45° to the right; and for
size, they were either small or big. Most importantly, the
size of display items was totally irrelevant to the task that
the participants had to perform, and they were instructed
to ignore variation in the size of items. In each condition,
the target item was a red right-tilted bar among vertical
red bars and right-tilted white bars. The conditions dif-
fered in the variation of the size of items within a given
trial; the two conditions are depicted in Figure 2. In the cor-
related condition, the size of items correlated with the
other feature values of items, such that red items and right-
tilted items were either all big or all small on any given
trial. In the uncorrelated condition, the size of items varied
randomly with respect to other features, such that some red
items and some right-tilted items were big and some were
small. If preattentive vision codes the conjunctive nature of
nontargets, as similarity theory proposes, then search
should be more efficient in the correlated condition, since
items are conjunctively more similar to one another.

Method

Participants. Eight participants (including the experimenter)
took part in the experiment. All participants were right-handed. The
participants’ ages ranged from 23 to 32 years. All participants (ex-
cept the experimenter) were naive as to the purpose of the experi-
ment. Half of the participants performed the correlated condition
first; the other half performed the uncorrelated condition first.

Stimuli. In both conditions, when set size allowed, there were
equal numbers of red and white items, equal numbers of vertical
and tilted items, and equal numbers of big and small items. The tar-
get item was a red item tilted to the right. The target item was
equally likely to be either big or small on a given trial. Figure 2 il-
lustrates the four possible target-present displays in the two condi-
tions. The conditions differed in the relationship between the size
of items and the featural identity of items on other dimensions. In
the uncorrelated condition, the size of items varied randomly among
all display items. In contrast, in the correlated condition, the size of
items always correlated with other features. On a given trial, all red
items were big and all right-tilted items were small, or vice versa.
Displays contained 16, 25, or 36 items presented as a grid of 4 X 4,
5 X 5, or 6 X 6 items, respectively (subtending approximately
4.2° X 4.2° 5.5° X 5.5% or 6.7° X 6.7° of visual angle, respec-
tively). Participants viewed the display from a distance of 90 cm.

Procedure. A go/no-go response was employed. The partici-
pants responded when a target was present in the display, using the
index finger of the right hand. When displays did not contain a tar-
get, the participants did not respond, and, after 5 sec, the screen
went blank and the next trial began. Only negative feedback was
provided to the participants (in the form of a large minus sign pre-
sented in the middle of the screen for 2 sec), and no fixation cross
was presented prior to the appearance of displays. Each condition
consisted of 360 trials presented in blocks of 60 trials.

Results

Mean RTs for both conditions are shown in Figure 3.
In both conditions, RTs were longer to small targets, and
they increased as set size increased. In addition, RTs
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Figure 2. Example displays of the different target present displays in the two conditions of Experiment 1. In both conditions,
the target was always a red item (dark bars), tilted to the right. In addition, it could vary in size, being either big or small. The
two conditions differed in the correlation between size features and other features (see text).
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Figure 3. Mean response times (RTs) to big and small targets in the two conditions of Experiment 1 according to the
number of items in the display (set size). The respective linear regression slope values are shown in milliseconds/item.

were longer in the uncorrelated condition than in the cor-
related condition for both big and small targets. These
differences were investigated in an analysis of variance
(ANOVA), with factors of condition, target, and set size.

All three main effects were significant [condition,
F(1,7) = 12.68, p < .01; target, F(1,7) = 9.97, p <.05; set
size, F(2,14) = 31.95, p <.001]. RTs were significantly
longer in the uncorrelated condition,! significantly longer
to small targets, and increased significantly as set size in-
creased. The interactions between condition and set size
[F(2,14) = 5.36, p <.05] and between target and set size
[F(2,14) = 6.26, p < .05] were also significant. RTs to
small targets increased more as set size increased, relative
to RTs to big targets. Importantly, RTs in the uncorre-
lated condition increased more as set size increased, rel-
ative to RTs in the correlated condition. Thus, the dif-
ferent distribution of irrelevant size variation in the two
conditions significantly affected search slopes, with less
efficient search in the uncorrelated condition.?

Discussion

Search was significantly less efficient in the uncorre-
lated condition. As illustrated in the example displays in
Figure 2, the distribution of color and orientation fea-
tures through the displays were identical in the two con-
ditions. The two conditions differed only with respect to
the variation in the size of items. Although size was ir-
relevant to search (the participants were instructed to ig-
nore it), the distribution of size features made a differ-
ence. In the correlated condition, the two feature values

of size (i.e., big and small) were correlated with the fea-
ture values on other dimensions. The red bars were all
big or all small, and vice versa, for the right-tilted bars. In
the uncorrelated condition, size features were not corre-
lated with feature values on other dimensions. Therefore,
some red items and some white items were big and some
were small. Similarly, some right-tilted items and some
vertical items were big and some were small. Why should
this make a difference?

According to the Guided Search model, search effi-
ciency is determined by two factors: bottom-up saliency
information and top-down knowledge of target features.
In Experiment 1, bottom-up saliency information would
have been of limited value in determining search perfor-
mance. Each display item was either big or small, red or
white, tilted or vertical. Thus, in each dimension, a given
item would have a different feature value, relative to half
of the other display items. The bottom-up saliency signals
computed for each dimension would generate a peak of
activity at every location in the display. Since bottom-up
saliency information would not favor one location over
another, according to Guided Search, we would expect
search to be serial. However, the participants also had top-
down knowledge of the target item—namely, that it was
red and tilted. Locating the target would be primarily
based on top-down activation of locations representing the
features of red and right-tilted. In terms of Guided Search,
both conditions would have the same patterns of bottom-
up activation of the master map, and target locations in
both conditions would receive the same top-down activa-
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tion. As such, Guided Search cannot account for the less
efficient search in the uncorrelated condition.

In contrast, since similarity theory postulates a repre-
sentation that “knows” what features go with what other
features, it is readily able to account for the difference.
According to similarity theory, each display item would
be represented as a structural unit that represents all the
information concerning that item. For example, struc-
tural units would represent that an item is red, vertical,
and big (and other information related to its location,
etc.). Structural units group on the basis of similarity.
Items that are red would group with each other, items
that are white would group with each other, and so on. In
addition, although task-irrelevant, items with the same
size would presumably also group. In the correlated con-
dition, the size grouping of items would reinforce the
groupings of items by color and orientation. In contrast,
in the uncorrelated condition, size groupings would con-
flict with grouping based on color and orientation. Sim-
ilarity theory postulates that stronger grouping between
nontargets generates more efficient search. Therefore,
since nontarget grouping is size-reinforced in the corre-
lated condition and size-disrupted in the uncorrelated
condition, we would, according to similarity theory, ex-
pect more efficient search in the correlated condition.
This is precisely what was found, with significantly longer
RTs and significantly larger slopes in the uncorrelated
condition than in the correlated condition.
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EXPERIMENT 2

Experiment 2 was designed to test the generality and
stability of the findings of Experiment 1. The goal of Ex-
periment 2 was to replicate the findings of Experiment 1
and address the possibility that differences between the
two conditions may reflect different strategies adopted
by participants in the two conditions. For instance, the
participants might have adopted different response crite-
rion levels in the two conditions, with a more cautious
approach in the uncorrelated condition leading to longer
RTs. To address this, Experiment 2 replicated the two
conditions of Experiment 1, with the two conditions pre-
sented mixed. Any one trial was equally likely to be either
a size-correlated or size-uncorrelated display. In all other
respects, Experiment 2 was identical to Experiment 1.

Method

Participants. Eight participants (including the experimenter)
took part in Experiment 2. All participants were right-handed. The
participants’ ages ranged from 24 to 44 years. Apart from the ex-
perimenter, none of the participants had taken part in Experiment 1,
and all were naive as to the purpose of the experiment.

Stimuli. Experiment 2 differed from Experiment 1 in that size-
correlated and size-uncorrelated displays were presented mixed as
opposed to blocked. In all other respects the presentation of stimuli
was identical to that in Experiment 1.

Procedure. As in Experiment 1, the participants performed two
“runs” of the experiment, both of which consisted of 384 trials pre-
sented in eight blocks of 48 trials (making a total of 762 trials). As
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Figure 4. Mean response times (RTs) for big and small target items in the correlated and uncorrelated conditions of
Experiment 2 according to the number of items in the display (set size). The slopes of regression lines fitted to the RT/set-

size functions in each condition are also shown.
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in Experiment 1, the participants were given 5 sec in which to re-
spond before being timed out.

Results

Mean RTs in the correlated and uncorrelated condi-
tions of Experiment 2 are shown in Figure 4 for both big
and small target items. As in Experiment 1, RTs were
longer in the uncorrelated condition for both big and
small targets. The slopes of the RT/set-size functions (as
shown) were also larger in the uncorrelated condition.
An ANOVA, with factors of condition, target size, and
set size, revealed a significant main effect of condition
[F(1,7) = 32.50, p <.001]. The main effect of set size was
also significant [F(2,14) = 39.64, p <.0001]. The main
effect of target size approached significance [£(1,7) =
3.93, p = .09]. The interaction between condition and
set size was significant [F(2,14) = 4.37, p < .05]. The
only other significant interaction was between condition
and target size [F(1,7) = 15.05, p <.01], reflecting the
bigger difference between RTs to big and small targets in
the correlated condition, relative to in the uncorrelated
condition.3

Figure 5 shows that the difference between the two
conditions was reliable for each of the 8 participants in
Experiment 2. The top graph of Figure 5 shows the slope
values of the participants (irrespective of target size).
Slope values in the uncorrelated condition were larger
than in the correlated condition for all participants ex-
cept one (the participant with the largest slope values).
The lower graph of Figure 5 shows the overall mean RTs
of the 8 participants in the two conditions. Mean RTs were
longer for all participants in the uncorrelated condition
than in the correlated condition.
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Discussion

The results of Experiment 2 replicate the findings of
Experiment 1. The participants found search more diffi-
cult in the uncorrelated condition. The mixed presenta-
tion of correlated and uncorrelated condition displays in
Experiment 2 strongly suggest that the difference in re-
sults in the two conditions does not reflect any strategic
differences adopted by the participants for the two con-
ditions. The random intermingling of correlated and un-
correlated trials would have made it very difficult for the
participants to have varied strategy on a trial-by-trial
basis without any advance “notification” of forthcoming
trial displays. Instead, the difference between the corre-
lated and uncorrelated conditions in both Experiment 2
and Experiment 1 reflect perceptual differences in the
“searchability” of the targets in the two conditions.

GENERAL DISCUSSION

The present experiments explored whether preatten-
tive vision, which “guides” target selection in conjunction
search, knows which features goes with which features.
According to the Guided Search model, preattentive pro-
cessing represents the visual input as an array of feature
values stored in independent dimension-based modules.
From this information, dimension-specific saliency sig-
nals, along with top-down biases of target features, are
computed and then summated in parallel onto the mas-
ter map of activations. Signals on the master map are used
to deploy attention to the location most likely to contain
the target item. In contrast, according to similarity the-
ory, preattentive vision delivers bound sets of features that
relate to the same segmented object, which compete with
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Figure 5. The left graph shows slope values (irrespective of target size) in the two conditions of Ex-
periment 2 for all 8 participants separately. The right graph shows the mean response times (RTs) of
all 8 participants in the two conditions (irrespective of target size or set size).
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one another for entry into VSTM. As in Guided Search,
competition is modulated by top-down knowledge of the
target and bottom-up grouping between display items.
The results demonstrate a significant effect on slope
when the feature values of a task-irrelevant dimension
(size) correlated with the feature values of items on other
dimensions (correlated condition), relative to when they
did not correlate (uncorrelated condition). Example dis-
plays from the two conditions are shown in Figure 6, along
with the feature values for each location in the three di-
mensions along which display items varied from one an-
other (color, orientation, and size). Such a representation
provides the input to the Guided Search model.

Each of the three “feature maps” in Figure 6 shows a
relatively random intermingling of the two feature values
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of items. In terms of Guided Search, bottom-up saliency
signals generated by each dimension will be relatively
small and of a similar size at each location in each dimen-
sion. Consequently, the summation of bottom-up saliency
signals from the three dimensions onto the master map
will, in effect, generate an even spread of bottom-up
“noise,” which will be of little use in directing attention
to the target location. Importantly, this bottom-up noise
will be identical in the two conditions. Despite the ab-
sence of any bottom-up assistance to search, the partici-
pants were able to locate the target relatively efficiently
(slopes were less than 15 msec/item in both conditions)
on the basis of top-down knowledge of target identity.
The target item was always red and right-tilted. Thus, ac-
cording to Guided Search, all red and right locations

Uncorrelated
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Figure 6. Example displays from the two conditions of the present experiments, along
with feature maps similar to those postulated by the Guided Search model that represent
the different (hypothetical) feature values in the three dimensions along which items var-
ied (color, orientation, and size). The distribution of features within each dimension will
generate equivalent bottom-up signals in the two conditions.
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would receive top-down activation. In both conditions,
top-down activation would, according to Guided Search,
be identical. Since the two conditions do not differ in ei-
ther bottom-up or top-down information to guide atten-
tion to the target, Guided Search would not predict any
difference between the two conditions. However, search
was significantly more difficult in the uncorrelated con-
dition than in the correlated condition. Looking at the
two example displays in Figure 3, this finding makes in-
tuitive sense. As one participant put it when queried about
any difference noticed between the two conditions, “the
displays in the uncorrelated condition look ‘busier.’” In the
correlated condition, the correlation between the size of
items and other attributes appears to generate a “cleaner”
segmentation between items on the basis of other fea-
tures (e.g., color and orientation).

In contrast, since similarity theory postulates that pre-
attentive processing represents bound sets of features, it
is much better suited to explaining the cross-dimensional
interactions observed in the differences between the two
conditions. According to similarity theory, items that share
features will group with one another in such a way that
they will affect one another’s weight, which in turn ef-
fects their likelihood of selection into VSTM. Thus, the
weights of, for example, red items will tend to either in-
crease or decrease together (their weights are “linked”).
Importantly, weights relate to the display item, rather
than any one of its features; thus, as the weight of a red
item increases, so will the weight of any other item it is
grouped with, along a different dimension (e.g., size). For
the present displays, top-down knowledge of the target
features will activate red items and right-tilted items. Since
both the red items are linked together and the right-tilted
items are linked together, their weights will increase to-
gether. However, items will also group with one another
along the size dimension, with big items linked to big
items and with small items linked to small items. Since
the size of items is task-irrelevant, no item will receive
top-down activation on the basis of size. However, items
of different sizes will receive activation on the basis of
possessing the target features of red and right. Thus, items
of the same size, which will be linked, will propagate ac-
tivation to one another. In the correlated condition, the
distribution of size is such that size weight linkage will
reinforce the weight changes generated by interactions
between items on the basis of other features. In contrast,
in the uncorrelated condition, weight linkage between
items of like size will act counter to the linkage between
items on the basis of other features. For example, the
weights of red items will increase together through weight
linkage. However, some of the activity will tend to “dis-
sipate,” since some red items will also be linked to white
items on the basis of size. Thus, increases in the weights
of red items will also have a tendency to increase the
weights of white items. Since, according to Duncan and
Humphreys (1989), efficient search arises when nontar-
get items can be suppressed en masse, we would expect the
search to be more difficult in the uncorrelated condition,
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since many nontargets will tend to activate one another, dis-
rupting the efficient collective suppression of nontargets.
The design of the present experiments is similar to Ex-
periment 6 of Friedman-Hill and Wolfe (1995), the two
conditions of which are illustrated in Figure 7. In both con-
ditions, the target was a red item that was a different size
than the other red items (either big and the others small,
or vice versa). The display also contained itemns that were
the same size as the target but a different color, as shown.
The two conditions differed in terms of the orientation of
items. In the subset search condition (left of Figure 7), all
items were oriented 20° to the right of vertical. In the noisy
subset condition (right of Figure 7), the orientation of items
was random with respect to one another. Friedman-Hill
and Wolfe found no difference between the two conditions,
with present slopes of 13 and 12 msec/item for the sub-
set and noisy subset search conditions, respectively. This
result initially seems to run counter to the findings of the
present experiments. In the present experiments, random
variation of a task-irrelevant feature in the uncorrelated
condition impeded search. However, this “cost™ was rel-
ative to the highly correlated variation of item size with
other features in the correlated condition. In the subset
search condition of Friedman-Hill and Wolfe, there was
no such equivalent variation in the orientation of items;
instead, all items had the same orientation. In fact, ac-
cording to Guided Search, the variation of orientation in
the noisy subset condition would have simply added a
small amount of bottom-up activation based on orienta-
tion differences to all item locations, including the target
item. Thus, the difference between the height of the tar-
get peak of activation and nontarget peaks on the master
map would have remained the same, and search would
have been equally efficient as in the subset condition.

There is additionally no reason to expect a difference
between the two conditions of Friedman-Hill and Wolfe
(1995) according to similarity theory. In the noisy condi-
tion, nontarget/nontarget similarity, in terms of orienta-
tion, was smaller than that in the subset condition, making
search less efficient. However, target/nontarget similar-
ity also decreased in terms of orientation, making search
more efficient. Thus, without detailed knowledge of the
relative similarity of features and their relative roles in
search, there is no a priori reason to expect a difference be-
tween the two conditions.

The account of the results of the present experiments, in
terms of the parallel representation of conjunctions, is con-
sistent with the findings of Houck and Hoffman (1986).
Houck and Hoffman contrasted the assertion of feature-
integration theory (Treisman & Gelade, 1980) that only
features were coded in parallel with the fact that many
perceptual aftereffects are sensitive to conjunctions of fea-
tures. Houck and Hoffman employed the McCullough
effect in which observers are adapted to alternating frames
consisting of lines of the same spatial frequencies but
different colors presented at orthogonal orientations. For
example, one frame could consist of vertical green lines
and one of horizontal red lines. After adaptation, ob-
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Figure 7. Example displays similar to those used in the two conditions of Experiment 6
of Friedman-Hill and Wolfe (1995). They contrasted subset search for a big item with a
different color with other big items with “noisy” subset search in which the orientations
of display items varied randomly from one another. Search was equally efficient in both
conditions. Hypothetical feature values in the three relevant dimensions are shown for the

two conditions.

servers are presented with a test field consisting of white
bars of the same spatial frequency. The white bars ap-
pear to have a illusory tint depending on their orienta-
tion, such that when the white bars are vertical, they ap-
pear pinkish (green is adapted and hence lessened), and
when horizontal, they appear greenish. The effect is de-
pendent on both orientation and spatial frequency and is
not evident for either diagonal test bars or test bars much
wider or narrow than the adapting bars. Such adaptation
results suggest that channels sensitive to conjunctions of

features (e.g., color and orientation) are operating across
the visual field.

Houck and Hoffman (1986) suggested that one possible
means of explaining the failure to elicit parailel search to
conjunction targets despite the fact that conjunction-
based adaptation effects exist is that the adapting field
was processed within the area encompassed by focal at-
tention. They presented observers with adapting fields
at a number of locations in the display; however, only
some of these were attended to by the observers (who had
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to perform a concurrent attentionally demanding task).
They found equal adaptation for both attended and unat-
tended locations in the display. They concluded that the
aftereffect was not dependent on spatial attention. Thus,
adaptation to conjunctions of color and orientation oc-
curs in parallel across the entire visual field, without the
need for attention. Houck and Hoffman concluded that
the feature conjunctions derived in parallel, which are
the basis of adaptation effects, must be “quite different”
from those accessible to attention (e.g., in visual search).
However, this assumes that “serial search” for a con-
junction target is really indicative of the serial scan of at-
tention required to conjoin features. Instead, similarity
theory is capable of accounting for “serial slopes” with
a parallel representation of conjunctions, on the basis of
competition between items in conjunction search for ac-
cess to VSTM. Competition alone is sufficient to gener-
ate slope costs indicative of serial search without the
need to invoke any additional mechanism of attention
operating in a spatially serial manner. Thus, the contin-
gent color aftereffect of Houck and Hoffman may in fact
be based on the same “features™ that are utilized in visual
search. The nature of the adaptation and search tasks
generate an apparent conflict, because the target item
must be spatially “individuated” in a visual search task.
Instead, the difference between the two conditions of the
present experiments might be better thought of as the
search analogue of the findings of Houck and Hoffman,
with slopes affected by the conjunctive nature of a field
of nontarget items.
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NOTES

1. The mean RTs of all 8 participants were longer in the uncorrelated
condition than in the correlated condition.

2. The significant RT difference between the two conditions was not
the results of speed—accuracy tradeoffs. The go/no-go response em-
ployed in Experiment 1 entailed that the participants made virtually no
errors. The total numbers of errors made by all 8 participants (responses
on target absent trials) were 21 in the correlated condition and 19 in the
uncorrelated condition (an average of 2.625 and 2.375 per participant).
These errors were not subject to any analysis.

3. As in Experiment 1, the participants made very few errors due to
the go/no-go response. The total numbers of errors (false alarms) for ail
8 participants were 9 and 19 in the correlated and uncorrelated condi-
tions, respectively. These errors were not subject to any analysis.
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