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This paper is concerned with the scaling method of "ratio estimation." The simple theory
that equates reported ratio judgments to ratios of psychological magnitudes is first con
sidered, then two close relatives of this theory are formulated, each of which places weaker
constraints on the structure of the data. Structural conditions are stated that express the
relations that must hold among observed ratio judgments for each of the models. The models
proposed are "cumulative" in the sense that the second is a weakened version of the first,
and the third a weakened version of the second. A special feature of the models is that they
may be tested entirely in terms of observables, avoiding the necessity of scale construction
prior to testing. Tests were carried out on data from 9 published studies. The strongest
model, typically used in scale construction using ratio estimation data, was generally inade
quate, showing large systematic errors. However, the weakest version generally passed the
tests of internal consistency, and the model equation provided a basis for constructing ratio
scales utilizing bias parameters.

This paper is concerned with the scaling method of
ratio estimation. In a typical task, a pair of stimuli
(a, b) is presented, and the subject is instructed to
respond with a number that corresponds to the sen
sation "ratio" of a to b relative to a defined attrib
ute. In another variation, called "free ratio estima
tion" (Mashhour, 1964), subjects assign a number
to each of the two stimuli such that the ratio of the
numbers assigned reflects the sensation ratio. Thus
the method applies to any response that can be trans
formed to a ratio. The method does not require a
modulus, and usually all possible pairs are presented.

The method of ratio estimation has a long history
(Ekman, 1958; Stevens, 1958), but recently the sim
ple theory that equates the reported sensation ratio
to a ratio of psychological magnitudes has been ques
tioned (e.g., Fagot, Stewart, & Kleinknecht, 1975;
SjOberg, 1971). If the simple theory does not lead to
valid ratio scales, how might the theory be modified
without abandoning the basic assumption that sub
jects are capable of making ratio judgments that are
consistent in a well-defined sense?

This paper answers the question by developing two
close relatives of the simple theory of ratio estimation
that place weaker constraints on the structure of the
data. The different versions constitute a theory of
relative judgment in the obvious sense that a stimulus
is judged relative to another stimulus. This relativity
is in no sense trivial, since it leads to the formulation
of tests of internal consistency not possible with
methods such as the pure form of magnitude estima
tion in which stimuli are judged one at a time.

Work on this paper was carried out, in part, during the author's
tenure as a Fellow at the Netherlands Institute for Advanced
Study, Wassenaar, Holland.
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The basic question asked is: Assuming that a ratio
scale exists, what relations must hold among ob
served ratio estimations? The answer depends, of
course, on the model; i.e., the assumed relationship
between ratio estimations and psychological magni
tudes. Three models will be presented, and condi
tions placing constraints on the observables will be
derived from the models. The models permit tests to
be carried out entirely in terms of observables, avoid
ing the necessity of scale construction prior to testing.
Tests will be carried out on data from 9 published
studies.

THEORY

The reported ratio estimation of stimulus a to
stimulus b relative to a defined attribute will be
denoted by Rab. 'I' will denote the scaling function
that assigns real numbers representing the psycho
logical magnitudes of stimuli a, b, c, .... For con
venience, the alphabetical ordering of the letters used
to designate the stimuli will reflect the subjective
ordering of the stimuli; i.e., stimulus a is less than
stimulus b in the subjective ordering, etc. The set
of stimuli will be designated S.

The first model is expressed by the following sim
ple equation:

(1)

Equation 1 will be referred to as the classical (C)
model (Fagot, Stewart, & Kleinknecht, 1975). The C
model is part of the lore of ratio scaling, and its use
persists in spite of numerous disconfirmation studies
(see Results section). It is included primarily as a point
of reference in considering possible weakened versions.
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(5)

(6)

(7)

(8)

and hence the bias parameter is expressed entirely
in terms of observables. Since for another triple
(a, c, d), f3 = RaeRcd/Rad, we come immediately to
the principal testable consequence of the CB model:

Condition 2 (C2)-Product constancy: For all a,
b. c, din S,

which indicates the way in which the CB model may
correct for possible systematic error in C I.

Now consider the RB model: Writing the algebraic
identity (\jJa/\jJe) = (\jJa/\jJb)(\jJb/\jJe) and substituting
from Equation 3, it follows that for any triple
(a, b, c)

Thus, for the RB model, the bias parameter is
defined for the inner stimulus of each triple, and for
n stimuli there are (n - 2) bias parameters with f31
and f3n not defined. The latter restriction presents no
difficulty in testing the model which is carried out
entirely in terms of observables.

From Equation 8 it follows that

Condition 2 states that for a pair of "outer" stim
uli (a, d), the product RaxRxd is constant under
changes in the "inner" stimulus x. Note that C2 is
"weaker" than C I, since C1 adds the further condi
tion that RaxRxd == Rad, i.e., that Rad must be that
constant. Clearly, CI entails C2, but C2 does not
entail C I. Hence, C I places stronger constraints on
the structure of the data than does C2, and there
may exist sets of data satisfying C2 but not CI.

Referring again to the hypothetical data of Table 1,
we note that RabRbd == (.80)(.50) = .40 and RaeRed
== (.30)(.8) = .24, and therefore C2 is not satisfied.

Equation 5 also provides a means of formulating
the CB parametric form of CI:

Equation 4 follows directly from Equation I, but
not from Equations 2 or 3. It is therefore a necessary
condition for the C model but not for the CB or RB
model. Condition I states essentially that ratio esti
mations behave like numerical ratios.

Note that the hypothetical data of Table I, although
satisfying CO, do not satisfy Cl. For example, Rae =
.30, but RabRbc = (.80)(.75) = .60.

It is easy to show from Equation 2 that for any
triple (a, b, d),

(2)

(3)

(4)

d

.20

.50

.80

e

.30

.75

b

----- -----------

.80

Table I
Hypothetical Ratio Matrix of Rab

a
b
c

Stimuli

where f3 may be interpreted as a bias parameter that
may account for the interactive effect of judging
pairs of stimuli. Equation 2 will be referred to as the
constant bias (CB) model.

The final model is the relative bias(RB) model:

Because of the poor fit of Equation I to ratio
estimation data, Eisler (1960) proposed the following
modification:

The RB model permits bias to vary depending on the
pair of stimuli judged. Such a model could, for
example, account for contrast and assimilation effects,
with the magnitude of the bias depending on the
larger stimulus.

For all three models, \jJ is assumed to be a ratio
scale, and structural conditions (testable conse
quences) for each model-expressed as relations
among observed ratio estimations Rab-will be derived.
Each condition will be a testable consequence of one
or more models, and tests of the conditions will
provide a basis for a choice among the three models.
For illustrative purposes, each condition will be tested
against the numerical example of an error-free "ratio
matrix" for four stimuli presented in Table I.

The weakest condition constraining the Rab is CO
-Monotonicity ofRob.

Rather than state the condition formally, it is
illustrated in Table 1. CO states that if the stimuli
are ordered as given in Table I, then the Rab must
decrease from left to right for each row (Rab > Rae
> Rad; Rbe > Rbd), and increase from top to bottom
for each column (Rae < Rbe; Rad < Rbd < Red).
Inspection shows that monotonicity is satisfied in
Table 1. Monotonicity is a necessary condition for
each of the models. Serious failure of CO would
be discouraging for any attempt to scale based on
ratio estimation.

The following three conditions place stronger con
straints on the data.

Condition 1 (CI)-Ratio consistency: For all a, b,
c in S,



from which Condition 3 follows directly:
Condition 3 (C3)-Ratio constancy: For all a, b. c,

din S,

or equivalently,

(10)

The two forms of C3 state that the ratios Rax/Rbx
(a) and Rxc/Rxd (b) are constant under changes in the
stimulus x.

Note that if fJ is substituted for fJb in Equation 9,
then the revised equations follow from Equation 5
and also entail Equation 10, showing that C3 is a
necessary condition for the CB as well as the RB
model. Hence, C2 and C3 are testable consequences
of the CB model.

Referring to the hypothetical data of Table 1, we
find that C3 is satisfied: Rad/Rbd = Rac/Rbc = 2/5.
Hence only the RB model perfectly satisfies the ratio
estimations of Table 1.

Equation 8 shows how to formulate the RB para
metric form of C2:

which indicates the way in which the RB model may
correct for systematic errors in C2.

The relations among the three structural condi
tions are as follows. First, Cl entails C2 and C3,
but neither C2 nor C3 (singly or in combination)
entails C1. Thus C1 is seen to be a very powerful
condition. Second, C2 and C3 are independent, and
sets of data may exist satisfying C2 but not C3, and
vice versa. For example, Table 1 satisfies C3 but not
C2; and if Rac is changed to Rac = .50, then C2
would be satisfied but C3 violated.

A characterization of the models is summarized in
Table 2. The models are cumulative: Starting with
the weakest model (RB) (i.e., weakest in the sense
that it places the weakest constraints on the ratio
estimations), successive strengthening is accomplished
by adding on conditions one at a time, such that the
conditions for a weaker model are a subset of the
conditions for a stronger model. Of course, C2 and C3
are redundant for the C model since they are entailed
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by Cl. The cumulative nature of the models is a nice
property from the point of view of empirical tests
and scale construction. Given that CO is satisfied:
(1) If Cl is satisfied, further testing is unnecessary
and Equation 1 can be used to construct a scale.
(2) If Cl is not satisfied, but C2 and C3 are satisfied,
then Equation 2 can be used to estimate fJ and con
struct a scale. (3) If Cl and C2 are not satisfied,
but C3 is satisfied, then Equation 3 can be used to
estimate parameters fJb (b = 2, 3, ... , n T 1) and
construct a scale. ~

An interesting connection of relative judgment
theory to factor analysis can be demonstrated. If we
treat Equations 1, 2, and 3 as "fundamental equa
tions" of factor analysis, without unique factors
(Mulaik, 1972, p. 100), then Cl, C2, and C3 can be
generated by assuming a single factor ("'a/"'b)' The
ordinary symmetric correlation matrix is replaced by
a ratio matrix that is not symmetric. The ratio
matrices of .the three models differ with respect to
diagonal elements (Raa) and elements below the main
diagonal (Rba)' For the C model, Raa = 1 and
Rba = lIRab. For the CB model, Raa = fJ and
Rba = W/Rab. For the RB model, Raa = fJa and
Rba = fJafJb/Rab'

Assuming a single factor, the rank of the ratio
matrix must be one; i.e., all determinants of order
two must vanish. Solving the resulting determinant
equations (with appropriate Raa and Rba, depending
on the model) generates the structural conditions,
consistent with the characterization of the models
in Table 2. An interesting finding is the fact that C3
expresses for ratios what the Spearman tetrad
difference criterion expressesfor correlations.

Related Theory
Equation 1, the C model, has been assumed by

most investigators using ratio estimation, and it cor
responds to Sjoberg's (1971) Modell. Condition I
has been formulated and tested (but not confirmed)
by Eisler (1960), Fagot and Stewart (1969), and
Goude (1962). Equation 2, the CB model, was pro
posed by Eisler (1960) and Goude (1962) and cor
responds to Sjoberg's (1971) Model 2. Sjoberg (1971)
also proposed a variable/standard (VS) model that
assigned a different scale value to a stimulus depend
ing on its status as comparison (variable) or standard
stimulus. He further pointed out that the VS model

Model

Table 2
OJaracterization of Models

Structural Conditions
(Testable Consequences) Representation

Bias
Parameter

RabRbc/Rac =

Classical (C)
Constant Bias (CB)
Relative Bias (RB)

CO,Cl, (C2), (C3)
CO,C2, C3
CO,C3

Rab = Wa/Wb (Equation 1)
Rab = iJwa/wb (Equation 2)
Rab = ilbwa/wb (Equation 3)
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RESULTS AND DISCUSSION

was indistinguishable from a model of the form

Monotonicity will be tested first, then Condi
tions 1-3 will be analyzed in two ways. Each condi
tion willbe tested in the form Y = X:

C3 is expressed above in its product form to be
consistent with the forms of Cl and C2.

The two ways in which the conditions will be
analyzed are: (1) tests of agreement, in the sense of
reliability, between Y and X; and (2) tests for the
presence of systematic errors in the plot of Y as a
function of X.

The conditions will be tested against 9 published
studies, the only studies found by the author that
presented the ratio matrices necessary for testing the
conditions. The studies are summarized in the first
three columns of Table 3.1 Study No.4 combines
results for 15 individual subjects listed in Table 4.

Reliability
A one-way repeated measures analysis of variance

Test of Monotonicity
For 7 of the 9 studies, there were no violations of

monotonicity. Study No.4 had 19 violations out of
300 (6.3010) instances (pairs of ratios). However, the
magnitudes of the reversals were small, with a
median of .016. The violations were restricted to 10
of the 15subjects.

The nature of the violations was interesting-all
were row violations. Since, in this study, the fixed
standard was always the brighter member of the pair,
the violation instances show that the brightness judg
ments of a single comparator relative to a set of
standards did not satisfy monotonicity, whereas
judgments of several comparators relative to a single
standard did without exception satisfy monotonicity.

The second study showing violations of mono
tonicity was Study No. 10 (odor intensity), which
had six violations out of 40 instances (15%), with a
median reversal of .035. Five of the six violations
were column violations as contrasted to the result
in Study No.4. It will be shown below that the data
of this study fit the conditions least well of all the
studies (in the sense of reliability), although sys
tematic errors were not detected. Cases violating
monotonicity were not deleted in the reliability and
systematic errors analysis.

(12)

C2: Y = RacRcd' X = RabRbd

C3: Y = RadRbc, X = RacRbd.

It can be shown that Condition 3, although not
formulated by Sjoberg, follows directly from Equa
tion 12, which therefore has the same directly test
able consequences as the RB model.

Fagot, Stewart, and Kleinknecht (1975) formulated
a model incorporating a single bias parameter to
account for both interval and ratio judgments. How
ever, that model is more complicated than those con
sidered in this paper, and conditions expressed entire
ly in terms of observables were not presented. Until
such conditions are formulated, a comparison with
the present theory is difficult.

Krantz (1972)developed a qualitative theory based
on certain empirical generalizations, mainly magni
tude estimation, cross-modality matching, and pair
consistency [called ratio consistency (C1) in this
paper]. Condition i is the main point of contact to
the present theory, but a point of view shared with
Krantz, and with R. N. Shepard as reported by
Krantz, is that subjects judge pairs of stimuli, not
single stimuli. This approach is embodied in the
notion of relative judgment advanced in this paper.

The main theoretical contributions of the present
theory are Conditions 2 and 3, which have not thus
far been stated or tested, and the implications of the
three conditions for scale construction and testing.

Table 3
Intraclass Correlation Coefficients (ICC) and Tests for Systematic Errors (TSE)

ICC TSE

Study Attribute Reference Cl C2 C3 Cl C2 C3

1 Size of Circular Surfaces Ekman (1958) .994 .981 .981 * * *'
2 Angles Goude (1962) .981 .991 .996 tt ** *
3 Brightness Fagot, Stewart, & Kleinknecht (1975) .943 .923 .982 tt tt tt
4 Velocity Mashhour (Note 1) .928 .976 .980 t * *
5 Heaviness Eisler (1960) .893 .982 .981 tt ** *
6 Darkness Ekman, Goude, & Waern (1961) .863 .983 .974 tt ** tt
7 Weight Goude (1962) .837 .978 .987 ** * *
8 Area Ekman, Goude, & Waern (1961) .781 .972 .901 ** * *
9 Odor Intensity Engen & Lindstrom (1963) .691 .308 .811 * * *

"Nonsignificant **p <.05 t» < .01 tt» <.001
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ICC(CI), do we get a small slope with high intercept,
entailing high and relatively constant reliability for
C3, little influenced by changes in reliability for CI?

A graphical representation is given in Figure I,
which shows four plots (A) ICC(C3) as a function
of ICC(CI)for the 9 studies in Table 3; (B) ICC(C3)
as a function of ICC(Cl) for the 15 subjects in
Table 4; (C) ICC(C3) as a function of ICC(C2) for
Table 4; and (D) ICC(C2) as a function of ICC(CI)
for eight studies from Table 3 (outlier No. 9 deleted).

The short-dashed line in each plot i$ the identity
function. To sustain a hypothesis of equal reliability
for the two conditions, all data points should cluster
randomly about the line, clearly not the case for any
of the plots. The long-dashed line in each plot is the
best-fitting straight line. Two lines are plotted in

1.0

.9

Figure 1. Comparisons of conditions via plots of intraclass cor
relation coefficients (ICC). Panel A: 9 studies from Table 3.
Panels 8 and C: 15 subjects from Table 4. Panel D: 8 studies
from Table 3 (outlier No.9 deleted). In each panel, the short
dashed line is the identity line and the long-dashed line is the best
fitting line. In Panel A, L(9) is the best-fitting line for all 9
studies, and L(7) for 7 studies with two outliers deleted.

Table 4
Intraclass Correlation Coefficient (ICC) and Tests for

Systematic Errors (TSE): Individual Subjects
(Fagot, Stewart, &: Kleinknecht, 1975)

ICC TSE

Subject Cl C2 C3 Cl C2 C3

K.H. .991 .987 .989 • '" •
J.B. .994 .977 .986 '" '" •
D.S. .993 .979 .991 '" '" '"
O.K. .983 .969 .987 '" '" '"
T.M. .976 .935 .978 t '" '"
R.H. .972 .967 .996 tt "'''' •
T.T. .956 .963 .994 tt "'''' '"
D.R. .950 .929 .971 t '" '"
D.L. .948 .954 .987 "'''' "'''' '"
D.S.R. .944 .916 .993 '" '" '"
L.c. .932 .958 .970 t '" '"
W.H. .912 .909 .984 "'''' "'''' .'"G.S. .911 .898 .972 t '" "''''
L.B. .906 .926 .962 t "'''' '"
M.W. .905 .703 .984 "'* '" t

*'Nonsignifican t **p <.05 tp <.01 ttp <.001

design was used to obtain reliability measures-the
intraclass correlation coefficient (ICC)-for each
condition (Bartko, 1976). Relative to an ordinary re
peated measures design, Y and X correspond to two
"ratings" and "stimulus sets" replace "subjects."
For example, for CI, the stimulus sets are the triples
of stimuli, each of which provides a datum for testing
the condition. For C2 and C3, the stimulus sets are
tetrads." The closer the agreement between Y and X,
the higher the reliability.

Referring back to Tables 3 and 4, the ICCs for
each condition are presented in Columns 4-6. The
studies (Table 3) and subjects (Table 4) are ordered

. from highest to lowest with respect to the ICC for
Cl. Theoretically, the ICC parameter values for C2
and C3 should be higher than for CI, but the esti
mators in the tables may not be, and are not in all
cases.

What we want to ask of these data is whether the
reliabilities of the three conditions are satisfactorily
high, whether C2 and C3 show improvement over
CI, and whether there are systematic trends in
reliability coefficients. Clearly, if the base-rate
reliability of CI is very high (as is the case for the
first two studies in Table 3), then improvement in C2
and C3 cannot be expected. However, it can be seen
that the reliability of CI, though high for the first
few studies in Table 3, decreases markedly through
No.9; but except for outlier No.9, C2 and C3
maintain relatively high reliability in the face of
steadily decreasing reliability for CI. In Table 4, the
reliabilities for individual subjects tend to be higher
for CI, but the same trend is present for C3 rela
tive to C I, but not for C2 relative to C1.

This kind of analysis suggests a regression
approach. For example, if we regress ICC(C3) on
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Table 5
Reliability Slopes and Intercepts

Regression of ICC(Cj)
Slope Intercepton ICC(Ci)G > i)

L9 (Panel A) .533** .487
C3 on Cl L7 (Panel A) .040 .946

15 subjects (Panel B) .167* .824

C3 on C2 9 studies (Table 3) .242** .737
15 subjects (Panel C) .023 .961

9 studies (Table 3) 1.614** -.519
C2 on Cl 8 studies (Panel D) -.014 .986

15 subjects (Table 4) 1.395** -.396

"Hypothesis of zero slope rejected: p <.05.
"""Hypothesis of zero slope rejected: p <.OJ.

Panel A L(9) for all 9 studies and L(7) for the
two outliers deleted.

Table 5 gives estimates of slopes and intercepts.
Note that the hypothesis of zero slope for the re
gression lines in Figure 1 was rejected only for Panel B
and L(9), Panel A. The intercepts give the estimated
lower bound reliabilities: of C3 for zero reliability of
C2 or Cl, and of C2 for zero reliability of Cl.

Comparison of C3 with C2 and Cl by means of
Figure 1 and Table 5 indicates that, in general, C3
maintains a relatively constant and high reliability in
the face of steadily decreasing reliabilities for C2 and
Cl. In addition, extrapolation of these data suggests
that reasonable reliabilities would be maintained by
C3 in the face of very bad fits to Cl and C2.

Comparison of C2 and Cl gives a mixed message.
The data of Table 4 for individual subjects do not
show higher reliabilities for C2, but if one outlier is
omitted from Table 3, then Table 5 and Panel D
show a near zero slope for the regression of C2 on
Cl and a very high lower bound reliability for C2.

Systematic Errors
The analysis in this section will consider (l) statis

tical tests for the presence of systematic errors, and
(2) model effects on the direction and magnitude of
systematic errors and on scale values.

The ICC provides a measure of the agreement
between Y and X but is not sensitive to error direc
tion, i.e., to the presence of systematic errors in the

plot of Y as a function of X (e.g., a possible ten
dency toward X = RabRbc > Y = Rae). In order to
test for the presence of systematic errors, simple
t tests for paired differences were carried out. Using
the notation introduced at the beginning of this sec
tion, each null hypothesis is of the form Y = X .
Then the data for the test consist of sets of paired
differences Yi - Xi.

Referring back to Tables 3 and 4, results of the
statistical tests are shown in the last three columns.
Note the relatively high reliabilities for many of the
cases of statistically significant results, demonstrat
ing the lack of sensitivity of the ICC to the presence
of systematic errors. Reliability and systematic errors
need to be considered conjointly in making a com
parative evaluation of the conditions.

Table 6 (Part I) gives the frequency of statistically
significant results by condition for Tables 3 and 4.
Note the high frequency for Cl and appreciable
drop in frequency for C2 and C3. The results for C3
are particularly impressive considered in conjunction
with its high reliabilities,?

Part II, Table 6, summarizes the systematic error
patterns, with PI satisfying all models and P4 and P5
satisfying none. It is patterns P2 and P3 that show
the value of the bias models, since these patterns indi
cate how C2 and C3-and the CB and RB models
fared for those cases in which Cl, and hence the C
model, was not satisfied.

P2 results show that of those cases showing sys
tematic errors for Cl in Table 3 (7 cases) and Table 4
(9 cases), 3 of the 7 cases and 2 of the 9 cases do
not show such errors for C2 and C3. Hence, for 5 of
the 16 cases for which the C model failed by virtue
of presence of systematic errors, the CB model was
satisfied.

P2 and P3 results in conjunction show that of
those cases showing systematic errors for Cl in
Tables 3 and 4, 5 of the 7 cases (Table 3) and 6 of
the 9 cases (Table 4) do not show systematic errors
for C3. Hence, for 11 of the 16 cases for which the C
model failed, the RB model was satisfied.

The comparative fit of the conditions and the
reduction in systematic errors for C2 and C3 are
demonstrated graphically for the key patterns, P2

I. Frequency
(Statistically Significant Results)

Table 6
Systematic Errors

II. Patterns

Frequency

Condition

1
2
3

Table 3

7/9
4/9
2/9

Table 4

9/15
5/15
3/15

Pattern

PI. ci.cz-ca
P2. CI-C2-C3
P3. CI-C2-C3
P4. CI-C2-C3
P5. CI-C2-C3

Table 3 Table 4

2 6
3 2
2 4
0 2
2 1

Models Satisfied

All
CB and RB
RB
None
None

Note-a denotes condition i not satisfied, i.e., systematic errors statistically significant; Ci denotes condition i satisfied.
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Figure 3. Comparative fit of conditions for Study No.3
(Table 3), Pattern P3. Panel A, Condition}: ~c as a function of
~b~C (30 points). Panel B, Condition 2: ~c~d as a function of
~b"'d (30 points). Panel C, Condition 3: R,.d~C as a function of
R,.cRt.d [45 points with 30 points clustered below the point (.2.
.2»).The large number of points is due to combining results from
three groups.

Figure 3 illustrates pattern P3 with data from
Study No.3-showing significant systematic errors
for CI and C2 but not for C3. Figure 3 shows an
excellent fit for C3 in the face of marked systematic
errors for CI and to a lesser degree, C2.

The dominant direction of systematic error for
each condition is given by the following inequalities:
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and P3, with selected plots. Figure 2 gives plots of
each condition for study No.5, which shows system
atic errors for CI but not for C2 or C3-pattern P2.
Panel A shows a plot of Rae as a function of the
product RabRbe. If CI is correct, the data points
should fall randomly about the identity line. Obvious
ly, the data points do not conform to CI, with all
but one point falling well below the identity line.
This plot is typical of the studies showing significant
systematic errors for CI, although the magnitudes of
the errors are much smaller than average.

Panel B of Figure 2 shows a plot of the product
RaeRed as a function of the product RabRbd; and
Panel C shows a plot of the product RadRbe as a
function of the product RaeRbd. Inspection of Panels
Band C indicates reasonable conformity to C2 and
C3, respectively, consistent with the results of the
statistical tests.

--L-L .--l---.J
.3 .4 .5 .6 .7
Rae Rbd

Figure 2. Comparative fit of conditions for Study No.5
(Tab.Ie 3), Pattern P2. Panel A, Condition 1: .... as a function of'-b'" (I5 points). Panel B, Condition 2: A"..~ as a function of
A:1J..A;;t (20 points). Panel C, Condition 3: t...", as a function
of lCa.Kw (35 points).



250 FAGOT

Table 7
Geometric Mean Estimates: (3 and (3b

Table 3
Study ~ J2 #. B. Js

1 1.029 1.058 1.019 1.000
2 1.069 1.050 1.100 1.069 1.032
3 1.248 1.394 1.343 1.124 .981
4 1.150 1.107 1.074 1.225 1.248
5 1.369 1.466 1.391 1.433 1.291
6 1.374 1.512 1.469 1.309 1.241
7 1.387 1.323 1.466 1.294
8 1.335 1.276· 1.345 1.429
9 .981 .897 1.021 1.312 .876

Medians
AD Studies 1.248 1.276 1.343 1.294 1.137
Significant (C1) 1.335 1.323 1.345 1.309 1.241
Significant (C2) 1.309 1.430 1.367 1.267 1.137

~.

1.172
1.064
1.159

.620

1.112
1.159
1.112

These inequalities hold for all statistically signifi
cant cases, and hence the generalization can be made
that if a structural condition is violated, the error is
in one direction only, as given in Equations 13-15.

The estimation of the bias parameters and the
relation of these parameters to error magnitudes will
now be considered. The bias parameters fJ and fJb
are defined by Equations 5 and 8, respectively. Each
triple (a, b, c) provided an estimate of fJ, and the
estimator, ~, was taken as the geometric mean of
these estimates, i.e., the geometric mean of the
(RabRbc)/Rac. The estimators, ~ (b = 2, 3, "',
n-l), were obtained by taking the geometric mean
of all estimates (RabRbc)/Rac derived from triples
(a, b, c) for which b is the middle stimulus.

Estimates of the bias parameters fJ and fJb are given
in Table 7 for each study (Table 3) and in Table 8
for each subject (Table 4).

The magnitudes of fJ and fJb can be related to the
direction of systematic errors, as follows: (l) If the
CB or RB model holds but not the C model, then
Inequality 13 is implied by fJ,fJb > 1 (holding in all
16 cases in which the test of Cl was significant).
(2) If the RB model holds but not the CB model,
then Inequality 14 is implied by a decreasing ordering
on f3t" i.e., for fJb decreasing as b increases. Tables
7 and 8 indicate a trend toward a decreasing order
ing' but the trend is far from perfect. Note that we
cannot similarly explain the direction of systematic
errors for C3, since the theory does not include a
comparator model that may hold in the presence of
violations of C3.

Bias parameters can also be used to examine the
effect on scale values of using an incorrect model.
(1) If the C model is used but the CB model is cor
rect, the error in estimating 'l'a/'l'b is fJ - 1. Inspection
of Tables 7 and 8 indicates that the error can be
quite large: For those cases for which systematic
errors were significant for CI but not for C2, the

median error is 33.5070, extremely high. (2) Denote
by Eb(Cl/C3) the error in estimating 'l'a/'l'b if the C
model is used but the RB model is correct. Then
Eb(Cl/C3) = (f3t, - 1) gives the error. Again, the
errors are quite large. Defining the largest stimulus
of each pair as a "standard, OJ it can be stated that
in general the tendency is for large errors for low
standards and low errors for large standards. The
CB model gives a kind of weighted mean of these
errors. (3) The error made in estimating 'l'a/'l'b using
the CB model if it is wrong and the RB model is
correct if Eb(C2IC3) = (fJb/fJ) - 1. In general, errors
tend to be positive for low standards, small for
middle standards, and negative for high standards.
Positive errors mean that the scale value ratios are
overestimated by the incorrect model, and negative
errors that the ratios are underestimated. In the

Table 8
Geometric Mean Estimates: (3 and (3b

Table 4
Subjects P B2 B. J. Ps

. K.H. 1.205 1.810 1.068 .963 1.000
J.B. 1.022 .974 1.039 1.075 .961
D.S. 1.031 1.170 .967 .995 .948
O.K. 1.053 1.167 .995 1.066 .883
T.M. 1.053 1.467 .798 1.032 .950
s.a 1.282 1.801 1.267 1.002 .999
T.T. 1.254 1.463 1.226 1.181 1.008
D.R. 1.264 1.301 1.429 1.166 1.023
D.S.R. 1.351 1.198 1.932 1.180 .989
D.L. 1.253 1.349 1.391 1.150 .949
L.C. 1.081 .794 1.214 1.340 1.007
W.H. 2.045 3.056 2.739 1.287 1.002
G.S. 1.400 1.329 1.850 1.261 .979
L.B. 1.390 2.037 1.329 1.095 1.036
M.W. 1.333 1.136 2.020 1.146 .972

Medians
AD Subjects 1.254 1.329 1.267 1.146 .989
Significant (C1) 1.333 1.349 1.391 1.166 .999
Significant (C2) 1.282 1.801 1.329 1.150 1.008



studies reviewed, incorrect application of the C
model would, in general, result in large overestima
tion, whereas incorrect application of the CB model
would result in smaller errors, both overestimation
and underestimation.

The empirical comparison of models with differ
ing numbers of parameters is not a trivial problem.
In a typical paradigm, two models may be compared
via a goodness of fit test based on the same set of
data. If two models are equivalent except that the
second involves an additional parameter, then of
course the second must fit at least as well if the test
is carried out on the same set of data and the param
eters are used to improve the fit. Note, however,
that for the present theory the parameters are not
directly involved in the comparative tests, and the
same set of data is not used to test each condition.
The analyses are carried out directly on the structural
conditions expressed entirely in terms of observables
and are parameter-free. Therefore, it does not follow
that in the reliability and systematic errors analysis
the RB model must fare better than the CB and C
models, and the CB better than the C model, by
virtue of the additional parameters in the model
equations. And, indeed, as shown in Tables 3 and 4,
there are some reversals. Thus a significant advan
tage of the approach taken in this paper is the pos
sibility of statistical comparisons of the models via
structural conditions expressed entirely in terms of
observables, rather than goodness-of-fit tests of
model equations involving differing numbers of
parameters.

Concluding Remarks
The present theory assumes that there exist "true"

sensation ratios 'l'a/'I'b for each pair (a, b). But if
the C model is incorrect (invalidating the traditional
method of ratio estimation), then the judgment Rab
is distorted by bias or context effects as measured
by f3 or f3b. If f3,f3b > 1, then Rab > 'l'al'l'b, i.e., the
judgment Rab overestimates the sensation ratio 'l'al'l'b,
an assimilation effect. If f3,f3b < 1, then the judgment
Rab underestimates the sensation ratio, a contrast
effect.

For all studies for which Cl systematic errors were
significant (Table 3), and all subjects in Study No.4
(Table 4), f3 > 1, implying an assimilation effect,
i.e., the smaller stimulus was overestimated relative
to the larger. For all studies for which CI systematic
errors were significant, f3b > I except f3s < I in Study
No.4. The same pattern holds for individual subjects
in Study No.4: f3b > 1 for significant subjects except
{Js < 1 for some subjects. The trend toward a decreas
ing ordering on f3b leads to the interesting generaliza
tion that if the RB model is correct, then the assimila
tion effect is stronger for low standards (the larger
member of the pair) and weaker for high standards.
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Stevens and Galanter (1957) conjectured that ratio
scales may be possible only on prothetic continua.
Unfortunately, the studies analyzed include only one
metathetic attribute-angles (Study No. 2)-for
which CI was rejected but C3 was satisfied. Eisler
and Ekman (1959) constructed a ratio scale of pitch,
a metathetic attribute, but used the method of frac
tionation, providing no data for a test of the struc
tural conditions. We note from Table 3 that Cl was
rejected for six of the eight prothetic continua, but
that C3 was satisfied for six of the eight. )fence,
these results fail to provide support for the Stevens
and Galanter conjecture, but suggest, rather, that if
the traditional method of ratio estimation (the C
model) is used, then ratio scales are not possible even
for prothetic continua.

Ratio scaling has received increasing theoretical
scrutiny in recent years. A key question has been the
kind of consistency ratio estimates must show in
order to serve as the basis of measurement. This
question has been approached in a number of indirect
ways, e.g., via cross-modality matching, the psycho
physical function (Marks, 1974), and inverse cross
modality matching (Lilienthal & Dawson, 1976).

The approach in this paper has been to ask what
relations holding among the observable ratio judg
ments themselves are entailed by a scaling model,
without recourse to another psychological attribute

. or a physical continuum. It was pointed out that
precisely what relations must hold among ratio judg
ments depends on the assumed relationship between
ratio judgments and psychological magnitudes. The
postulation of three assumed relationships-models
led to three structural conditions (in addition to
monotonicity) which provided a basis for choosing
among the three models. Results showed that, in
general, the C model-a characterization of the
traditional ratio estimation scaling method-places
constraints on the structure of ratio judgments (Con
dition I, ratio consistency) that are too strong, and
that the two weakened versions-the CB and RB
models-need to be applied in most cases if ratio
scales are to be constructed within the framework of
the present theory. Condition 3, ratio constancy,
shows generally high reliability and relative absence
of systematic errors, justifying the utility of the RB
model in the construction of ratio scales of sensation.
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NOTES

I. Each Rab was the average of several observations. Raw data
for the studies in Table 3 were not available to the author.

2. For Cl and C2. special problems arose in the selection of
stimulus sets. Consider the triples for Cl: For each pair (a. c). the
number of sets depends on the number of stimuli. b. between
a and c (which. in the studies reported on. varied from one to
five). In order to give equal weight to each pair (a. c). exactly
one stimulus b was selected at random from those stimuli between
each a and c. The problem for C2 was that if all tetrads were
used for testing. then some Y = RabRbd would be used more
than once. Hence, a method of selecting the stimulus set for C2
was devised that produced the largest number of tetrads satisfying
the condition that each Y could be used only once. No such prob
lems arose with C3. and hence all tetrads were included in the
stimulus sets.

3. Fagot and Stewart (1969) also reported a poor fit to Cl
for brightness judgments. However. the method of selecting inde
pendent triples for testing Cl did not produce stimulus sets that
could have been used to test C2 and C3. Since the three conditions
could not be compared. the study was omitted.
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