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Theoretical and empirical comparison of
Luce's choice model and logistic Thurstone

model of categorical judgment

DIANA EUGENIE KORNBROT
The Hatfield Polytechnic, Hatfield, Herts., England

Theoretical predictions of the two models are analyzed and shown to be different if the
number of categories is three or more. Then two common methods of testing mathematical
models empirically are examined: (1)direct testing of predictions embodied in constraint
equations, and (2)minimum chi-square methods. In the experimental investigation, two under­
graduate subjects performed an eight-stimulus, 8-response category judgment of loudness in
a neutral and a payoff biased condition. There were no significant departures from the
Thurstone model, but substantial and significant departure from the choice model, especially
in the biased condition. Chi-square tests were more powerful than constraint tests, but less
good at identifying the source of conflict between data and theory.

The categorization of perceived objects on a single
dimension has been of interest to psychologists since
the pioneering work of L. L. Thurstone in the 1920s.
The appeal of the problem lies in the fact that it is
rich enough to capture interesting features of mental
processing and, at the same time, systematic enough
to be amenable to theoretical analysis. The two main
such analyses are the original formulation of Thurstone
(1927) and the choice model of Luce (1959, 1963, as
applied to categorical judgment). The first aim of the
present paper is to find the best possible model of
categorical judgment. It will be shown that the two
models make different theoretical predictions, and
that the predictions of the Thurstone model are con­
firmed by experiment, whereas the predictions of the
choice model are significantly in error. The second
aim is a methodological one of assessing available
techniques for testing alternative mathematical
models in psychology, using choice and Thurstone
models of category judgment as a concrete example.

In a general category judgment experiment, there
are n different types of stimuli, Si, and m different
responses, Rg. For example, in a psychological task
such as the one used to test the model here, the
stimuli are pure tones with n different loudnesses
and the responses are the digits 1 to m. However,
a structurally identical experiment could be construct­
ed with, say, people as the stimuli and psychological

Requests for reprints should be sent to D. E. Kornbrot, The
Psychology Group, The Hatfield Polytechnic, P. O. Box 109,
Hatfield, Herts., England. Grateful thanks are extended to Sean
McKeown and other members of The Hatfield Polytechnical
Numerical Optimisation Centre for invaluable help in using the
optimization routines and fruitful discussions ongeneral methods
ofoptimization.

health on a scale from 1 to m as the response.
The experimenter presents each type of stimulus to a
subject many times in random order. On each pre­
sentation, the subject makes a response. Then the
empirical result of the experiment is a judgment
matrix {Oig}, where the Oig are the observed frequencies
of response g to stimulus i. The experimental task is
termed absolute identification (AI) when the number
of stimuli, n, is equal to the number of responses,
m, as in the present study. It is termed a rating
experiment when n < m and a general category
experiment when n > m. The Thurstone model is
formulated in such a way as to apply whatever the
relation between m and n. The choice model can
be reformulated so as to apply for all values of n,m
(Jacobs, 1974). However, the techniques are cumber­
some and not worth repeating, since our results show
that the choice model is not applicable to even the I_I
form of categorical judgment.

Both models assume that the n(m - 1) degrees of
freedom in the empirical judgment matrix may be
accounted for by only n - 1 sensory parameters and
m - 1 motivational parameters. The n - 1 sensory
parameters correspond to the ease of discrimination
of the n - 1 adjacent stimulus pairs, while the m - 1
motivational parameters correspond to the m - 1par­
titions the subject must make to assign the stimulus
objects to m different categories. Since there are
more degrees of freedom (df) in the empirical judg­
ment matrix than there are theoretical parameters, a
number of independent constraints, I, between cells
of the judgment matrix must exist. I is given by.the
df in the empirical matrix minus the number of
theoretical parameters. The theoretical section covers
the derivation of the theoretical parameters and the
construction of constraint equations from the judg-
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THEORETICAL MODELS

The interpretation of the u as a scale of similarity
rests on the Uig obeying the three choice axioms as
described by Luce (1963).

Then empirical frequency, Dig, is given by Ni . Pig,
where Ni is number of presentations of stimulus i.
The matrix {aig} is called the scale value matrix (Luce,
1963). The ki are constants of proportionality which
ensure that each row of the matrix sums to unity,
as the observer makes some response to each stimulus
presentation. Hence,

(1)

(2)

Uig = Ugi for all i.g,Axiom 1

the choice model without very considerable modifica­
tion. For this reason, a general optimization routine
was used. It is interesting to note that no such general­
purpose optimization routines exist within SPSS or
the BIOMED package of computer routines. As with
the constraint methods, the optimization methods
are widely used to test specific models, but it is quite
hard to discover a general discussion of the
methodology involved.

The discussion of empirical comparison methods
concludes with an assessment of the relative merits .
of the two approaches.

The Choice Model for n Stimuli and m Responses
The basic intuitions underlying the choice model

are described by Luce (1959, 1963, p, 113). As with
other modern theories of categorization, there are
two kinds of parameter: sensory and motivational.
Both sensory and motivational influences are described
in terms of independent probabilities which quantify
two distinct tendencies of decision makers. The ten­
dency to confuse similar stimuli is described by the
parameter Uig, which is the probability of response g
to stimulus i in the absence of response bias. The
Uig are the sensory parameters of the choice model,
and they provide a sensory scale which obeys the
choice axiom. Motivational tendencies are described
by response bias parameters, bg, which give the
probability of response g in the absence of any
knowledge of which stimulus was presented. A crucial
assumption of the model is that the u values are
independent of the b values. Then, using the laws
of combination of independent probabilities, the
probability of response g to stimulus i, Pig, is given
by:

ment matrix for both theoretical models. It is then
shown that, for n > 2, the constraints for the choice
model conflict with the constraints for the Thurstone
model.

It is not sufficient to show that the theoretical pre­
dictions of the two models are different. One has
first to design an experiment where the predicted dif­
ferences will be large enough to be recognized.

Then one has to develop some form of analysis
which will determine whether the differences between
theory and experiment could have arisen from ran­
dom errors of measurement or whether they are,
indeed, "significant." The approach of mathematical
modellers has been necessarily ad hoc since the test
applied is usually an integral part of the model, a
situation which makes it very difficult to compare
models that are differently formulated. For example,
it is quite unlikely that the power of the tests of the
two models will be the same, even when both models
are tested at the same significance level. In the section
on empirical comparison of models, we take two
methods which are commonly used for testing
specific mathematical models and try to abstract the
general features which would be common to any
model tested. There is probably not much in this
discussion which was discovered less than 100 years
ago. However, this material tends not to be generally
available to psychologists in the form of a description
of methodology applicable to any problem in the way
that, for example, the analysis of variance is described
in textbooks of statistics for psychologists.

The first method investigated is the method of
constraint equations. Frequently, the axioms of a
model are embodied in a simple equation of the form
T(Xo) is a constant, where the Xc are quantities mea­
sured in an experiment. Tests of the axioms .of
decision theory are frequently of this type (see
Edwards & Tversky, 1967, for articles of this kind).
To determine whether T is, indeed, significantly dif­
ferent from the prescribed constant, one must have
some method for estimating the errors of measure­
ment of T, given, for example, some estimate of the
errors in the individual observed parameters, xo' The
theory of propagation of errors, familiar to physical
scientists (Martin, 1971), is expounded and applied to
the problem of testing the constraints derived in the
theory section.

The second method discussed is the optimization
method for determining the best values of the
theoretical parameters of a model and then testing
whether the observed difference between theory and
experiment is statistically significant. This approach
has often been used to test Thurstone models, start­
ing with Gullicksen (1954) and progressing through
to, for example, the sophisticated program developed
by Arbuckle and Nugent (1973). However, none of
the available programs could have been applied to
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Similarity is an essentially symmetric concept.

The importance of this axiom lies in the fact that
the similarity of any stimulus to itself is the same as
the similarity of any other stimulus to itself. This
constant similarity is arbitrarily put equal to unity
for normalization purposes.

Axiom 2

Axiom 3

Ujj = 1.

Uik ~ Uij . Ujk for all i,j,k.

of the Ui,i + 1 and the ratios bg+llbg may be calculated
by picking 2 x 2 submatrices from the full probabil­
ity matrix {Pig}, using only diagonal and adjacent
entries.

If one extends Luce's approach to utilize elements
more than one step away from the diagonal, then all
the Uij and all the ratios bg+h/bS may be calculated.
Sets of 2 x 2 submatrices are selected from diagonal
elements and elements symmetrically placed h units
from the diagonal. Such scale submatrices have the
form:

With these three axioms, the similarity scale is a
ratio scale. Furthermore, if a derived scale, called the
d-scale, is defined by:

(3)

Sg+h

(7)

then the d-scale is an interval scale which obeys the
following three distance axioms which are equivalent
to the above three choice axioms.

Axiom 10

and are denoted here h-tuple separation matrices.
For a particular value of h, there are (m - h) h-tuple
separation matrices, enabling 'one to calculate (m - h)
sensory parameters, Ull,g +h, and (m - h) ratios of
bias parameters, bg+h/bg.

From Axiom 1

Axiom 20 djj = 0, ugg = ug+h,g+h = 1, (8)

Axiom 30 and from Axiom 2

This distance form of Axiom 3 is the familiar
triangle inequality. The equality holds if the d-scale
is unidimensional and stimulus j lies between stimuli
i and k. (In this event, the equality of course holds in
Axiom 3 as well as Axiom 3a.)

The parameters of the choice model may then be
calculated from the scale value matrix {lljg}: z Pg,g +hPg +h,g

Ug,g+h = PggPg+h,g+h (10)

(9)

(11)fbgb+gIJ = Pg+h,gPg +h,g+h
[ PggPg,g+h

and

Then, equating ratios of terms from Theoretical Sub­
matrices 7 with corresponding ratios from the em­
pirical judgment matrix, one obtains:

Equation 11 has previously been proposed by Shepard
(1957, Equation 38). It determines the motivational
parameters, bg, up to a multiplicative constant. The
constant is set by the normalization convention, either

(5)

(6)

"m'"

lljg = bg . Uig·

So the scale value matrix, lljg, has the form:

Stirn- Response
ulus "In "2" "g"

51 blul l b.ul• bguI1
S. blu. 1 b.u•• bgu.g

(12)

This formulation is suggested by Luce (1963, p. 175,
for recognition) and by Luce and Galanter (1963,
p, 271, for category scaling). Luce also imposes the
constraint that n = m and then suggests that estimates

g e m

L bg = 1
g=1

or by putting b l = I, as in Luce's treatment of the
2 x 2 case and the present study. Equations 10, II,
and 12 give a full solution for the n - 1 independent
bias parameters and Y2n(n -1) independent stimulus
parameters.
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~ince the empirical probability matrix has n(n -1) df,
while the choice model has only Y2(n-l)(n-2) in­
dependent parameters, there must be a number I
of constraint equations relating the elements of the
empirical judgment matrix. These constraint equa­
nons may be obtained by noting that the ratio of
bg:+- h/bg is given by a product of ratios of bgs from
adjacent responses as expressed in Equation 13:

bg+h bg+h

"b';"" = bg +h - 1

bg + h - 1 ... bg + 1

bg +h- 2 bg '
(13)

= 1 (16)

or, in additive form:

Bg = In Pg,g+2 - In Pg,g+1 + In Pg+2,g+ 1

- Inpg+2,g + Inpg+l,g - Inpg+l,g+Z = O.

(17)

Ratios of adjacent bias parameters for substitution
in Equation 13 are obtained from the single separa­
tio~ (h = 1) version of Equation 11. Then, equating
estimates of the bg+h/bg from the h separation version
of Equation 11 and from Equation 13, one obtains
the Y2(n - l)(n - 2) independent constraint Equa­
tions 14:

Equation 14 is equivalent to the product rule for
binary preference of Luce and Suppes (1965, Equa­
tion 27). It is expressed here in the form of products
of ratios of probabilities from the same row of the
judgment matrix. This is not the simplest form but
it is the most convenient for estimating errors, as
elements which come from the same row, and are
thus dependent on each other, are grouped together.
That each of the Equations 14 is independent of all
the others may be confirmed by starting with h = 1
and working from g = 1 to g = n - 1 and observing
that each equation has at least one element that has
both not been used before and is not determined by
the normalization convention. One may then repeat
the process for the h = 2 set, with values of g from
1 to n - 2, and so on. The maximum possible number
of independent constraints, I, is given by the df in
the empirical matrix minus the number of estimated
parameters; thus:

1= n(n-l) - [(n-1) + Y2n(n-l)]

= Y2(n-l)(n-2).

P P i=g+h
g,g+h g+h,g+h-l ~ Pi-l,i-Z

Pg,g+lPg+h,g . 2 Pi-l,il=g+
1. (14)

(15)

The Bg are denoted choice-bias parameters. If they
are zero, then the bias parameters of the choice
model are internally consistent.

It is interesting that Equations 10, which deter­
mine the sensory parameters, Equations 11 and 12
which determine the bias parameters, and Equa­
tions 14, which determine the constraint equations,
have all been obtained from the general formulation
without using Axiom 3. The crucial postulates in
these derivations are Axioms 1 and 2 and the assump­
tion that bias and sensory parameters are indepen­
dent and can be combined in the same way as
uncorrelated probabilities (cf. Equation 1).

The constraint equation method may also be used
to test the validity of Axiom 3. Luce (1963) suggests
that if the stimuli are unidimensional and the equality
form of Axiom 3 holds, then the axiom may be used
r~cursive~y to e~timate. the separation, Uij, between
stimulus I and stimulus J from the separation between
adjacent stimuli. Thus,

Uij = ui,i+lui+l,i+Z'" Uj_l,j' (18)

The UijS for adjacent stimuli are obtained from the
single separation version of Equation 10. Equa­
tions 18 embody the additional assumptions of uni­
dimensionality and Axiom 3 over and above the
general formulation of the choice model. Constraint
equations to test these additional assumptions may
be f0.und by. equa.ting estimates o~ the Uij from
Equation 18With estimates from Equation 10 to give:

i=g+h
Pg,g+l Pg+h,g+h-l nPi-1,i-ZPi-l,i =

Pg,g + h Pg+h,g i=g+2 (Pi- 1.i _ l)l 1. (19)

So the constraints implied by Equations 14 for h ~ 2
must exhaust the maximum possible number of cc»­
straints.

In actual experiments, most of the data fall on or
near the. diagonal of the judgment matrix, so the
model will actually be tested only with h = 2; then
Equation 14 becomes:

For h = 2, Equation 19 becomes:

(Pg,g + 1/Pg,g +Z)(Pg +2,g+ 1/Pg +2,g)

. (Pg+l,gPg+l,g+2/P~+I,g+1) = 1,

or, in additive form:

(20)
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(21)

Sg = In Pg,g+ 1-In Pg,g+2+ In Pg+2,g+ 1-In Pg+2,g

-lnpg+l,g+lnpg+l,g+2-21npg+l,g+1 = O.

The Thurstone Model
The intuitions underlying the Thurstone model of

categorical judgment are very well known. It is
assumed that numerous presentations of a stimulus
Si gives rise to a distribution of effects, x on a
psychological continuum. For stimulus Sj, x = Sj + Xi,
where the si are fixed stimulus scale values and the
Xi are independent identically distributed (LLd.) ran­
dom variables with a common probability density
function, f. The subject partitions the psychological
continuum into m regions corresponding to the m
responses by setting m - 1 internal criteria, Cg.
Analogously to the stimuli, the criteria also give rise
to distributions, y, on the psychological continuum
where, for criterion Cg, y = cg+ Yi, where the cg
are fixed criterion scale values and the Yi are LLd.
random variables with a common probability density
function f'. The basic theory does not require that
f and f I be the same density functions or that the Xi
be independent of the yg. The subject makes a
response less than or equal to g whenever x - y ~ O.
Then the probability of a response less than or equal
to g to stimulus i, Pig, is given by:

that a juxtaposition with the equivalent logistic con­
straints will clarify the differences between the two
models. Equations 17 and 21 still have the advantage
that each tests specific predictions of the choice
model.

The analysis of the choice model provides equations
to estimate the parameters of the model and further
equations to test the underlying axioms of the model.
The next section performs a similar analysis of the
Thurstonian model with a logistic probability distrib­
ution of difference between presented stimud and
internal criteria. ~

(23)

Cg= In Pg+2,g+ 1-In Pg+2,g

+lnpg+l,g-lnpg+l,g+l = 0

or, in additive form:

The 5g are denoted choice sensitivity critical param­
eters because they are derived from imposing con­
straints on the sensitivity parameters. Equations 19,
like Equations 14, provide Y2(n -l)(n - 2) constraints.
The reasoning which gives this number of constraints
is precisely analogous to the reasoning which shows
that Equations 14 also provide V2(n -l)(n - 2) con­
straints. Equations 18 reduce the number of indepen­
dent sensory parameters from Y2(n -l)n to n - 1,
a reduction precisely of Y2(n-1)(n-2), thus exhaust­
ing the possible constraints implied by Choice
Axiom 3.

Each of Equations 17 have six and each of Equa­
tions 21 have eight probabilities estimated from the
empirical data. Each empirically determined proba­
bility is subject to error. Obviously, the more terms
in a constraint equation, the less accurately that
equation can be tested, so that it is an advantage to
manipulate Equations 16 and 20, if possible to
produce equivalent sets of constraints which are
functions of fewer empirical parameters. Such a
simplification is achieved by multiplying Equa­
tions 16 by Equations 20 to provide Equations 22
and dividing Equations 20 by Equations 16 to pro­
vide Equations 24.

and

or, in additive form:

C~ = In Pg,g+ 1-In Pg,g+2

+lnpg+l,g+2-1npg+l,g+1 =0. (25)

Cgand Ci are choice critical test parameters which
are derived from 2 x 2 submatrices composed of ele­
ments from the major diagonal and either elements
1 or 2 units below the diagonal (C-) or elements
1 or 2 units above the diagonal (C). As will be shown
later, the form of Equations 25 is very similar to that
of the constraints produced by the logistic model so

where k is the probability distribution function of the
difference between xj.and yg. The Pig are cumulative
probabilities of the.judgment matrix.

Obviously, f and f' uniquely determine k, but the
converse is not true in general. The results of any
category judgment experiment are completely speci­
fied by giving the Pig for all i = 1, 2, "', n and all
g = 1, 2, "', m - 1. Consequently, two models
which have different distributions, f, f', but give
rise to the same difference distribution, k, are com­
pletely equivalent in any conceivable experiment.
Hence, one may specify the type of Thurstone model
by specifying the difference distribution k. Using this
system of nomenclature, a logistic Thurstone model
is one where the distribution k is logistic and similarly
a normal Thurstone model has a normal distribution
for k. Traditionally, the type of Thurstone model
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Hence:

Similarly, the separation between stimulus i and stim­
ulus j is given by:

1
Pig = for all i.g. (27)1+ exp - (cg-Sj)

(30)

(29)

(33)
Aig . Ai+ l,g+ 1 = 1
Ai,g+ 1 • Ai+l,g

exp-(cg- Cg+l) = A ig/Ai,g+l (31)

exp-(sj-si+l) = A i+ 1,g/Aig. (32)

Aig is the odds in favor of a response less than or
equal to g vs. a response greater than g. The Aig
determine the scale separation of stimulus i and
response criterion g. To obtain the separation of
criteria g and h, Equation 28 for .criterion g is
divided by Equation 28 for criterion h, with the stim­
ulus i held constant:

I-Pig
exp-(cg-~) =~ = ~g' (28)

ig

In fact, if Equations 29 specify criterion separation
for adjacent criteria (g = h + 1), then additivity of
the cg implies all the Equations 29 for which h - g > 1.
That is, there are only m - 2 independent criteria
separations given by Equation 31, and similarly,
n - 1 independent stimulus separations given by

(g = 1,2, "', n-2; i = 1,2, "', n-l). If
one allows g to range from 1 to m - 2, corresponding
to the m - 2 criteria separation, then Equations 33
comprise (n - l)(n - 2) constraints, which, together
with the n - 1 independent Sj and n - 1 independent
cg, uses up all the df in the empirical judgment
matrix. Equations 33 only use elements from the
diagonal and one unit above and below it. The most
sensitive test of the model comes from using elements
on and near the diagonal, i.e., g = i or g = i-I;
thus:

The most general form of the logistic Thurstone con­
straint equations may then be obtained by requiring
that estimates of cg- cg+ 1 from adjacent rows of the
judgment matrix be identical, giving:

is given by specifying the distributions f and f'
(assumed identical). For the normal model, the two
systems are equivalent, since, if k is normally dis­
tributed, f and f' must also be normally distributed.
Adams and Messick (Note 1) have shown that, in
simple discrimination or paired comparisons (i.e.,
n = m = 2), the choice model is equivalent to the
logistic Thurstone model as defined here. Yellott
(1977) has extended the result to multiple compari­
sons, i.e., where a subject picks that stimulus from
among n stimuli which is highest on some psycho­
logical dimension. Then Yellott shows that the logis­
tic Thurstone model for multiple comparison is com­
pletely equivalent to the choice model. He also shows
that if the f are double exponential, then k is logis­
tic; furthermore, if n = 2, there are definitely other
distributions besides the double exponential which
generate a logistic k, whereas if n ~ 3, then k logistic
implies that the f are double exponential. (In paired
comparison experiments, the difference distributions
are between pairs of stimuli rather than between
stimuli and criteria, so f is automatically the same as
f' .) It will be shown that, for n = m ~ 3, the logistic
Thurstone model of the absolute identification
process is not equivalent to the choice model as it
gives rise to different, and conflicting, constraint
equations. The logistic Thurstone model is easier to
work with than the normal Thurstone model as one
can obtain the distribution function (cumulative den­
sity) and hence the constraint equations in closed form.
However, the normal and logistic form are effectively
indistinguishable experimentally because the distribu­
tions are so similar in shape (see Burke & Zinnes, 1965).
It is important to note that the fact that the under­
lying stimulus and criterion distributions are such
different shapes as the normal and double expo­
nential does not imply that the predictions from the
models will be very different. For it is in the nature
of the experiment that the results depend only on the
difference distributions. Similar difference distribu­
tions imply similar experimental results, no matter
how different the underlying stimulus and criterion
distributions. Consequently, evidence which favors
the logistic Thurstone model over the choice model
also favors the normal Thurstone case V model
[where xi,yg are all normal (0,1)]. Furthermore, it is
no use invoking the asymmetries in the double
exponential to explain, for example, the anomalous
high discriminability at the high end of a category
scale. The difference distribution derived from the
asymmetrical double exponentials is the symmetrical
logistic, which actually generates the scale values.

Equation 26 enables one to calculate the stimulus
and criterion scale values from the empirical cumula­
tive probabilities provided that the form of k is
known. In particular, when k is logistic, Equation 26
gives:
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~g = ~ + i.s and ~,g+ I = ~ + I,g+ I (39)

In additive form:

L~ = (1n Agg-In Ag,g+ I)

+ (In Ag+ I,g+ I -In Ag+ I,g) = 0 (34)

and:

or in additive form:

Lg= (In Ag+ l,g-ln Ag+ I,g+ I)

+ (1n Ag+ 2,g+ I -In Ag+2,g) = 0 (35)

g = 1,2, ... , n-2,

The Lgare logistic critical test parameters with cumu­
lative odds up to and including the diagonal and
positions adjacent to the diagonal. The Lgare logistic
critical test parameters with cumulative odds up to
the diagonal and positions either one or two units
below the diagonal. Equations 34 and 35 test the
logistic Thurstone model in a similar way to that
which Equations 23 and 25 test the choice model.

for i = 2, g = 1. Then, by induction over i,g from
Equation 33, one can show that Equation 39 holds
for all i.g. Equations 39, which hold if both the
choice and the logistic Thurstone model are true,
imply that the cumulative odds and hence the com­
plete judgment matrix is contingent on the response
alone, a situation which occurs only when the stim­
uli are completely indistinguishable. Thus, dIe two
models are equivalent only in the limiting castwhere
no discrimination between pairs of stimuli is possible.

Of course, one can only apply constraint equations
if n > 2. It is well known (Luce, 1963) that if n = 2,
then the choice model and the logistic Thurstone
model are equivalent in the sense that they give
equivalent distance measures for the psychological
separation of the two stimuli. In our terms, the dis­
tance measure of the choice model, de, is -In Ul1;
then, taking logarithms of Equation 10, one obtains

de = Y2(1n PH+ In P22 -In pl1-ln P21).

For the logistic Thurstone model, the distance mea­
sure, dL, is equal to S2 - s., and taking logarithms
of Equation 3D, one obtains:

and using 35 with 28, the defining equation of the
Aig, gives:

(c + d)(l- (a + b»a(1- c)
(a+b)(1-(c+d»c(l-a) = 1. (37)

Comparison of Logistic Tburstone and
Cboice Models

Once one has obtained constraint equations for the
two superficially similar models, one may investigate
whether the two sets of constraints conflict. It will be
shown that the set of choice constraints embodied in
Equations 22 conflict with the set of logistic Thurstone
constraints embodied in Equations 33.

Let g = 1 and let P:u = a, Pll = b, P31 = c, and
Pu = d. From Equation 22, one obtains

Equation 38 can only be true if a = c, and hence
b = d. Since a + b = c + d, one has also that

If there is no conflict, then 36 and 37 will both hold,
and from 36, (c + d)/(a + b) = cia may be substituted
in 37, which, with some rearrangement, leads to
(1- c)/(1 - a) = d/b, which, combined with Equa­
tion 36, gives:

(b/a)(c/d) = I,

(1 - c)/(1 - a) = cia -.

(36)

(38)

for g = I, as there is only one criterion in a two­
choice experiment. For the two-choice experiment,
PH = Plio 1-Pu = Pl2' P21 = P2lt 1-P21 = Pll.
Hence, dL = 2dC. The multiplicative factor of 2 does
not destroy the equivalence, since any theorem which
requires additivity of the dL will automatically ensure
additivity of the dc, and vice versa.

It can now be seen that, in general, the logistic
Thurstone model of category scaling is not equivalent
to the choice model, although if n = m = 2, one
gets the well-established equivalence of the two
models for simple discrimination. Comparison of
Equations 10 (choice) and Equations 30 (logistic)
show that, in general, choice model formulations use
simple probabilities, whereas Thurstone model
formulations use cumulative probabilities. Obviously,
if n = 2, simple and cumulative probabilities are the
same, and hence the equivalence.

EMPIRICAL COMPARISON OF MODELS

Having established that the two models make dif­
ferent theoretical predictions, a category judgment
task must be arranged to produce the largest possible
difference in experimental results between the two
models. Violations of models are then detected either
by using the constraint equation approach or by
using optimization techniques. In the experiment
described here, the task is an eight-stimulus, eight-
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response category judgment of loudness. There are
two conditions of bias, denoted unbiased (neutral)
and biased (where subjects are encouraged to sys­
tematically underestimate all stimuli). Originally, the
two conditions of bias were chosen with a view to
showing that Thurstone scale values in the biased
condition were a linear transform of the scale values
in the unbiased condition (Jacobs, 1974). For the
present purposes, this was a fortunate choice, since
it turns out that the difference in predictions of the
two models is considerably larger for the asymmetric
judgment matrix generated by the biased condition
than for the symmetric matrix of the unbiased con­
dition.

Before describing the particular experiment, the
two methods of comparing models will be discussed
in some detail since each method has its own peculiar
advantages and problems.

The Constraint Equation Method
The constraint equations are so formulated that,

if they are violated, some critical test parameter cal­
culated from the empirical probabilities will be
different from zero. Since the observed critical test
parameter is unlikely to be exactly zero, one needs
some method of estimating the expected error in the
critical parameter and hence evaluating if the devia­
tion from zero is statistically significant. The additive
(i.e., logarithmic) form of the constraint equations,
17, 21, 23, 25, 34, and 35, have been chosen with
this problem in mind.

First, some preliminaries about errors of observa­
tion and their propagation. If some test parameter,
T, is a function of n observed quantities, Xi, i ==
1, 2, ... , n, then the error in T, flT, is given by:

positively correlated with each other. Of course, the
magnitude of r is not known, but we will calculate
the error by using that value of r which would produce
the maximum propagated error.

For the choice model, all constraints are of the
form:

T == x+y+z,

so that

where x.y,z, are independent, as they come from
different rows of the judgment matrix. For Equa­
tions 23 and 25, there is no z and x.y are both of
the form x == In Pig-In Pih. Then the maximum
possible error in x occurs when the correlation between
Pigand Pih is - 1 and is given by:

Equation 17, for the choice sensitivity criterion, has
z of the same form as x and y. However, Equation 21
has z of the form:

z == Inpig+InPih-2Inpik'

Since the correlations must all be negative, the maxi­
mum error occu~s ~hen the rig,ih = 0 and rig.ik ==
rih,ik == - I, and IS gIven by:

(flZ)2 == [fl(In Pig)+ fl(In PikW

+ [fl(l n Pih)+ fl(l n PikW. (45)

fl(ln p) == [(1 - p)/Np] If'. (42)

if x is a probability, p, estimated from N attempts,
then for the binomial distribution,

where flxi is the error in Xi, rij is the correlation
between Xi, Xj (see, for example, Martin, 1971). From
40, one can deduce the important result for a func­
tion of one variable that

n n n
2 ~(Of)2A 2 2~ ~ df Of A(flT) = 4J ox' uXi + 4J k.J ri·-.--:~ ax. (40)

i = 1 I i =1 j = 1 Jdx\ dXJ J

i*j

Use of Equations 42, 43, 44, and 45 in conjunction
with the appropriate constraint equation enables one
to estimate the SO of all the choice critical test
parameters. A z-score is then calculated as the ob­
served value of the critical parameter divided by the
estimated SO. Then one can test whether the observed
z-value is significantly different from zero, at any
desired level of confidence. A modest 10070 confi­
dence level (two-tailed because the direction of viola­
tion is not known) is chosen since the method of
derivation of the SO is known to be an overestimate.

For the logistic Thurstone model, the estimation is
slightly more complicated. All constraints are of the
form: T == u+v, where u,v are independent, since
they come from different rows, so that:

(41)fl(l nx) == flx/x,

Furthermore, if probabilities come from different (flT)2 == (flU)2 == flV)2 (46)
rows of the judgment matrix, they are uncorrelated,
r == O. If pairs of probabilities come from the same and u,v are both of the form:
row, then simple probabilities are negatively correlat-
ed with each other and cumulative probabilities are u == In(1 - Pig) - 1n Pig + In Pih - In(1- Pig)'



Applying Equation 40 and noting that maximum
error occurs when the correlation between Pig and
Pib is zero, one obtains for the maximum error in u:

(AU)2 = (APig)2/[Pig(l- PigW

+ (APih)2/[Pih(l- PihW. (47)

Then use of Equations 42,46, and 47 in conjunction
with the logistic constraint equations, 34 and 35,
enables one to estimate the SO and equivalent z-value
of the logistic critical parameters.

Using these methods, the choice and logistic models
are tested in ways which are closely analogous. With
an 8 x 8 judgment matrix, Equations 23 and 25
give 12 independent tests of the choice model, and
Equations 34 and 35 give 12 independent tests of the
logistic model, for each judgment matrix. One may
also calculate the mean and SO of the six critical
test parameters embodied in each of the sets of
Equations 23, 25, 34, and 35 and then calculate
the t-value with 5 df and test its significance. The
calculation of an empirical SO for each set of con­
straint equations also provides a rough check on the
theoretical estimates of SO via Equation 40. As a
very crude estimate, one would expect that:

SOtbeory = (l+r)Y2S0observed' (48)

where r is the mean correlation between probabil­
ities from the same row. Equation 48 can do no more
than check that the theoretical estimates are of the
right order when a model is not violated. If the model
is violated, the argument breaks down as there is no
reason to believe that all the test parameters have the
samenonzero value.

A further problem, which applies both to the indi­
vidual criterion tests of z-scores and to the group
t tests described above, is the problem of power. The
power of the test of a critical parameter depends on
how accurately it can be estimated. So if model A
is violated and not model B but the power of the test
for A is larger, then one might hesitate to name B
the better model. It is always possible that if B could
be tested with equal power, it would also violate its
constraints. The problem is relevant here since the
tests of the choice model, dependent on simple
probabilities, are slightly more powerful than the
tests of the logistic, based on cumulative probabilities
(the cumulative probabilities are more often close to
zero or one and hence have higher fractional errors).
Thus, the comparisons described above favor the
logistic model because its constraints are tested with
lower power. On the other hand, the comparison
technique described below, using an optimum sepa­
rator, favor the model tested with higher power,
in this case the choice model.

If one chooses an arbitrary separator value, s, and
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counts a violation when the critical test parameter> s
and no violation when the critical test parameter" s,
then one can compare two models (or two sets of
constraint equations) according to the split between
numbers of violators and numbers of nonviolators
[the chi-squared contingency test is used when the
total number of tests is over 24; the Fisher-Yates
test (Siegel, 1956, p. 96) is used for total number
equal to 24]. An optimum value of the separator s is
chosen to make the most difference between 1he sets
of constraints being tested. If s is very large, there are
no violations for either set of constraints; if s is
small, there are no nonviolators for either set. The
optimum value of s is easily found by inspection.
This optimum separator test favors the high-power­
low-SO model, since it is less likely to produce viola­
tions by chance. In fact, the expected number of
violations, ve, may be calculated; it is simply equal
to the number of constraints tested multiplied by
(1 - power of test). An estimate of the average power
of the test for a set of constraint equations is deter­
mined from the z-scorein the usual way, where z-score
is Soptimum divided by mean theoretical SO, m., for
the set of constraints. If one uses the estimate of
maximum theoretical SO as described above, one of
course overestimates the SO, hence underestimates
the power and overestimates Ye- A more realistic esti­
mate of Ve is obtained if all theoretical estimates of
SO are reduced by a factor equal to the overall mean
observed SO divided by the overall mean theoretical
SO. The procedure is somewhat dubious, since it
depends on the observed SO. If one used the observed
SO direct, one should, overall, automatically come
out with Ve close to the observed number of viola­
tions, vo' Using binomial probability estimates, one
may also estimate the probability of a value of
I ve - Vo I ~ to the observed value.

If both the sets of tests which favor the model tested
most powerfully and the sets which favor the model
tested least powerfully end up favoring the same
model, then one can be convinced that the constraint
comparison is both fair and powerful.

A major advantage of the constraint method is
that it will identify which of severai assumptions in a
model is at fault. In particular, investigation of the
choice constraints in Equations 17 and 21 enable us
to identify the source of the violation of choice
theory axioms, even though Equations 23 and 25
provide a more powerful test of the overall model.
In the present study, the constraint equation method
is used to compare two models. It is also useful in
investigating a single model with a view to accepting,
rejecting, or indeed modifying contingent on which
precise constraint was violated.

Optimization Methods
Optimization methods are used for two purposes:

first, to determine those values of the theoretical
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where 0ig is the observed frequency with which
response g is given to stimulus i and fij is the fre­
quency of response g to stimulus i predicted by the
model in question. The fij are functions of the Xt
which depend on the model, where of course

if stimulus i is presented N; times.
All the models considered here have 14 theoretical

parameters (seven sensory and seven motivational for
an eight-stimulus, eight-response category judgment
task). The normal Thurstone model is considered as
well as the logistic Thurstone model as the optimiza­
tion methods do not require that the theoretical
parameters be expressed in terms of the probabilities
in closed form.

For the choice model, the theoretical parameters,
x., are the seven motivational parameters, bg (g =
2, 3, ... , 8, where b, is set to unity for normalization
purposes), and the seven sensory parameters, Ui,i+1

(i = 1, 2, "', 7). So the Pig, and hence the fig,
may be calculated from the bg and the Ui,i + 1 from
Equations I, 2, 10, and 11.

For the Thurstone models, the theoretical param­
eters are the seven criterion positions, cg (g =
I, 2, "', 7) and the seven psychological stimulus

(51)

EXPERIMENT

i = 1, 2, ... , 8; g = 1, 2, .. " 7.

positions, Si, (i = 2, 3, .. " 8, where SI is set to zero
as the arbitrary start point of an interval scale). The
simple probabilities, Pig, may be calculated from the
cumulative probabilities which are directly predicted
by the model:

Method
Subjects. Two undergraduates from Columbia University ~erved

as subjects. They were selected from 10 students, who replied to
an advertisement inthestudent newspaper, because they performed
best on a l-h training session in categorical judgment. Both sub­
jects had normal audiograms. The subjects were paid approxi­
mately $2/h. One dollar was a flat-rate minimum. The remaining
earnings were contingent on the subject's performance. The sub­
jects worked for points, gaining when correct and losing when
incorrect, ina pattern depending onthebias condition. Thepoints
were then converted to dollars at a ratedetermined by pretesting
to give earnings of roughly $lIh.

For the logistic model, the Pig are given by Equa­
tion 27.

For the normal model, the Pig are given by Equa­
tion 26, where k(u) is the normal density function,
N(O,I).

The optimization problems which require solution
are of the general form: given empirical observations
Ok and C = C(XhOk), find the values of Xt which
minimize C. The methods used here were developed
by the Numerical Optimisation Centre, Hatfield
Polytechnic, for solving the general problem, and are
embodied in their FORTRAN programs OPVM and
OPNDI. OPVM finds an unconstrained local mini­
mum for C using a quasi-Newton algorithm. Details
are given by Biggs (1971, 1973). OPNDI is a routine
which calculates numerical derivatives by the method
of central differences.

The judgment matrices are not necessarily complete­
ly filled, i.e., some of the 0ig are zero. This is not
in itself a difficulty, as it simply cuts down the num­
ber of df. Frequencies that are small but nonzero
are more difficult, as one would like a solution which
is not dominated by the high-variability/low-frequency
cells. For this reason, the solution is based only on
those cells where the observed frequency is greater
than 5, with of course the consequent reduction in df.
In general, the number of df is the number of cells
used in the summation of Equation 49, minus 14 (for
the estimated parameters) minus 8 (because the sum
of frequencies in each row is fixed). One does not
want to use the low-frequency cells to determine the
xl> but once the Xt are obtained, it is reasonable to

. ask if they also fit the omitted cells. So a chi-squared
value based on the Xt with 0ig > 5 was calculated for
all cells with predicted frequencies ~ .5.

(49)

(50)

parameters of a model which give the "best fit" to
the empirical data; and second, to determine whether
the difference between the predictions of the model
(using the best values of the theoretical parameters)
and the observed data are so large as to invalidate
the model, or whether the differences are of a magni­
tude which could have arisen by chance. "Best fit"
implies some criterion for measuring the difference
between the data predicted by the model and the
observed data and then ensuring that this difference
is as small as possible. It is well known that there
are several possible criteria (least squares, minimum
chi-squared, maximum likelihood, etc.). One is not
obliged to use the same criterion to evaluate the best
fit and to test the goodness of fit. However, it does
seem desirable wherever this is technically feasible,
and for this reason the minimum chi-squared criterion
has been chosen for this study.

In order to find the values of the theoretical
parameters, x., which minimize a criterion C, it is of
course necessary to be able to express C as a function
of the Xt. One also has to be able to evaluate dC/dxt
for all the x., but this may be done numerically, if the
analytic function is too complicated. C, the chi­
squared statistic, is defined by Equation 49.



Sessions. Each session was 1 h long and comprised 400 trials,
240 trials in 24 min followed by a break, followed by 160 trials
in 16 min. Each subject performed on each condition until a pre­
determined number of trials had been collected from "asymptotic"
sessions. "Asymptotic" sessions are consecutive sessions where
the variability in percent correct is no more than would be expected
by chance. For both subjects, the predetermined number of trials
was 2,000 for the unbiased condition (250 presentations of each
stimulus), i.e., five asymptotic sessions. In the biased conditions,
D.P. performed six asymptotic sessions (300 presentations of each
stimulus) and D.1. eight asymptotic sessions (400 presentations
of each stimulus).

Stimuli. The stimuli were I-sec bursts of 500 Hz pure tones,
ranging in intensity in Y2-dB steps from 71.1 dB (Stimulus 1)
to 74.6 dB (Stimulus 8).

Responses. The response system was the keyboard of a "touch­
tone" telephone with the letters and digits 0 and 9 painted out,
so that the subject used the keys labeled 1-8 for Responses 1-8.

Outcome and feedback. The subjects were instructed that
Response 1 was correct for the softest stimulus, Response 2 for
the next softest, and so on up to Response 8, which was correct
for the loudest stimulus. The subject was faced with a large out­
come display which gave feedback and payoff information on each
trial. Feedback was given by a digital lamp which showed the num­
ber corresponding to the stimulus just presented. Payoff was indi­
cated by one of three lights: corresponding to a response less than
the actual stimulus (underestimate), a correct response, or a re­
sponse greater than the actual stimulus (overestimate). The payoff,
i.e., the number of points earned, was indicated next to the
appropriate light.

In the unbiased (neutral) condition, the subject earned 10 points
for a correct response and lost 2 points for both over- and under­
estimates. In the biased condition, the subject still earned 10
points for a correct response, but he lost 9 points for an over­
estimate error and only 1 point for an underestimate error.
Instructions emphasized that the subject's task was to gain as
many points (and hence as much money) as possible, not neces­
sarily to achieve the maximum number of correct responses.

Procedure. The subject was seated in a dental chair in a sound­
attenuating booth (lAC 1203). The response system was on the
right arm of the chair, facing the outcome display through the
booth window. The apparatus was set to give trials comprising
a l-sec burst of tone followed by 5 sec of silence, during which
the subject made a response and received payoff and feedback
information and the experimenter selected the stimulus for the
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next trial. On each trial, the stimulus presented and response given
were recorded on paper tape for future analysis. Stimuli were pre­
sented in quasi-random order with the constraint that each stim­
ulus was presented 10 times in each block of 80 trials.

The subjects were informed of the total number of points gained
and equivalent money earned both at the midsession break and at
the end of each session.

Results
Judgment frequency matrices for both subjects

and both conditions are shown in Tables A an'& B of
~

the appendix.
Constraint equations. Table 1 summarizes the re­

sults of testing all constraint equations for both sub­
jects in the two conditions of bias. Each set of test
equations comprises 6 tests for each judgment matrix.
The results from the two subjects are pooled, making
12 tests of each set of constraints in each condition.
In the unbiased condition, the power of the tests for
L0 and L- and also for C+ and C- are very similar and
hencehave been pooled. In the biased condition, 2, the
tests for L- and C- are considerably more powerful
than for LO and C+, so the results are shown separately.
The first column simply gives N, the number of con­
straints tested.

The number of constraints, Nz, for which the
z-score, based on the theoretical maximum SD, is
greater than the critical z-value for the 10070 confi­
dence limit (two-tailed) and is shown in the second
column of Table 1. For both the choice and the logis­
tic model, there are 12 independent constraints per
judgment matrix, i.e., 48 constraints in all. None of
these constraints are violated for the logistic model.
For the choice model, there are 2/24 violations in
Condition 1 at the 10% levelof confidence, certainly
not enough to provide conclusive evidence against
the choice model. In the biased condition, 2, the pic-

Table I
Number of Violations of Constraint Equations with Different Criteria of Violation and t Values for Each Set of Constraints

Set of Sign] Sign]
t Test

Model Constraints N Nz Comparison Nc Comparison tn.p. tn.J. df

Condition I

LOG LO L- 24
~} ~} .100

-2.17 -2.50* 11
CHO C+:C- 24

n.s,
-1.69 2.99** 11

CHO S 12 a j} .42 - .19 5
CHO B 12

n.s, n.s. .71 2.62* 5

Condition 2

LOG LO 12 n ~}
.14 1.32* 5

CHO C+ 12 n.s. n.s. 2.35 2.60* 5
LOG L- 12

I~} .001 la .001 1.18 -2.69 5
CHO c- 12 6.66** 11.43** 5
LOG LO, L- 24

1~} .001 I~} .001 1.12 .55 11
CHO C+, C- 24 6.95** 6.61 ** 11
CHO S 12 n 1~} .025 4.09** - .98 5
CHO B 12

n.s,
4.94** 5.12** 5

Note-N = number tested: N z = number with z ;;.1.65: Nc = number with c > .41: c isany criticaltest parameter. *p > 5% **p > 1%
fSignijicance level of probability that number of violations from bracketed sets of constraints are different. Fisher-Yates exact
probability test where total number = 24. Chi-squaredcontingency test where total number> 24.
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ture is quite different: all 12 of the powerful C- con­
straints are violated at the 10070 level, providing con­
clusive evidence against the choice model. Since there
are two violations of the choice sensory constraints
and three violations of the choice bias constraint, no
conclusion can be drawn as to the source of the
problem with the choice model.

The last three columns of Table 1 provide evidence
based on the mean extent of violation of the con­
straint for a set of constraint equations. The t-values
are shown separately for each subject and each set of
constraints. The results in Condition 1 are somewhat
equivocal. For D.P., neither model is disconfirmed,
whereas for D.J., the t-value is significantly different
from zero for both models-for the logistic model
merely at the 5070 level, while for the choice model

at the 1% level. In the biased condition, t-values for
both subjects for C- constraints and hence for the
combined C' and C- constraints are highly significant.
The only evidence against the logistic comes from
D.J. L- constraints, again at the weak 5% level.

Tables 2 and 3 give details of the exact magnitude
of each constraint coefficient, and its theoretical
maximum SD and associated z-score. The ratio of
mean theoretical maximum SD, m., to the empirically
estimated SD ranges from .9 to 2.6 with a mean of
1.55 corresponding to an approximate value of
r = 0.24 from Equation 48. Thus, the theoretical
estimates of SD seem "reasonable" when compared
with empirical estimates.

The optimum separator method was used both to
compare logistic and choice model constraints and,

Table 2
Magnitude of Constraint Coefficients and Theoretical Estimates of Maximum Errors

with Associated Z Scores for Unbiased Condition 1

Model Equation Parameter 2

g Value

3 4 5 6
Empirical

Mean SD

Subject D.P.

.79

.15

.58

.27

.22

.61

.24

.87

.25

.62

.52

.79

.11

.88

.36

.84
043

044

.40

.20

.59

.36

1.05
040

-.16
.28

-.16
-.07

.39
-.14

.21

.38

.14

.08

.39

.21
-.09

.49

.16

.08

.63

.17

-.09
.35

-.30
-.15

.29
-.52

.21

.36

.62

.25

.37

.71
-.03

.49
-.05

.46

.60

.80

-.01
.30

-.03
-.23

.27
-.85

.27

.33

.82

.01

.31

.03

.14

.42

.33

.28

.54

.52

-.16
.31

-.52
-.11

.28
-.39

.19

.36

.53

.49

.34
1.44
-.29

.47
-.62

.69

.58
1.19

.09

.28

.32
-.24

.27
-.89

.40

.34
1.18
-.18

.35
-.51

.59

.45
1.31
.22
.58
.38

-.15
.27

-.55
.08
.27
.30

.02

.33

.06

.30

.38

.79
-.41

.47
-.87

.31

.61

.51

- .19
.29
.66
.19
.28
.68

.21

.33

.64

.04

.39

.10

.26

.49

.53

.17

.62

.27

- .41
.26

-1.58
.10
.29
.34

- .65
.39

-1.66*
.48
.42

1.14
-1.02

.53
-1.92*
- .37

.68
- .40

Subject D.l.

- .28
.30
.93

.01

.38

.03

.03

.40

.08

.02

.54

.04

.05

.66

.08

- .'43
.28

-1.53

- .06
.28

- .21
.34
.29

1.17

.06

.45

.13
- .07

.41
- .17

.13

.55

.24
- .01

.72
- .01

- .10
.27

- .37
- .30

.29
-1.03

.05

.36

.14
- .19

.39
- .49

.23

.50

.46
- .15

.63
- .24

- .03
.30

- .10
- .10

.30
- .33

- .02
.39

- .05
.45
.38

1.18
- .47

.52
- .90

.42

.63

.67

-.26
.27

-.96
-.23

.29
-.79

.38

.41

.92
-.02

.40
-.05

.38

.45

.84

.36

.58

.62

.20

.28

.71

.04

.31

.13

.47

.33
1.42
.74
.34

2.18t
-.27

.44
-.61
1.21

.55
2.2ot

LO
err
Z
L­
err
Z

C+
err
Z
C­
err
Z
S
err
Z
B
err
Z

LO
err
Z
L­
err
Z
C+
err
Z
C­
err
Z
S
err
Z
B
err
Z

23

25

21

34

21

35

34

25

17

35

23

17

Logistic

Choice

Logistic

Choice

*p > 10% tp > 5%
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Table 3
Magnitude of Constraint Coefficients and Theoretical Estimates of Maximum Errors

with Associated Z Scores for Biased Condition 2

Model
Equa- Param-
tion eter 2

g Value

3 4 5 6
Empirical

Mean SD

Subject D.P.

Logistic

Choice

35

34

25

23

17

21

LO
err
Z
L­
err
Z
C+
err
Z
C­
err
Z
B
err
Z
S
err
Z

.24

.27

.88

.29

.22
1.32

.62

.40
1.55
1.02

.17
6.001"

- .39
.39

-1.00
1.64
.48

3.42t

- .15
.29

- .52
- .00

.23
- .01

.01

.47

.02

.83

.21
3.95t

- .83
.44

-1.89*
.83
.53

1.57

.03

.34

.09
- .21

.24
- .88

.22

.49

.45

.47

.23
2.05**

- .25
.53

- .47
.69
.62

1.11

- .16
.31

- .52
- .01

.23
- .04

.03

.46

.07

.51

.24
2.13**

- .48
.50

- .96
.38
.61
.62

- .04
.32

- .13
.23
.24
.96

.11

.44

.25

.81

.25
3.24**

- .69
.47

-1.47
.76
.58

1.31

.13

.42

.31

.30

.28
1.07

.34

.54

.63

.41

.23
1.78*

- .07
.54

- .13
.74
.66

1.12

.01

.33

.02

.10

.24

.40

.22

.47

.49

.68

.22
3.19
-.45

.48
-.98

.84

.58
1.53

.16

.54

.21

85

.23

.57

.25

1.61
.27

.64

.42

.98

.28

.84

.68

.20

.64

.34

.66

.12

.73

.45

.92

.44

.15

.43

.34

.22

.28
-.74

.36

.59

.65

.56

.25
2.26
-.18

.49
-.38

.92

.60
1.56

.03

.51

.06
- .51

.34
-1.50

.25

.65

.38

.61

.26
2.35**

- .37
.47

- .79
.86
.58

1.48

.27

.38

.71
- .02

.25
- .08

.4t;

.51

.90

.51

.27
1.89*

- .05
.45

- .11
.98
.58

1.69*

Subject D.l.
- .29

.40
- .73
- .02

.27
- .07

- .13
.58

- .22
.44
.27

1.66*
- .99

.49
-2.02**

.31

.62

.50

.38

.50

.76
- .35

.27
-1.30

.23

.66

.35

.51

.26
1.96**
.28
.54
.52
.75
.66

1.13

.03

.43

.07
- .21

.28
- .75

.41

.60

.73

.51

.25
2.04**

- .08
.52

- .15
.96
.63

1.52

.46

.39
1.18

- .25
.28

- .89

.91

.52
1.75*
.77
.21

3.67t
.13
.44
.29

1.68
.55

3.05**

LO
err
Z
L­
err
Z

c+
err
Z
C-
err
Z
S
err
Z
B
err
Z

25

23

21

35

34

17

Logistic

Choice

*p > 10% **p > 5%tp > 1%

within the choice model, to compare the sensory con­
straints with the bias constraints. Column 4 of
Table 1 shows Nc, the number of constraint coeffi­
cients, C, greater than the optimum separator value,
s. The value of s was found to be 0.41 by inspection.
The fifth column of Table 1 indicates the significance
level of the comparison of Ncs from the bracketed
sets of conditions. For Condition 1, Nc for the
choice model is significantly larger than Nc for the
logistic model only at the weak 10070 level. For Con­
dition 2, the difference between C- and L- is, as
usual, highly significant and is, of course, the major
cause of the highly significant difference between the
combined choice constraints and combined logistic
constraints. In Condition 2, the number of choice

bias violations is also significantly greater than the
number of choice sensory violations.

Since Soptimum is less than the 10% critical value
for many of the critical constraint coefficients, one
would expect some violations using this separator
value. Table 4 shows the predicted number of viola­
tions, ve, using both the mean theoretical SD for each
set of constraints, m., as an estimate of the SD of
the constraint coefficient, and more realistically,
mt/1.55. The power estimate on which the Ve esti­
mate is made is also shown. One may also calculate
the binomial probability of a difference I Vo - Ve I
greater than or equal to that obtained in the experi­
ment, as shown in Table 4. Using the low-power
theoretical maximum SD, one may conclude that



206 KORNBROT

Table 4
Number of Constraint Coefficients Greater than Optimum Separator Value, vGO with Number of Predicted

Violations, Ve, and Power of Test Based on Different Theoretical Estimates of SO of Constraint Coefficients

Estimate of SD = Theoretical Max. Estimate of SD = Theoretical Max./1.55
-

Number Significan ce Significance
Model Constraint Tested Vo ve Power Ivo - vel ve Power Ivo - vel

Condition 1

LOG LO , L- 24 I 4.0 .83 n.s. .8 .97 n.s,
CHO C+,C- 24 7 6.5 .73 n.s. 2.1 .91 4 X 10- 3

CHO S 12 3 4.8 .60 n.s. 2.2 .81 n.s.
CHO B 12 3 6.0 .50 n.s. 3.5 .71 n.s.

Condition 2
LOG LO 12 1 3.4 .72 n.s. 1.1 .91 n.s.
CHO C+ 12 4 5.0 .58 n.s, 2.5 .79 n.s .
LOG L- 12 1 1.3 .89 n.s. .2 .99 n.s.
CHO C- 12 11 1.0 .92 9 X 10-1 1 .1 .99 1 X 10-. 1

LOG LO L- 24 2 4.7 1.3
CHO C+:C- 24 15 6.0 2.6
CHO S 12 4 4.8 .60 n.s. 2.2 .81 n.s.
CHO B 12 10 5.9 .51 .04 3.3 .72 1 X 10-4

11/12 C- violations are unlikely to have arisen by
accident given the power of the test for s == 0.41
(.99). Similarly, the number of choice bias violations
is significant at the 5070 level. If one uses the less
conservative estimate of the SD, one may also con­
clude that the combined number of choice violations
in the unbiased condition is significant.

In summary, by whatever criterion one chooses,
there can be no doubt that the C- choice constraints
in the biased condition are not Obeyed. There is also
considerable evidence that it is the choice bias, rather
than the choice sensory constraints, which is at fault.
There is some evidence that the choice constraints are
violated in the unbiased condition. For subject D.l.
only, there is weak evidence against the logistic model
in the form of significant t-values for the combined
logistic constraints in Condition 1 and the L- con­
straints in Condition 2.

Optimization method. Table 5 shows the minimum
chi-squared values for the best fitting solutions to
choice, normal Thurstone, and logistic Thurstone

models. Only cells of the judgment matrix with fre­
quencies greater than 5 were used to estimate the
optimum theoretical parameters. All the chi-squared
values for both types of Thurstone model are less
than the critical chi-squared value for the 5070 con­
fidence level. For Condition 1, the choice chi-squared
values are significant at the .5070 level for both sub­
jects. The probability of such high values occurring
by chance is in the region of 1:1,000. In Condi­
tion 2, the choice chi-squared values are too high for
there to have been even the remotest probability of
their occurring by chance. As predicted in the theory
section, there is little to choose between the normal
and logistic version of the Thurstone model.

Having chosen the theoretical parameters to fit the
cells with frequencies greater than 5, it is interesting
to know if these values also give a reasonable fit to
the low-frequency cells. With this in mind, the chi­
squared values based on these theoretical parameters
were calculated using all cells with expected frequen­
cies greater than or equal to .5. As may be seen from

TableS
Chi-Squared Values for Best-Fitting Solutions from Normal and Logistic Thurstone Models and Choice Model

Condition I-Unbiased Condition 2-Biased

D.P. DJ. D.P. D.J.

Choice Logistic Normal Choice Logistic Normal Choice Logistic Normal Choice Logistic Normal

Parameter A
x' 56.9 36.7* 40.4* 52.6 29.1* 31.6** 289.0 21.9* 32.1** 245.5 19.6* 15.5*
df 30 30 30 21 21 21 23 23 23 20 20 20

Parameter B
x' 50.8* 45.2* 46.4* 46.9** 35.1 * 47.5t 34.9* 25.5*
df 42 40 36 33 38 32 35 29

Note-Parameter A: Minimum X' from all cells where observed frequency> 5. Parameter B: X' calculated with
same parameter values as A but including all cells where expected frequency ~ .5.
*measured X' < X' 100/0 **measured X' < X' 5% t measured x' < x' 2.5%



row B of Table 5, even with this stringent condition,
there is no evidence against either version of the
Thurstone model.

DISCUSSION

The results of the present study provide strong
evidence against the choice model of category judg­
ment. Conversely, Thurstone models, whether based
on a logistic or a normal difference distribution,
make an impressive fit to the empirical judgment
matrices.

With hindsight, it appears that the reason the
choice formulation is unsuccessful is intimately bound
up with the fact that the stimuli are actually ordered
psychologically along a single continuum. This uni­
dimensional ordering is automatically built into the
Thurstone models. However, if one examines the
matrix of Equation 5 for the choice model, one can
see that it would be no different if the stimuli were
not ordered, but just happened to have the relations
between discriminabilities expressed in Equation 18.
In other words, there is no natural way of formulat­
ing the choice model of categorical judgment so that
the stimuli and responses must be ordered along a
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singlecontinuum.
It is interesting to note that the very strong con­

clusions one can draw about both choice and
Thurstone models stem from the fact that an asym­
metric biased condition was included in the experi­
mental design.

Both the constraint method and the optimization
method provided useful tests of the two models.
In general, the optimization method was most dis­
criminating, since it was able to provide conclusive
evidence against the choice model even in the uribiased
condition. However, the constraint-equation
approach had the advantage of showing that the
problem with the choice model was fundamental,
since it arose from the bias constraints which depend
directly on the axioms, not just on the sensory con­
straints which arise from specific constraints on the
discriminabilities (Equation 18). If one is testing a
new model for the first time, one can usually get a
good idea of whether it is satisfactory from a quick
look at the constraint equations, although one may
have to go to the more powerful optimization
methods to prove one's conclusion. Obviously, one
great practical advantage of the constraint method
is that it doesn't require a computer and associated
technology.

APPENDIX

TableA
JudgmentFrequencyMatrix for Both Subjects in the NeutralCondition

Subject D.P. Subject D.J.

Stirn-
Response Response

ulus 2 3 4 5 6 7 8 Total 1 2 3 4 5 6 7 8 Total

1 133 56 33 19 6 3 1 251 105 94 33 13 5 251
2 59 71 61 34 13 8 5 251 81 89 50 24 5 4 253
3 39 46 72 42 23 14 13 1 250 27 62 81 38 25 16 3 2 254
4 10 31 40 55 32 50 29 7 254 7 25 51 75 50 34 8 1 251
5 2 13 32 41 55 45 45 16 249 8 25 38 75 63 35 9 253
6 1 6 9 23 45 67 68 36 255 5 11 27 51 71 59 28 252
7 6 6 19 28 56 82 57 254 1 1 14 44 51 89 51 252
8 2 9 16 49 72 103 251 1 23 29 83 115 251

Total 244 229 255 242 218 292 315 220 2015 221 284 252 230 278 268 277 207 2017

TableB
JudgmentFrequency Matrices for Both Subjects in the Biased Condition

SubjectD.P. Subject D.J.

Stirn-
Response Response

ulus 2 3 4 5 6 7 8 Total 1 2 3 4 5 6 7 8 Total

I 293 87 20 6 2 409 227 64 8 3 302
2 199 126 54 22 6 408 168 97 30 7 2 304
3 91 159 100 41 12 4 407 84 105 80 29 6 304
4 21 89 128 104 38 16 6 1 403 23 76 97 73 19 11 2 302
5 4 44 85 III 92 40 19 2 397 3 34 67 84 69 35 12 304
6 4 14 36 87 120 86 46 10 403 8 28 69 88 68 37 6 304
7 2 11 52 84 135 85 26 395 2 13 31 72 93 77 16 305
8 2 5 21 52 127 120 75 402 4 10 24 73 III 80 302

Total 612 523 439 444 406 409 271 114 3224 506 386 327 306 280 280 239 103 2427
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REFERENCE NOTE

1. Adams, E., & Messick, S. An axiomatization of Thurstone's
successive intervals and paired comparison scaling models.
Technical Report 12, Applied Mathematics and Statistics Labora­
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