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Overestimation of base-rate differences
in complex perceptual categories

W. TODD MADDOX and COREYJ. BORIL
University ofTexas, Austin, Texas

The optimality of multidimensional perceptual categorization performance was examined for sev­
eral base-rate ratios, for both integral and separable dimension stimuli, and for complex category
structures. In all cases, the optimal decision bound was highly nonlinear. Observers completed sev­
eral experimental sessions, and all analyses were performed at the single-observer level using a se­
ries of nested models derived from decision-bound theory (Maddox, 1995;Maddox & Ashby, 1993).
In every condition, all observers were found to be sensitive to the base-rate manipulations, but the
majority of observers appeared to overestimate the base-rate difference. These findings converge
with those for cases in which the optimal decision bound was linear (Maddox, 1995) and suggest
that base-rates are learned in a similar fashion regardless of the complexity of the optimal decision
bound. Possible explanations for the consistent overestimate of the base-rate difference are dis­
cussed. Several continuous-valued analogues of Kruschke's (1996) theory of base-rate learning with
discrete-valued stimuli were tested. These models found some support, but in all cases were out­
performed by a version of decision-bound theory that assumed accurate knowledge of the category
structure and an overestimate of the base-rate difference.

Categorization is fundamental to human survival. Every
day we make hundreds ofcategorization judgments, and in
many cases are very accurate. For example, our ability to
categorize speech sounds and handwritten characters is
unmatched by even the most sophisticated machines. Thus,
it is reasonable to suppose that in certain domains our cat­
egorization performance is very nearly optimal (Ashby &
Maddox, 1998). A major goal of the present study was to
examine the optimality of human categorization perfor­
mance when the observer is faced with a complex catego­
rization problem similar in spirit to speech sound or hand­
written character categorization.

To study optimality, one must rigorously define it. Al­
though optimality can be defined in many ways, a reason­
able definition, and the one we choose, is performance that
maximizes long-run accuracy (or long-run reward; Ashby,
1992a;Green & Swets, 1966; Maddox & Ashby, 1993; Mor­
rison, 1967). When the costs and benefits associated with
each categorization response bias the observer toward one
response or the other, performance that maximizes long­
run accuracy may not maximize long-run reward. In the
present study, cost and benefits were not manipulated, so
the strategy that maximized long-run reward also maxi­
mized long-run accuracy. Maddox and Bohil (1998) exam-
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ined the effects of cost-benefit manipulations on catego­
rization performance and found that observers were sen­
sitive to this type of information.

The optimal classifier is a hypothetical device that in­
tegrates information in such a way as to maximize long­
run accuracy. For present purposes, two sources of infor­
mation are relevant to the optimal classifier. One source is
information about the distribution ofcategory exemplars­
that is, information about the central tendency and exem­
plar variability in each category. A second source is infor­
mation about the category base-rates-that is, information
about the likelihood of occurrence of each category. The
optimal classifier uses these two sources of information to
construct a decision rule that it uses to classify category
exemplars. This article focuses on a comparison ofhuman
behavior with that ofthe optimal classifier when category
base-rates were manipulated and the category structures
were complex.

Although much anecdotal evidence suggests that humans
are accurate categorizers, and thus should be sensitive to
base-rate information, many studies suggest that people
underestimate or ignore base-rate information, leading to
the claim that often humans show base-rate neglect (see,
e.g., Balla, 1982; Balla, Elstein, & Gates, 1983; Casscells,
Schoenberg, & Graboys, 1978; Kahneman & Tversky, 1973;
Tversky & Kahneman, 1974; however, see Wallsten, 1981;
Weber, Bockenholt, Hilton, & Wallace, 1993). These stud­
ies used story problems in which information about the
category exemplars and base-rates was presented explic­
itly as percentages or probabilities. Gigerenzer, Hell, and
Blank (1988; see also Gigerenzer, 1996; Gigerenzer &
Hoffrage, 1995; Gigerenzer & Murray, 1987; however, see
Kahneman & Tversky, 1996) provided evidence that the
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prevalence ofbase-rate neglect is strongly affected by the
medium used to present the base-rate information. Specif­
ically, when base-rate information was presented in a
probability format, base-rate neglect was often observed.
However, when the base-rate information was presented in
a frequency format, the appropriate use of base-rate in­
formation improved dramatically.

Estes, Campbell, Hatsopoulos, and Hurwitz (1989; see
also Edgell et aI., 1996; Edgell & Hennessey, 1980; Fried­
man, Massaro, Kitzis, & Cohen, 1995; Gluck & Bower,
1988; Holyoak & Spellman, 1993; Kruschke, 1996; Medin
& Edelson, 1988; Nosofsky, Kruschke, & McKinley,
1992; Spellman, 1993) noted that much ofour knowledge
ofbase-rates is learned implicitly through experience with
category exemplars. These studies used a hypothetical
medical diagnosis task in which the category exemplars
were composed of binary-valued symptom patterns. A
wide range of results was found in these studies. Medin
and Edelson found an inverse base-rate effect, in which
the low base-rate category was most often selected when
the observer was presented with conflicting symptom in­
formation. Gluck and Bower found the traditional base­
rate neglect phenomenon. Nosofsky et al. (1992; see also
Kruschke, 1996) found base-rate neglect for some symp­
tom patterns, accurate base-rate estimates for other symp­
tom patterns, and in some cases even an apparent overes­
timation of the base-rate information.

Kruschke (1996) proposed a theory of base-rate learn­
ing that can account for the wide range ofbase-rate sensi­
tivities observed in the extant literature. The theory assumes
that (1) base-rate information is learned and is applied
consistently, (2) the high base-rate category is learned be­
fore the low base-rate category, and (3) the high base-rate
category is learned by its typical features, while the low
base-rate category is learned by its distinctive features.
Because Kruschke's theory focuses on "features," it is re­
stricted to the domain ofdiscrete-valued stimuli, whereas
many natural categories are composed of continuous­
valued stimuli. The present study investigated several con­
tinuous-valued analogues of Kruschke's theory.

The aforementioned studies do not lend themselves to
the study ofoptimality because in most cases, only a small
number of binary-valued stimuli were used. Under these
conditions, anyone ofa large (often infinite) number ofde­
cision rules maximizes accuracy. Ofcourse, a test ofopti­
mality was not the goal of these studies; rather, the goal
was to compare and contrast several models of category
learning. For present purposes, however, a different ap­
proach was needed. In particular, we needed an approach
in which only one decision rule was optimal.

Some of the early signal detection studies and several
early categorization studies utilized such an approach
(e.g., Green & Swets, 1966; Healy & Kubovy, 1981; Kubovy
& Healy, 1977; Lee & Janke, 1964, 1965; Lee & Zentall,
1966; Ulehla, 1966). In the categorization studies, the two
categories were usually univariate normally distributed,
and category base-rates were manipulated. Because uni­
variate normal distributions overlap and contain (essen-

tially) an infinite number ofcontinuous-valued exemplars,
only one decision rule maximizes categorization accuracy.
First, the optimal classifier uses category distribution in­
formation to construct the optimal decision function. As
in signal detection theory, the optimal decision function is
determined by the likelihood ratio and is given by I(x) =

f(xIB)if(xIA), wheref(xli) denotes the probability density
function for Category i and defines the likelihood of per­
ceptual effectx given Category i. Second, the optimal clas­
sifier uses category base-rate information to construct the
optimal decision criterion. The optimal decision criterion
f30 is given by f30 = P(A)/P(B) where P(i) denotes the Cat­
egory i base-rate. The optimal classifier then uses I(x)and
f30 to construct the optimal decision rule:

Ifl(x) > f3o' then respond "B";
otherwise respond "A." (1)

Notice that when P(A) = P(B), the base-rates are equal,
and the optimal decision criterion f30 is placed where the
likelihood ratio is equal to 1. When Category A has a
higher base-rate, the optimal decision criterion is shifted
in such a way that the observer might respond "A" even
though the likelihood ratio information favors Category B.
For example, ifP(A) = .75, andP(B) = .25, the optimal de­
cision criterion f30 = 3. In other words, a Category B re­
sponse would be given only when the likelihood that the
stimulus comes from Category B is at least three times larger
than the likelihood that the stimulus comes from Cate­
gory A. The typical finding across all these studies is that
observers use a decision criterion that is more conserva­
tive than the optimal decision criterion; in this example, a
decision criterion less than 3. This result has been termed
"conservative cutoffplacement." Conservative cutoffplace­
ment can be contrasted with a finding of extreme cutoff
placement. Extreme cutoffplacement results when the ob­
server uses a decision criterion that is more extreme than
the optimal decision criterion-in this example, a decision
criterion greater than 3. A reasonable psychological inter­
pretation of conservative cutoff placement is that the ob­
server underestimates the base-rate difference. A reasonable
psychological interpretation of extreme cutoff placement
is that the observer overestimates the base-rate difference.

Although these studies offer an important first step in
the study ofhuman performance when base-rates are ma­
nipulated, Maddox (1995) discussed several reasons why
this work does not offer a definitive test of the optimality
ofhuman categorization performance. First, and most im­
portantly, few rigorous models were developed to investi­
gate suboptimalities in responding. In general, only the
optimal classifier was investigated. Second, in many ofthe
studies, observers were not highly experienced, and data
were averaged across observers. Averaging of data from
inexperienced observers often changes the qualitative
structure ofthe data and might lead to incorrect inferences
about human performance (Ashby, Maddox, & Lee, 1994;
Estes, 1950; Maddox & Ashby, 1996). Finally, category
exemplars varied along only a single dimension. Most
real-world stimuli are multidimensional. When the category
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denoted by the vector Xi = [xli X2J'. The optimal classifier
then computes the optimal decision function ho (x) and the
optimal decision criterion Co' The optimal decision rule is
to compare this optimal decision function and decision
criterion, and to respond "A" or "B" according to the fol­
lowing rule:

If ho (x) > Co' then respond "B";
otherwise, respond "A." (2)

The Equation 2 decision rule effectively partitions the per­
ceptual space into two response regions. Percepts falling into
one region [where ho (x) < Co] elicit Response A. Percepts
falling into the other region [where ho (x) > Co] elicit Re­
sponse B.The partition between the regions [where ho (x) =
Co] is called the "optimal decision bound." The optimal
decision function ho (x), which is the natural log ofthe Cat­
egory B to Category A likelihood ratio, depends on the cat­
egory means, variances, and covariance. In other words, it
depends on the exemplar dimensional values. The optimal
decision criterion Cois determined from the base-rates using
the following equation:

Thus the optimal classifier must have knowledge of the
category distributions and base-rate information in order
to construct the optimal decision bound. Notice that the
optimal decision rule in Equation 2 is equivalent to the de­
cision rule in Equation 1 except that the natural log is ap­
plied to both sides of Equation 2. This one-to-one mono­
tonic transformation does not affect the predictions ofthe
optimal classifier. The natural log is applied strictly for
practical purposes because it makes the effect of unequal
base-rate ratios symmetric. For example, consider the fol­
lowing two unequal base-rate conditions: P(A) to P(B) = .25
to .75, and P(A) to P(B) = .75 to .25. In these cases, f30 =
Y3 and 3, and Co = -1.099 and 1.099, respectively. Taking
advantage of this symmetry simplifies the explanation of
the empirical results.

There are at least four limitations in human perceptual
and cognitive processing that give rise to suboptimal re­
sponding. First, there is trial-by-trial variability in the per­
ceptual information associated with each stimulus-that
is, perceptual noise exists.' Let the vector Xi represent the
observer's mean perceptual effect for stimulus i. Because
of perceptual noise, the observer's percept of stimulus i,
on any trial, is given by

exemplars vary along only one dimension, the optimal de­
cision function is very simple. When category exemplars
are multidimensional, the optimal decision function can
range in complexity from a simple linear function to a
highly nonlinear function.

In a series of studies, Ashby and colleagues (Ashby &
Gott, 1988; Ashby & Maddox, 1990, 1992; Maddox &
Ashby, 1993) examined the optimality of human catego­
rization performance when category base-rates were equal
but the optimal decision function varied in complexity. In
many cases, the observer used the optimal decision function.
When the optimal decision function was not applied, a
function ofthe same form was utilized (e.g., a linear func­
tion was utilized when the optimal decision function was
linear). Maddox (1995; see also Maddox & Bohil, 1998)
examined the effects ofunequal category base-rates in sit­
uations in which the optimal decision function was linear.
Maddox found that a large number of observers used the
optimal decision function and optimal decision criterion.
However, in many cases observers showed "extreme cut­
offplacement"-that is, they used a decision criterion that
was more extreme than that predicted by the optimal clas­
sifier. Maddox argued that these observers overestimated
the base-rate difference. This finding was unexpected
given the consistent finding in the previous literature that
observers tend to underestimate the base-rate difference.
(Consideration ofthese discrepant results and possible ex­
planations will be reserved for the Discussion section.)

The present study extended Maddox's work (1995; see
also Maddox & Bohil, 1998) to cases in which the cate­
gories were complex and the optimal decision function
was highly nonlinear. To anticipate, the results of the pre­
sent study converge nicely with those for cases in which
the categories were simple and the optimal decision func­
tion was linear (Maddox, 1995; Maddox & Bohil, 1998).
Specifically, observers were found to be sensitive to the
category structures, but tended to overestimate the base­
rate difference.

Before turning to the details ofthe experiment, we briefly
introduce decision-bound theory (and several model-based
instantiations of the theory), which motivated the present
research. More thorough discussions of the theory are
available elsewhere (see, e.g., Ashby, 1992a; Ashby & Lee,
1991,1993; Ashby & Maddox, 1993, 1994; Ashby & Per­
rin, 1988; Ashby & Townsend, 1986; Maddox & Ashby,
1993; Thomas, 1995).

Co = In [P(A)/P(B)]. (3)

Decision-Bound Theory
Decision-bound theory (also called general recognition

theory; Ashby, 1992a; Ashby & Lee, 1991, 1993; Ashby
& Maddox, 1993; Ashby & Townsend, 1986; Maddox &
Ashby, 1993) assumes that the experienced observer uses
the same strategy as the optimal classifier, but with less suc­
cess due to inherent limitations in human perceptual and
cognitive processing. Consider an experiment involving
two categories, A and B, whose exemplars vary along two
perceptual dimensions. The optimal classifier perfectly
records the perceptual representation for each stimulus i,

(4)

where ep is a multivariate random variable (generally as­
sumed to be normally distributed) that represents the ef­
fects ofperceptual noise. Thus, each stimulus is represented
perceptually by a multivariate normal distribution. Through­
out this article, and in many applications of decision­
bound theory, it is assumed that the perceptual covariance
matrix "I.pi = a}I. Under these assumptions, "I.p i for each
stimulus is identical, and is a scalar multiple ofthe identity
matrix, I. Because the perceptual covariance matrix is iden­
tical for each stimulus, this is called a stimulus-invariant
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GQC
[h(x) is some quadratic function]

I
FRB

[h(x)=ho(x); C is free parameter]

oL
[h(x)=ho(x); C=Co]

Figure 1. Nested relationship among decision-bound models.
The arrow points to a less general, "nested" model. GQC, general
quadratic classifier; FRB, free base-rate optimal decision-bound
model; OPT, optimal decision-bound model.

perceptual representation. Because the perceptual covari­
ance matrix is a scalar multiple ofthe identity matrix, I, the
perceptual variance along each dimension is identical, and
perceptual independence holds. Clearly, in most cases these
assumptions are incorrect (e.g., see Ashby & Lee, 1991;
Maddox & Ashby, 1998). However, with high-contrast,
response-terminated displays and fairly simple stimuli, as
in the present study, this is often a reasonable assumption.
With stimulus dimensions that yield complex perceptual
representations, such as color patches that vary in hue, sat­
uration, and brightness, or tones that vary in pitch, timbre,
and loudness, these assumptions would be unsatisfactory.

Second, humans have imperfect knowledge of the cat­
egory distribution parameters. Consequently, rather than
using the optimal decision function ho(xp;) to construct the
optimal decision bound, observers use a suboptimal deci­
sion function ho(xpJ However, decision-bound theory as­
sumes that the observer uses a decision function of the
same form as the optimal decision function (e.g., a linear
function when the optimal function is linear). Third, ob­
servers often misestimate the base-rate information. There­
fore, rather than using the optimal decision criterion Co to
construct the optimal decision bound, observers use a sub­
optimal decision criterion, C, that is based on an estimate
ofthe base-rates. Fourth, humans have imperfect trial-by­
trial memory for the decision criterion (termed "criterial
noise"). Criterial noise is represented by the random vari­
able ee' and is assumed to be univariate normally distrib­
uted with mean vector 0 and covariance matrix 0'2. With
these limitations incorporated into Equation 2, decision­
bound theory assumes that the experienced observer uses
the following decision rule:

if h (Xpi) < C + ee, then respond "A";
otherwise, respond "B." (5)

Thus, the probability of responding "A" on trials when
stimulus i is presented is given by

P(A Istimulus i) = P{[h(Xpi) < C + ee] [stimulus i}. (6)

Maddox (1995; see also Maddox & Ashby, 1993) de­
veloped several decision-bound models of categorization
based on Equations 5 and 6 that differed in the form ofthe
observer's decision function h(Xpi) and the observer's de­
cision criterion, C. These models included the general
quadratic classifier, the optimal decision-bound model,
and the free base-rate decision-bound model. These mod­
els are "nested" in the sense that some of the models can
be derived from another model by setting some ofthe pa­
rameters of the more general model to constants. The
nested structure of the models is depicted in Figure 1.
Models at a higher level (toward the top of Figure 1) are
more general than models at a lower level (toward the bot­
tom of Figure 1).

The general quadratic classifier assumes that h(Xpi) is
some quadratic function. When the category covariance
matrices are unequal, the optimal decision function is qua­
dratic. The free base-rate decision-bound model assumes
that the observer uses the optimal decision function [i.e.,
h(xp;) = ho(Xpi) from Equation 5], which in the present
study was quadratic. This requires accurate knowledge of
the category means, variances, and covariances, that de­
termine ho(Xpi)' However, the observer's knowledge ofthe
base-rates is determined by estimating the value ofC from
their data. This model allowed us to determine whether the
observer showed extreme or conservative cutoff place­
ment. This model is nested under the general quadratic
classifier because it assumes that the observer's decision
function is the optimal (quadratic) decision function. Like
the free base-rate decision-bound model, the optimal
decision-bound model assumes that h(Xpi)= ho(Xpi); how­
ever, instead of obtaining an estimate of the observer's
base-rate knowledge, the optimal decision-bound model
makes a specific assumption about base-rate knowledge,
namely that the observer obtains an accurate estimate of
the base-rates and assumes (correctly) C = Co'

Each of the models depicted in Figure 1 was tested in
the present study. One additional decision-bound model
was developed to test the hypothesis that the observer
shows base-rate neglect (i.e., that the observer assumes that
the base-rates are equal). This model was overwhelmingly
rejected by the data, suggesting that observers were in­
deed sensitive to base-rate information. In light of this
fact, this model will not be considered further. Three ad­
ditional models were proposed and each was tested in the
present study. Each of these models represents a specific
instantiation of Kruschke's (1996) theory. For ease of ex­
position these three models will be developed once the
data are presented.

This article reports the results of a multidimensional
perceptual categorization experiment in which the optimal
decision bound was highly nonlinear. Five category A:B
base-rate ratios (1:1,1:2,1:3,2:1, and 3:1) were factori­
ally combined with two sets of continuous-valued stimu­
lus dimensions (one integral set and one separable set) for
a total of 10 experimental conditions. The integral stimuli
were rectangles that varied in height and width (Felfoldy,
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METHOD

Figure 2. Representative stimuli from (a) Condition C (circu­
lar stimuli) and (b) Condition R (rectangular stimuli).

Stimuli and Stimulus Generation
Examples ofthe circles (C) and rectangles (R) are depicted in Fig­

ure 2. The stimuli were computer generated and displayed on an

SVGA monitor in a dimly lit room. The stimuli were white on a
black background and subtended approximately 1° of visual angle.

There were two categories, A and B, each defined by a specific bi­
variate normal distribution. The parameters for each category are
displayed in Table I. Prior to the experiment, a set of 300 stimuli
were sampled randomly from the category distnbutions, with the
constraint that the number drawn from each distribution reflected
the population category base-rates for each of the five conditions
(e.g., 150 from each distribution in the I: I base-rate condition; 200
from Category A and 100 from Category B in the 2: I base-rate con­
dition; 100 from Category A and 200 from Category B in the 1:2
base-rate condition; 225 from Category A and 75 from Category B
in the 3:1 base-rate condition; 75 from Category A and 225 from
Category B in the 1:3 base-rate condition). Each sample (defined by
the ordered pair XI' x2) was used to construct a stimulus. A stimulus
was constructed with either diameter (for circles) or width (for rec­
tangles) equal to the X I coordinate and orientation (for circles) or
height (for rectangles) equal to the X2 coordinate. Because the di­
mensions of the circle stimuli are measured in different units, it was
necessary to equate diameter and orientation units to determine the
optimal bound. In an attempt to equate diameter and orientation dis­
criminability, I unit ofdiameter was made equal to 'TTl I,000 radians.
For each condition, four random ordenngs ofthese stimuli were then
constructed. Each random ordering was assigned to a particular ses­
sion so that each observer in the same condition was presented with
the same stimulus sequence during each session. This sampling and
presentation procedure reduces error variance by ensuring that (I) the
sample statistics were identical across sessions and (2) the presenta­
tion sequence was fixed across observers.

On the basis of the bivariate normally distributed category popu­
lations, the optimal classifier predicts 84%, 85%, 87%, 87%, and
90% accuracy for the I: I, 2: I, 1:2,3: I, and 1:3 base-rate conditions,
respectively. A bivariate normal distribution looks like a three­
dimensional bell-shaped structure in which the height of the bell at
any point represents the likelihood that a random sample from the
population will have the X I and x2 values associated with that pomt.
A convenient method of presenting the same information IS via the
contours of equal likelihood, each of which is created by taking a
slice parallel to the (Xl' X2) plane and looking down on the result
from above. This is called a contour of equal likelihood because all
points on the same contour are associated with the same likelihood
(i.e., probability density). For bivariate normal distributions, the
contours of equal likelihood are always elliptical. The height at
which the slice is taken is arbitrary, and so a single contour suffi­
ciently describes all the relevant information about the category.

Figure 3a depicts the elliptical contour ofequal likelihood for each
category used in the experiment. These represent the stimulus regions
and are denoted by the labels A and B. Notice that the Category A
contour is tilted clockwise from vertical, whereas the Category B
contour is tilted counterclockwise from vertical. The contours are
tilted because each category distribution has a nonzero covariance
term. In Category A, the covariance term is positive, and in Cate­
gory B, the covariance term is negative. Therefore, in Category A ex­
emplars with large XI values tend to have large X2 values (i.e., the Xl

and x2 values covary, or are correlated). In Category B, on the other
hand, large values ofXI tend to be associated with small values ofx2'
The magnitude of the correlation is .80 in both categories, the direc­
tion of the correlation is positive in Category A and is negative in
Category B. (The correlation is computed by dividing the covariance
by the product of the standard deviations.) Interestmgly, though, the
magnitude ofthe tilt appears larger in Category B than in Category A
(see Figure 3a). In short, the fact that the X2 variance is larger than the
Xl variance m Category A, whereas the Xl and x, variances are equal
in Category B, leads to a less extreme tilt in Category A.

Figure 3b depicts the optimal decision bound and response re­
gions, "A" and "B" associated with the I: I base-rate condition. Fig­
ure 3c depicts the optimal decision bounds and response regions as-

B

B

D
A

A

D

a)

b)

Subjects
All observers were volunteers from the university community. All

observers claimed to have 20/20 vision or vision corrected to 20/20.
There were 6 observers in each of the four unequal base-rate condi­
tions (3 for each stimulus type) and 8 observers in the equal base­
rate condition (4 for each stimulus type) for a total of32 observers.
All observers completed four experimental sessions except for Ob­
server 3 from the 2: I base-rate, rectangle condition, and Observer I
from the 3: I base-rate, rectangle condition, who were unable to com­
plete the final experimental session. Observers were paid a base
salary of $5 per session (each lasting approximately I h) and were
eligible for a daily bonus. Most observers received bonuses in the
range of$1 to $3.

1974). The separable stimuli were circles with a radial line
that varied in circle size and line orientation (Felfoldy &
Gamer, 1971; Gamer & Felfoldy, 1970). The optimal de­
cision bound in each of the five base-rate conditions was
nonlinear, but was unique to each condition (see Figure 3).
In fact, as Figure 3 (to be discussed shortly) suggests, the
specific base-rate ratio had a large effect on the shape of
the optimal decision bound (cf. Figures 3b and 3c). Thus,
this experiment examines base-rate knowledge across a
wide range of nonlinear decision bounds for two sets of
qualitatively different stimulus dimensions. In addition,
the categories were chosen in such a way as to facilitate
the examination of several continuous-valued analogues
of Kruschke's (1996) theory of base-rate learning. In all
experimental conditions, each observer participated in
several experimental sessions to ensure that performance
had reached (or nearly reached) asymptote. In addition, all
model-based analyses were conducted at the individual
observer level.
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Table I
Parameter Values of the Category Distributions (in Pixels)

Category

Parameter A B

fLx 270 300
fLy 400 400
o; 52 65
u y 132 65

covxy 5,491 -3,401

Note-x, width (or diameter); y, height (or orientation); covxy, covari­
ance between width and height (or diameter and orientation). When the
y dimensionrepresented orientation, the pixelunits wereconverted to ra­
dians by multiplyingthe values in the tableby the scaling factor ?TIl ,000.

sociated with the 2: I (solid hyperbolae) and 3:1 base-rate (broken
hyperbolae) conditions. Figure 3d depicts the optimal decision bounds
and response regions associated with the 1:2 (solid hyperbolae) and
1:3 base-rate (broken hyperbolae) conditions. The optimal decision
function ho(x)is determined from the Category A and B means, vari­
ances, and covariance terms (see Equation 2). These parameters are
provided in Table I, and the resulting contours of equal likelihood
are depicted in Figure 3a. The optimal decision function ho(x) satis­
fies .000177395xT - .00025648x~ - .000865x\x2 + .27035x 1 +
.45495x2 - 133.26375. The optimal decision criterion Cosatisfies 0,
.693, - .693, 1.099, and -1.099 in the I: 1,2: I, 1:2, 3: I, and 1:3 con­
ditions, respectively (see Equation 3). The optimal decision bounds
depicted in Figures 3b-3d were constructed by subtracting the optimal
decision criterion, Co, from the optimal decision function, ho(x), and
then setting the resulting equation equal to zero. Figure 4 displays
the stimuli used in the 2:1 (panel a), 1:2 (panel b), 3:1 (panel c), and
1:3 (panel d) base-rate conditions. The plus signs denote stimuli
from Category A, and the periods denote stimuli from Category B.
The optimal decision bound is also included in each panel.

The optimal decision bound is defined in the physical space,
where x I is the size ofthe circle (or width ofthe rectangle), and x2 is
the orientation of the radial line (or the height of the rectangle). An
obvious issue is to determine how the optimal decision bound is de­
fined in the perceptual space. Ifthe purpose is to identify optimal re­
sponding, then a close correspondence between the physical space
and the perceptual space is not required. The only requirement is
that the transformation from the physical to the perceptual space is
one-to-one (see Ashby & Maddox, 1992, note 3 for a proof). Under
these conditions, optimal bounds in the physical space will manifest
themselves as optimal bounds in the perceptual space. This property
is likely satisfied with the circle and rectangle stimuli used in the
present study. For example, the Stevens (1961) exponent for length
is close to 1.0, so perceived and physical size should be nearly iden­
tical. In addition, psychological scaling solutions have been derived
for the circular stimuli (Nosofsky, 1985, 1986, 1987; Nosofsky, Clark,
& Shin, 1989; Shepard, 1964) and for the rectangular stimuli (Schone­
mann, 1977). In both cases, the resulting psychological space was
very similar to the physical space.

Notice that the optimal bound and response regions in the 1:2 and
1:3 base-rate conditions (Figure 3d) look very similar to the optimal
bound and response regions in the I: I base-rate condition (Fig­
ure 3b), whereas the optimal bound in the 2:1 and 3:1 base-rate con­
ditions (Figure 3c) look different from the optimal bound in the I: I
base-rate condition. All five bounds are related via a simple inter­
cept shift, but the increased Category A base-rate in the 2: I and 3: I
conditions leads to a change in the category label assigned to stim­
uli that fall in the middle region of the stimulus space, and thus to
the shape of the optimal bound. (It is well established in analytic
geometry that the shape of a hyperbola can vary depending on the
value of the constant term.) When the base-rates are equal, Cate­
gory B tends to dominate Category A because ofthe strong negative
correlation (and thus counterclockwise tilt). (This large negative

correlation leads to a large eigenvalue along the major axis of the el­
lipse.) This domination increases as the base-rate for Category B is
increased, thus yielding a decision bound and response regions ofa
similar shape. However, as the base-rate for Category A is increased
a reversal occurs, and the shape of the optimal decision bound and
the response regions change. Although the exact base-rate ratio has
a large effect on the orientation of the optimal decision bound and
could lead to qualitatively different levels of performance in the 2: I
and 3: I base-rate conditions as compared with the 1:2 and 1:3 base­
rate conditions, as we will see shortly, observers in all conditions be­
haved in a similar manner.

Procedure
The experiment was conducted in a dimly lit soundproofchamber.

The observer was seated approximately 30 in. from the computer
monitor with no head or chin restraints. Observers were told that
perfect performance was impossible. However, a nearly optimal
level ofperformance was specified as a goal (in the form of desired
accuracy). Observers were instructed to maximize accuracy and not
worry about speed of responding. A typical trial proceeded as fol­
lows: A stimulus was presented on the screen and remained until a
response was made. The observer's task was to classify the presented
stimulus as a member ofCategory A or B by pressing the appropri­
ate button. Following a response, the screen went blank for a period
of 500 msec. Next, corrective feedback was presented in the center
of the screen for 500 msec. Finally, the screen went blank again for
an intertrial interval of500 msec, followed immediately by the next
stimulus presentation. Each experimental session consisted ofa 100­
trial practice session, followed by a 300-trial experimental session.
Observers were given periodic breaks.

RESULTS AND THEORETICAL ANALYSIS

Final Session Analyses
Accuracy rates. Each observer's final session accu­

racy is displayed in Table 2. The results can be summarized
as follows. First, accuracy rates were quite high, although
in every case they were suboptimal. Second, accuracy rates
did not differ significantly across stimulus types [t(30) =

0.95,P > .05], 1:2 and 2:1 base-rate conditions [t(IO) =

1.04, P > .05], or across 1:3 and 3: 1 base-rate conditions
[t(lO) = 0.91, P > .05]. One additional analysis was con­
ducted to determine whether performance in the 1:2 and
1:3 conditions differed from performance in the 2: 1 and
3:1 conditions. Recall from Figure 3 that the stimuli in the
middle region should be optimally assigned to Category B
in the 1:2 and 1:3 base-rate conditions and to Category A in
the 2:1 and 3: 1 conditions. In order to determine whether
this asymmetry affected performance, we computed the
proportion of"high base-rate" responses for each observer
in each condition. If the difference between the 1:2 and
2:1, and 1:3 and 3: 1 optimal bounds was not adversely af­
fecting performance, we would expect the proportion of
high base-rate responses to be nearly identical across con­
ditions. The proportions ofhigh base-rate responses in the
middle region were .769, .852, .896, and .880 in the 1:2,2:1,
1:3, and 3: 1 base-rate conditions, respectively; t tests be­
tween the 1:2 and 2:1 high base-rate proportions [t(IO) =

1.41,P > .05] and between the 1:3 and 3:1 high base-rate
proportions [t(l0) = 0.41, P > .05] were nonsignificant. In
light of these results, nearly all subsequent analyses are
based on data collapsed across stimulus type and recipro­
cal base-rate conditions. In addition, the collapsed I :2 and
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Figure 3. (a) Stimulus regions and elliptical contours of equal likelihood for Cate­
gories A and B. (b) response regions and optimal decision bound for the 1:1 base-rate
condition, (c) response regions and optimal decision bounds for the 2:1 and 3:1 base­
rate conditions. and (d) response regions and optimal decision bounds for the 1:2 and
1:3 base-rate conditions. In panels c and d, the optimal decision bound in the 1:2 and
2:1 conditions is represented by the solid curve, and the optimal decision bound in the
1:3 and 3:1 conditions is represented by the broken curve. The contours of equallikeli­
hood in panel a are derived by setting the category likelihood to .000025.

2:1 base-rate condition data are referred to as the moder­
ate base-rate condition, and the collapsed 1:3 and 3:1
base-rate condition data are referred to as the large base­
rate condition.

Model-based analyses. The three decision-bound mod­
els depicted in Figure 1 were applied to each observer's
final session data using a maximum likelihood parameter
estimation procedure (for details see Ashby, 1992b; Mad­
dox, 1995; Wickens, 1982). Consider an experiment with
Categories A and B and a set ofn stimuli, S" S2, ... , Sw
For each stimulus, a particular model predicts the proba­
bilities that the observer will respond "A" and "B," which
we denote by P(AISi) and P(BISi)' respectively. The re­
sults of an experimental session are a set of n responses,
r" r2, ...• rn• where we arbitrarily set r i = 1 if Response A
was made to stimulus i and r i = 0 ifResponse B was made.
According to the model, and assuming the responses are
independent, the likelihood of observing this set of n re­
sponses is

n

L(r1,r2, .. . ,rn) = IlP(A ISi)r;p(B IS;>I-\
i='

The maximum likelihood estimators are those values of
the unknown parameters that maximize L(r" rZ, ... , rn ) .

For practical reasons, it is common to take the natural log
of the likelihood function, multiply through by - 1, and
then minimize the -In(L). It is this approach that was
taken in this study.

The general quadratic classifier has seven free parame­
ters: five decision-bound parameters, a perceptual noise
parameter, and a criterial noise parameter. The free base­
rate decision-bound model assumes the optimal decision
function [i.e.,h(x)= hix)], but estimates the observer's base­
rate knowledge from the data by leaving the decision cri­
terion C (hereafter referred to as Cf ) from Equation 5 as a
free parameter. In addition, O"p and o"c are left as free para­
meters, for a total ofthree parameters. The optimal decision­
bound model assumes the optimal decision function [i.e.,
h(x) = ho(x)] and the optimal decision criterion (i.e., C =
Co), but includes two free parameters, O"p and O"c' In other
words, this model postulates that the observer has accurate
knowledge of the base-rate difference.

These models are "nested" in the sense that a more re­
stricted model can be derived from a more general model
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Figure 4. Stimuli used in the (a) 2:1 base-rate condition, (b) 1:2 base-rate condition,
(c) 3:1 base-rate condition, and (d) 1:3 base-rate condition. In each plot, the plus signs
denote Category A stimuli, and the points denote Category B stimuli. In addition, the
solid curve represents the optimal decision bound.

by setting some of the parameters of the more general
model to constants. For example, the free base-rate model
is nested within the general quadratic classifier because
the free base-rate model can be derived from the general
quadratic classifier by setting the coefficients of the qua­
dratic function to the coefficients of the optimal decision
function. Similarly, the optimal decision-bound model can
be derived from the free base-rate model by setting the de­
cision criterion to the optimal value, Co'Because these mod­
els are nested, it is always the case that the general qua­
dratic classifier will provide the best account of the data,
and the optimal decision-bound model will provide the
worst account of the data. Even so, because these models
are nested, a series of G2 tests can be performed to deter­
mine the most parsimonious model-that is, the model
with the fewest number of free parameters that was not
"significantly" improved upon by a more general model
(Ashby, 1992b; Wickens, 1982). A series of G2 tests was
performed in this study. In order to perform these G2tests,
we had to choose a significance level, a. We performed
our analyses twice, once with a = .05 and once with a =

.0 1. For 24 of the 32 observers, the "most parsimonious
model" was not affected by the value of a. For 8 of the 32
observers, the value ofa did affect the Identity ofthe most
parsimonious model. For these 8 observers, it was always

the case that a = .05 led to the selection ofa more general
model as the most parsimonious. This must be the case
because the value ofa determines the amount ofevidence
against the null hypothesis that is necessary to reject the
null hypothesis. The smaller the value of a, the more evi­
dence is needed against the null hypothesis in order to re­
ject it. Because the null hypothesis assumes that the gen­
eral model does not provide a significant improvement
over the less general model, it follows that the smaller
value of a will lead to more cases in which the less gen­
eral model is selected.

Within the framework ofdecision-bound theory, it is as­
sumed that the experienced observer attempts to respond
optimally. Thus, a decision-bound theorist expects that the
less general model (e.g., the optimal decision-bound model)
will provide the most parsimonious account of the data.
As a decreases, more evidertce is needed to reject the less
general model, so the smaller the value of a, the more ev­
idence will be garnered in support ofdecision-bound the­
ory. In light of this fact, we report the analyses based on
a = .05. Even so, none ofour general conclusions were af­
fected by the choice of a .

Base-rate neglect. As stated earlier, the hypothesis that
observers are insensitive to base-rate differences was over­
whelmingly rejected by the data.
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Table 2
Accuracy Rates and Goodness-of-Fit (-lnL) Values for Final Session of Each Observer

% of Responses
OPT FRB GQC Accounted for by the

0 % Correct (2 Parameters) (3 Parameters) (7 Parameters) Most Parsimonious Model

I: I
C/I 82 110.394 109.919 103.227 86
C/2 79 119.571 119.083 115.939 82
C/3 84 62.335 56.096 49.557 91
C/4 80 112.548 108.207 108.193 84
Mean 81 101.212 98.326 94.229 86

R/I 72 139.608 139.522 117.163 81
R/2 79 94.119 79.631 71.789 89
R/3 80 99.928 99.056 98.856 82
R/4 83 80.469 80.275 80.117 88
Mean 79 103.531 99.621 91.981 85
Overall I: I mean 80 102.372 98.974 93.105 85

1:2
C/I 83 77.561 75.177 71.996 88
C/2 82 83.451 63.706 59.308 93
C/3 77 158.592 151.164 142.217 79
Mean 81 106.535 96.682 91.174 87

R/l 85 78.301 77.252 76.084 90
R/2 85 69.786 69.657 68.027 89
R/3 83 92.669 92.414 90.652 86
Mean 84 80.252 79.774 78.254 88
Overall 1:2 mean 82 93.393 88.228 84.714 88

2:1
C/I 79 110.512 97.415 94.354 87
C/2 73 134.190 95.700 80.127 89
C/3 84 83.168 80.282 80.237 87
Mean 79 109.290 91.132 84.906 88

R/I 85 74.201 73.585 73.268 92
R/2 76 126.892 96.213 85.202 91
R/3 82 115.489 107.016 89.511 85
Mean 81 105.527 92.271 82.660 89
Overall 2: I mean 80 107.409 91.702 83.783 89
Moderate mean 81 100.401 89.965 84.249 88

1:3

CIl 80 129.995 68.400 62.511 91
C/2 86 66.927 66.927 53.484 93
C/3 76 151.112 90.425 87.262 89
Mean 81 116.011 75.250 67.752 91

R/I 81 116.090 103.895 103.119 88
R/2 86 67.444 67.080 60.781 92
R/3 89 43.043 37.328 30.238 96
Mean 85 75.526 69.434 64.713 92
Overall 1:3 mean 83 95.768 72.342 66.232 92

3:1

C/I 86 74.948 67.550 60.097 92
C/2 83 85.116 82.588 65.483 91
C/3 85 40.002 36.891 30.271 96
Mean 85 66.689 62.343 51.950 93

R/l 85 64.219 55.756 55.560 93
R/2 84 56.274 51.558 46.887 94
R/3 86 59.623 59.359 57.845 93
Mean 85 60.039 55.558 53.431 93
Overall 3:1 mean 85 63.364 58.950 52.691 93

Large mean 84 79.566 65.646 59.462 92

Note--The "most parsimonious" model for each observer is in bold type. 0, observer; OPT, optimal decision-bound model;
FRB, free base-rate optimal decision-bound model; GQC, general quadratic classifier; C, circle stimuli condition; R, rectan-
gle stimuli condition. Moderate mean refers to the moderate base-rate ratios (1:2 and 2: I). Large mean refers to the large base-
rate ratios (1:3 and 3: I). The final session was the third session for 2 observers and the fourth session for the other 30 observers.
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Optimal base-rate estimation. The goodness-of-fit
(-lnL) values for the optimal decision-bound model, the
free base-rate decision-bound model, and the general qua­
dratic classifier are displayed in Table 2. The most parsi­
monious model for each observer is in bold type, and the
percent of responses accounted for by this model is also
included. Notice that the percent of responses accounted
for is quite high, averaging 89% across observers. Since
observers were sensitive to base-rate information, the next
question to ask is whether each observer's knowledge of
base-rates, along with his/her knowledge of the category
distribution parameters, was optimal. If so, the optimal
decision-bound model should provide the most parsimo­
nious account ofthe data. Across all base-rate conditions,
approximately 25% of the observers did use the optimal
decision bound (albeit in the presence of perceptual and
criterial noise). Restricting attention to the unequal base­
rate conditions, approximately 21% (i.e., 5) of the ob­
servers learned the optimal decision bound (4 from the
moderate base-rate conditions, and I from the large base­
rate conditions). Thus, even when the optimal decision
bound was highly nonlinear, a large number of observers
gained accurate knowledge of the category distributions
and base-rates and learned the optimal decision bound.

Suboptimal base-rate estimation. As expected,
many observers' data were not best described by the opti­
mal decision-bound model. One possibility that is based
on previous research (Healy & Kubovy, 1981; Kubovy &
Healy, 1977; Lee & Janke, 1965; Maddox, 1995; Maddox
& Bohil, 1998) is that suboptimal observers accurately ex­
tracted information about the category distributions (i.e.,
used the optimal decision function), but did not use the
optimal decision criterion. Some studies have revealed
conservative cutoff placement (e.g., Healy & Kubovy,
1981; Kubovy & Healy, 1977; Lee & Janke, 1965), whereas
others have revealed extreme cutoff placement (Maddox,
1995; Maddox & Bohil, 1998). The free base-rate decision­
bound model was designed to determine whether observers
show conservative or extreme cutoffplacement. A second
possibility is that suboptimal observers misestimated both
the category distribution information and the base-rate in­
formation. This hypothesis was tested by the general qua­
dratic classifier. Restricting attention to the unequal base­
rate conditions, for 8 of the 19 suboptimal observers, the
free base-rate decision-bound model provided the most
parsimonious account of the data. The general quadratic
classifier provided the most parsimonious account of the
remaining 11 observers' data. In summary, nearly half of
the suboptimal observers accurately estimated the cate­
gory distribution information and used a decision bound
of the same shape as the optimal bound, but used a sub­
optimal decision criterion.

Cutoff placement for suboptimal unequal base­
rate observers. At this juncture it is important to distin­
guish between conservative or extreme cutoff placement
and under- or overestimation of category base-rates. The
former are empirical phenomena that are often observed
in data and are quantified using model-based analyses.

The latter are potential psychological implications of the
former. In other words, ifan observer shows conservative
cutoffplacement in his/her data, one might argue that this
implies an underestimate ofthe ratio ofthe category base­
rates. This is a reasonable psychological implication of
these data, but is certainly not the only implication. Thus,
we restrict attention here to discussion of empirical phe­
nomena, and will leave consideration of the possible psy­
chological implications for the Discussion section.

To determine whether observers showed conservative
or extreme cutoff placement when the optimal decision
function was nonlinear, we examined the ICrl estimates
from the free base-rate decision-bound model for the 19
suboptimal observers.? Recall that when Category A is the
high base-rate category, Co is positive, and extreme cutoff
placement results when C, > Co' However, when Cate­
gory B is the high base-rate category, Co is negative, and
extreme cutoff placement results when Cr < Co' To sim­
plify the presentation, we report the absolute value of Cr
and Co' In line with the results ofMaddox (1995; Maddox
& Bohil, 1998), the data overwhelmingly support a con­
clusion ofextreme cutoffplacement. All 8 suboptimal ob­
servers in the moderate base-rate condition and 9 ofthe II
suboptimal observers in the large base-rate condition evi­
denced extreme cutoff placement. In the moderate base­
rate condition, ICo1= 0.693, and in the large base-rate con­
dition, ICol = 1.099. The ICrl estimates (averaged across
suboptimal observers) were 2.415 and 3.686 in the mod­
erate and large base-rate conditions, respectively. In other
words, (on average) the suboptimal observers used a de­
cision criterion that was approximately 3.5 times larger
than the optimal decision criterion. This, along with similar
findings by Maddox (1995; Maddox & Bohil, 1998) with
linear optimal decision bounds, suggests that extreme cut­
off placement is a robust phenomenon when category
base-rates are unequal, stimuli are multidimensional, and
observers are highly experienced.

Figure 5 displays plots of the responses for a represen­
tative observer from each of the unequal base-rate condi­
tions, along with the optimal decision bound (solid curve)
and best fitting free base-rate decision bound (broken
curve). Each of these observers showed extreme cutoff
placement. The ICol and ICrl values for each of these ob­
servers are as follows: 2:1 base-rate Observer CIl, ICoI=

0.693 and ICr I = 1.922 (Figure 5a); 1:2 base-rate Ob­
server C/2, ICol = 0.693 and ICrl = 3.111 (Figure 5b); 3:1
base-rate Observer R/l, ICol = 1.099 and ICrl = 2.148
(Figure 5c); and 1:3 base-rate Observer R/l, ICoI= 1.099
and ICrl = 3.535 (Figure 5d).

The ICrlanalyses are based on estimates from a version
ofdecision-bound theory. Thus, their validity is intimately
tied to the validity ofdecision-bound theory. Although the
excellent fits ofthe data suggest that decision-bound theory
provides a reasonable description of performance in this
task and support a conclusion ofextreme cutoffplacement
in the unequal base-rate conditions, it would be advanta­
geous to use a model-free estimate of the observer's cut­
off in order to bolster our claim that extreme cutoffplace-



+

+ ~ a: 2:1
I J!f. base-rate
\"if..;r.I-+ Obs. C/l

"'"

BASE-RATE AND COMPLEX CATEGORIES 585

b: 1:2
base-rate
Obs. C/2

d: 1:3
base-rate
Obs. R/l

- -

diameter/width

Figure 5. Response data for a representative observer from the (a) 2:1 base-rate
condition, Observer C/I; (b) 1:2 base-rate condition, Observer C/2; (c) 3:1 base-rate
condition, Observer R/I; and (d) 1:3 base-rate condition, Observer R/I. In each plot,
the plus signs denote Category A responses, and the points denote Category B re­
sponses. In addition, the solid curve represents the optimal decision bound, and the
broken curve represents the best fitting free base-rate decision bound.

ment exists in the unequal base-rate conditions. We de­
velop a "model-free" estimate next.

Observed probability ofresponding with the "high
base-rate" category as a function of distance to the
optimal bound. Maddox (1995; Maddox & Bohil, 1998)
developed a procedure that estimated the probability of a
"high base-rate" category response for different regions
ofthe stimulus space. Basically, Maddox divided the stim­
ulus space into several nonoverlapping regions, all paral­
lel to the optimal decision bound, but at different dis­
tances from the optimal bound. Maddox then estimated
the probability of the high base-rate category response in
each region in an attempt to determine where the proba­
bility changed from a value greater than .5 to a value less
than.5. Ifthe observer is using the optimal decision bound,
the probability of the high base-rate category response
will be greater than .5 on one side ofthe optimal bound and
will be less than.5 on the other side of the optimal bound.
Therefore, the probabilities will change from values greater
than.5 to values less than.5 as one crosses the optimal de­
cision bound. However,suppose the observer shows extreme
cutoffplacement. In this case, the observer is not using the
optimal decision bound, but rather a decision bound that

yields more high base-rate responses. In this case, the
probability of the high base-rate category response will
remain greater than .5 as one crosses the optimal decision
bound. In both studies, these analyses confirmed the ICf I
conclusion of extreme cutoff placement (Maddox, 1995;
Maddox & Bohil, 1998).

A similar procedure was used in the present study.
Specifically, we divided the stimulus space into several
nonoverlapping regions; each region was bounded by two
quadratic functions, each ofthe same shape as the optimal
decision bound, but with a different constant term. Re­
gion 1had as its lowerbound the optimal quadratic function
and as its upper bound a quadratic function of the same
shape as the optimal, but with a constant term that differed
by 0.4 units in the direction indicative of extreme cutoff
placement. Region 2 had as its lower bound the upper
bound from Region 1and an upper bound indicative ofeven
more extreme cutoffplacement. All other regions were de­
fined in a similar manner. Notice that the lower bound for
Region 1 is the optimal decision bound. Thus, if the ob­
server is using the optimal decision bound, the probability
of a high base-rate category response should be less than
.5 in Region 1 and should decrease monotonically for Re-



586 MADDOX AND BOHIL

gions 2-10. On the other hand, if the observer shows ex­
treme cutoffplacement, the probability of a high base-rate
category response should be greater than .5 for Region 1
and should decrease monotonically for the other regions.
The datasupporta hypothesisof extremecutoffplacement.
In the moderate and large base-rate conditions, the prob­
ability of a high base-rate category response was greater
than .5 in Region 1 (moderate condition, .545; large condi­
tion, .523)and fell off monotonically for the other regions.

Tosummarize, it appears that extremecutoffplacement
is a robust phenomenon when category base-rates are un­
equal, stimuli are multidimensional, observers are experi­
enced, and single observer analyses are performed. Ex­
treme cutoff placement was found (1) for several different
linear and nonlinear optimal decisionbounds, (2) across a
wide variety of stimulus dimensions (rectangles varying
in height and width; circles varying in size and orientation
ofan embeddedradial line; a linevaryingin length and ori­
entation; and a dot varying in horizontal and vertical loca­
tion), and (3) for simple and complex category structures.

Three model-based instantiations of Kruschke's
(1996) theory. Three additional hypotheses were tested,
all of whichweremotivatedby Kruschke'swork. As noted,
Kruschke hypothesized that (1) base-rate information is
learned and is applied consistently, (2) the high base-rate
category is learned before the lowbase-rate category, and
(3) the high base-rate category is learnedby its typical fea­
tures, while the low base-rate category is learned by its
distinctive features. Because Kruschke's theory was de­
veloped for discrete-valued stimuli, and our stimuli are
continuous-valued, no directtestwaspossible. The approach
taken here was to develop some reasonable continuous­
valued analogues ofKruschke's theory that could serve as
a preliminarytestofhis theory in thedomainof continuous­
valued dimensions. All three hypotheses we tested as­
sumed that the high base-rate category was learned before
the lowbase-rate category. Since the categories were nor­
mallydistributed, this required the observerto learn some­
thing about the central tendency and exemplar variability
within a category. Our second and third hypotheses were
most similar in spirit to those of Kruschke because in ad­
dition they attempted to incorporate a continuous-valued
analogue of Kruschke's typical versus distinctive feature
dichotomy.

Wewill use Figure 6 as a guide in developing the vari­
ous model-based instantiations ofKruschke's (1996) the­
ory. The six panels in the left-hand column ofFigure 6 il­
lustrate the assumed stimulus regions for each model. In
line with Figure 3, we will use the labels A and B to de­
note the true category distributions. In some of the mod­
els, we assume that the observer does not use an accurate
estimateofthe true category distribution,but rather makes
some incorrect assumption about the category.These will
be called "inferred" categories, and will be denoted by the
labels A' and B/. The six panels in the right-hand column
ofFigure 6 illustrate the assumed decision bounds and re-

sponse regions. Again, in line with Figure 3 we will use
the labels A and B to denote the response regions.

Hypothesis 1postulates that the observer accurately es­
timates the category means and knows that Category A is
displaced to the left of Category B. However,the observer
incorrectly assumes that the low base-rate category has
the same covariance structure as the high base-rate cate­
gory (i.e., is characterizedby a contour of equal likelihood
with the same shape and orientation). This hypothesis is
depicted visually in Figures 6a and 6c. In Figure 6a, Cat­
egory A is the high base-rate category. We label the Cate­
gory A contour with an A to denote a correctly assumed
covariance structure, whereas we label the Category B
contour with a B' to denote an incorrectly inferred covari­
ance structure. Figure 6c depicts the same hypothesis for
the case in which Category B is the high base-rate cate­
gory. When the stimulus regions are as shown in Fig­
ures 6a and 6c, the optimal decision bound would be lin­
ear. The decision bound and response regions associated
with Figures 6a and 6c are depicted in Figures 6b and 6d,
respectively. Totest this hypothesis,we developed a linear
decision-bound model whose slope and intercept were es­
timatedfromthe data.The onlyconstraintwas that theslope
be positive when Category A was the high base-rate cate­
gory (see Figure 6b) and that the slope be negative when
Category B was the high base-rate category (see Fig­
ure 6d). Thus, the model did not require that the observer
have a perfect estimate of the high base-rate category dis­
tribution. The model required only that the observer have
a reasonable estimate. We called this the single linear
bound model.

Hypothesis 2 assumes that the observer learns the high
base-ratecategory and effectively partitions the perceptual
space into two regions: one "structured" region associated
with the high base-rate categoryand one "unstructured"re­
gion associated with the lowbase-rate category. The stim­
ulus regions for this case are depicted in Figures 6e and 6g,
and the associated decision bounds and response regions
are depictedin Figures6f and 6h, respectively. In Figure6e,
Category A is the high base-rate category and is assumed
to be accuratelyestimated (hence the label A). CategoryB
is assumed to be "unstructured,"which is incorrect (hence
the labelB /). Toinstantiatethenotionofa "structured" high
base-rate response region and an "unstructured" lowbase­
rate response region, we assumed that the observer con­
structedan elliptical decisionbound similar in shape to the
contourof equal likelihood(see Figure6f).An instantiation
of this model for the case in which Category B is the high
base-ratecategory is depictedin Figures 6g and 6h. Totest
this hypothesis, we developeda quadratic decision-bound
modelwhoseparameterswereestimatedfrom the data.The
onlyconstraintwas that thedecisionboundbe ellipticaland
havea positivetilt when CategoryA was the high base-rate
category(see Figure 6f) and havea negative tilt when Cat­
egory B was the high base-rate category (see Figure 6h).
Thus, as in Hypothesis 1, the model does not require that
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the observer have a perfect estimate of the high base-rate
category distribution; the model requires only that the ob­
server have a reasonable estimate. We called this the ellip­
tical decision-bound model.

Hypothesis 3 was similar to Hypothesis 2; however, in­
stead of assuming that the observer partitions the space

Figure 6. Category structure and decision-bound assumptions
used to test three decision-bound theoretic instantiations of
Kruschke's (1996) theory. The six panels in the left column depict
the stimulus regions and the six panels in the right column depict
the response regions. In the stimulus region panels, the solid el­
lipsoids denote the true and (possibly) inferred contours of equal
likelihood (see text for details). True contours are denoted by A
or 8, and inferred contours are denoted by A' or 8'. Panels a
(Category A high base-rate) and c (Category 8 high base-rate)
depict a situation in which the observer is assumed to accurately
estimate the high base-rate category structure and infer that the
low base-rate category has the same structure as the high base­
rate category. The associated response regions are depicted in
panels band d, where the decision bound is assumed to be linear.
These situations are tested using the single-linear decision-bound
model. Panels e (Category A high base-rate) and g (Category 8
high base-rate) depict a situation in which the observer is as­
sumed to accurately estimate the high base-rate category and
construct an eUiptical decision bound around the high base-rate
category. The associated response regions are depicted in panels f
and h, where the decision bound is assumed to be eUipticat These
situations are tested using the elliptical decision-bound model.
Panels i (Category A high base-rate) and k (Category 8 high
base-rate) depict a situation in which the observer is assumed to
accurately estimate both category structures, but is assumed to
use two linear decision bounds to partition the stimulus space.
The associated response regions are depicted in panels j and I,
where the two decision bounds are assumed to be linear. The ob­
server constructs two linear decision bounds that partition the
space into three response regions-c-one assigned to the high base­
rate category and two assigned to the low base-rate category. The
low base-rate category is assumed to be composed of two subcat­
egories. This situation is tested using the bilinear decision-bound
model. (See text for a more detailed explanation of each model.)

into a structured high base-rate category response region
and an unstructured low base-rate category response re­
gion, the observer is assumed to partition the space into
three response regions: one assigned to the high base-rate
category and the remaining two assigned to the low base­
rate category. The assumptions about the stimulus regions
are depicted in Figures 6i and 6k. In short, the observer is
assumed to have accurate knowledge of both category
structures (hence the labels A and B). The decision bounds
and response regions for the high A and high B base-rate
conditions are depicted in Figures 6j and 61,respectively.
Essentially, the observer postulates that the low base-rate
category is actually composed of two subcategories that
are distinct from each other. This seems reasonable given
the category structures used in our study. To implement
this model, we assumed that the partitions between the
high base-rate and two low base-rate subcategories were
linear. This hypothesis is depicted in Figure 6j (Category A
high base-rate) and Figure 61(Category B high base-rate).
We called this the bilinear decision-bound model.

The single linear, bilinear, and elliptical decision-bound
models were applied to the final session data from each of
the 24 observers in an unequal base-rate condition. Not
surprisingly, the single linear decision-bound model pro­
vided a poor description of the data. For all 24 observers
the bilinear and elliptical decision-bound models provided
significantly better accounts of the data. Both the ellipti­
cal and bilinear decision-bound models provided a good
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Table 3
Goodness-of-Fit (-lnL) Values for First and

Last Experimental Sessions Averaged Across Observers

Condition

OPT
(2 Parameters)

First Last

FRB
(3 Parameters)

First Last

GQC
(7 Parameters)

First Last

1:1 Base-rate 155.30 102.37 151.84 98.97 124.00 93.11
1:2 Base-rate 171.83 93.39 144.34 88.23 123.99 84.71
2:1 Base-rate 149.19 107.41 127.94 91.70 116.80 83.78
Moderate mean 160.51 100.40 136.14 89.97 120.40 84.25

1:3 Base-rate 148.21 95.77 114.75 72.34 99.00 66.23
3:1 Base-rate 148.72 63.36 139.17 58.95 118.!7 52.69
Large mean 148.47 79.57 126.96 65.65 108.59 59.46

Note-i-Ol'T, optimaldecision-boundmodel; FRB,freebase-rateoptimal decision-boundmodel;GQC,
general quadratic classifier.Moderatemean refers to the moderatebase-rate ratios (1:2 and 2:I). Large
mean refers to the largebase-rate ratios (1:3 and 3:1). The final session was the third sessionfor 2 ob­
servers and the fourth session for the other 30 observers.

account of the data. Averaged across the 24 observers,
both models accounted for 87% of the responses. This
compares quite favorably with 90% of the responses ac­
counted for by the most parsimonious decision-bound
model (averaged across the 24 observers). Even so, on the
basis ofthe maximum likelihood goodness-of-fit measure,
the most parsimonious decision-bound model provided a
better account of the data than either the elliptical or bi­
linear models for 23 of the 24 observers.

It is important to note that this is not meant as a com­
plete and rigorous test of Kruschke's (1996) theory in the
domain ofcontinuous-valued dimensions. Wehave devel­
oped only a few reasonable instantiations of Kruschke's
theory and do not feel that these data provide convincing
evidence for or against Kruschke's theory. In support of
decision-bound theory, the decision-bound models out­
lined in Figure 1 provide the most accurate account of the
data, outperforming all three proposed instantiations of
Kruschke's theory. Even so, the success ofthe elliptical and
bilinear models suggests that the notion that high and low
base-rate categories are learned in a different manner might
have some validity even in the domain of continuous­
valued dimensions.

Changes in Performance Over Sessions
A number of results suggest that performance became

more optimal as observers gained experience with the cat­
egories. However, the data suggest also that performance
reached asymptote at a suboptimal level. For example, the
accuracy rates showed a general increase from the first to
the last experimental session in each condition (see Fig­
ure 7a) but reached asymptote at a level well below that
predicted by the optimal classifier. To further examine the
changes in performance with experience, the three deci­
sion-bound models depicted in Figure 1 were applied to
all four experimental sessions for each observer. A com­
parison of the first and final session fits (averaged across
observers) are reported in Table 3. The primary results are
as follows. First, the fits ofthe general quadratic classifier,
the free base-rate decision-bound model, and the optimal

decision-bound model were more similar when applied to
the final session data (average difference across models =

10.91 -lnL units) than when applied to the first session
data (average difference across models = 25.45 -lnL
units), suggesting that observers' estimates ofthe base-rate
difference improved across sessions. Second, the optimal
decision-bound model evidenced the largest improvement
in fit from the first to the final experimental session, fur­
ther supporting the hypothesis that responding becomes
more optimal with experience.

Changes in decision criterion. To examine the time
course ofextreme cutoffplacement, the C,estimates from
the free base-rate decision-bound model were examined
for each of the four sessions. Figure 7b plots the ratio of
the Crestimates with the optimal decision criterion Coover
sessions for the unequal base-rate conditions. A Cr/Co
ratio ofgreater than one indicates extreme cutoffplacement,
and a ratio of less than one indicates conservative cutoff
placement. When ICr/Col = 1, the optimal decision crite­
rion is being used. The Cr/Co ratio was largest for the first
experimental session and decreased during the second
(and often third) session, then reached asymptote at a level
still indicative of extreme cutoffplacement.

DISCUSSION

The present report examined the effects ofunequal cat­
egory base-rates and nonlinear optimal decision bounds
on the optimality of human categorization performance.
Five base-rate ratios were combined factorially with two
qualitatively different types ofstimulus dimensions. Each
observer completed several experimental sessions to en­
sure adequate levels of experience, and all analyses were
conducted at the level of the individual observer. The
analyses centered around the application of a series of
nested decision-bound models that were derived from de­
cision-bound theory. Decision-bound theory postulates
that observers attempt to respond optimally, but are gen­
erally suboptimal due to several inherent weaknesses in
perceptual and cognitive processing.
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Figure 7. (a) Accuracy rate and (b) the Cr/C. ratio as a function of ex­
perimental session. The points for Session 4 are based on the data for 30 ob­
servers (2 observers did not complete the fourth session). The points for Ses­
sions 1, 2, and 3 are based on the data for all 32 observers.

All observers demonstrated knowledge of the category
base-rate manipulations, even during their first experi­
mental session. In fact, by their final experimental ses­
sion, approximately one fourth ofthe observers responded
in accordance with the actual base-rate ratios, as evi­
denced by their use of the optimal decision function and
the optimal decision criterion. Although the nonlinear op­
timal decision bound differed across conditions and two
qualitatively different types of stimulus dimensions were
utilized, most observers showed the same pattern of re­
sponding-namely, extreme cutoff placement. These
findings are supported by extensive model-based analyses,
as well as by "model-free" indices of performance.

These findings converge with those from several condi­
tions in which the optimal decision bound was linear (Mad­
dox, 1995;Maddox & Bohil, 1998).Across all three studies,
the results seem clear: When faced with a multidimensional
perceptual categorization problem in which the category
base-rates are unequal, observers (given enough exposure to
the categories) are quite adept at estimating the category dis­
tribution parameters that determine the shape ofthe optimal
decision bound (whether linear or nonlinear). In addition,
observers are highly sensitive to base-rate manipulations,
but tend to use a decision criterion that is more extreme than
that predicted by the optimal classifier.

Psychological Implications
of Extreme Cutoff Placement

One of the more interesting aspects of the present
analyses was the continued support for the prevalence of

extreme cutoffplacement in multidimensional perceptual
categorization tasks that incorporate unequal category
base-rates. Extreme cutoffplacement is an empirical phe­
nomenon that was observed in our data. In this section, we
examine several possible psychological implications of
extreme cutoff placement. One reasonable implication is
that observers overestimate the true base-rate difference
and use a decision criterion that is more extreme than the
optimal decision criterion. Although this hypothesis cannot
be rejected by the data, we know ofno studies that directly
examine the accuracy of observers' base-rate estimation
that could corroborate this finding. In addition, the data
from several observers was fit best by the optimal decision­
bound model. It is likely that these observers accurately
estimated the base-rate ratio, which would seem at odds
with the hypothesis that observers tend to overestimate the
true base-rate difference. Even so, more work is needed to
determine whether observers actually overestimate base­
rate ratios.

A second possibility is that observers are good at esti­
mating base-rate ratios (at least after extensive exposure to
the categories), but often show a bias toward the high
base-rate category. Our speculation is that this bias is most
likely to be invoked when the observer is unsure about the
category membership of an exemplar. Recall that ob­
servers are assumed to compare the output of their deci­
sion function with their decision criterion. Ifthe output of
the decision function is greater than the decision criterion,
they give one response, and if it is less than the decision
criterion, they give another response (see Equation 2). The
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observer will be unsure about category membership when
the output of the decision function is similar to that ofthe
decision criterion. In these cases, the observer might be
biased to give the high base-rate response. In fact, when
the base-rates are unequal this is a reasonable strategy for
an observer faced with uncertainty because more often
than not the high base-rate response will be the correct re­
sponse. Call this an uncertainty-driven response bias. Un­
fortunately, it is difficult to explicitly model a response
bias in this study because it would be nonidentifiable with
the estimated decision criterion. Even so, several predic­
tions can be derived from this uncertainty-driven response
bias hypothesis that have some support in the data.

First, we would expect to find extreme cutoffplacement
in the estimated decision criterion. Ifthe observer is more
likely to give the high base-rate response when the output
of his/her decision function is similar to his/her decision
criterion, then at the level ofthe data it will appear as ifthe
observer is using a more extreme decision criterion. Sec­
ond, we would expect the observer's level of experience
with the categories to affect the magnitude ofextreme cut­
offplacement. An observer with little exposure to the cat­
egories will be faced with many exemplars whose cate­
gory membership is unclear (i.e., will be in a state ofhigh
uncertainty). If the observer is assumed to give the high
base-rate response under these conditions, we would ex­
pect to find a large proportion of uncertainty-driven high
base-rate responses early in learning. As the observer gains
more experience with the categories, uncertainty should
decrease and the proportion of uncertainty-driven high
base-rate responses should decrease. Thus, the magnitude
ofextreme cutoffplacement should be larger for the novice
observer and should decrease as the observer gains expe­
rience with the categories. Both of these predictions are
supported by the data.

A third prediction from this hypothesis is that some ob­
servers might learn to suppress the uncertainty-driven re­
sponse bias as they gain experience with the categories.
Observers using the same strategy as the optimal classifier
will never encounter a situation in which they are uncer­
tain about the response that should be given and thus
should never show an uncertainty-driven response bias. At
the level ofthe data, then, we would expect those observers
who ultimately learned the optimal decision bound to ini­
tially show extreme cutoff placement (perhaps due to an
uncertainty-driven response bias early in learning). The
magnitude ofextreme cutoffplacement should decrease as
these observers learn to suppress the response bias, until
extreme cutoffplacement disappears and the data are best
described by the optimal decision-bound model. To test
this hypothesis we examined the Cf/Co estimates for the 5
observers from the unequal base-rate conditions whose
final session data were fit best by the optimal decision­
bound model. If the uncertainty-driven response bias hy­
pothesis is correct, then the Cf/Co estimates should be
greater than one during the first session, suggesting that a
response bias exists, and should decrease over sessions to
a value near one, indicative of no response bias. For all 5

observers, the Cf/Co estimates were larger than one during
the first experimental session and decreased over sessions.
Averaged across the 5 observers, the Cf/Co estimates de­
creased monotonically across sessions, yielding values of
11,48,2.82, 1.61, and 1.15 for Sessions 1-4, respectively.
Thus, these analyses provide support for the hypothesis
that the prevalence ofextreme cutoffplacement might be
due to an uncertainty-driven response bias whose magni­
tude decreases as the observer gains experience with the
categories. Although this response bias hypothesis provides
an interesting account of the data, clearly other explana­
tions are possible, and more work is needed before a defin­
itiveconclusion is reached. A major focus offuture research
should be to develop rigorous quantitative models ofper­
ceptual categorization performance that can account more
precisely for the prevalence of extreme cutoff placement.

Another possibility is that extreme cutoffplacement re­
sults because the high and low base-rate categories are
learned in different ways. As suggested by Kruschke (1996),
the high base-rate category may be learned first, and then
the distinctive aspects ofthe low base-rate category might
be used to distinguish it from the high base-rate category.
Three model-based instantiations of this hypothesis were
tested and two of the three received some support. Even
so, in most cases a decision-bound model that assumes
that the observer attempts to respond optimally but cannot
because of several perceptual and cognitive limitations
was superior.

Conservative Versus Extreme Cutoff Placement
The present study, along with studies conducted by

Maddox (1995; see also Maddox & Bohil, 1998), suggests
that extreme cutoffplacement is likely to result when cat­
egory base-rates are unequal. However, a series ofprevious
studies (Healy & Kubovy, 1981;Lee & Janke, 1965; Ulehla,
1966) suggests that conservative cutoffplacement is likely
to result when category base-rates are unequal. Why is ex­
treme cutoff placement so prevalent in one set of studies
and conservative cutoffplacement so prevalent in another
set of studies? Maddox outlined several differences be­
tween the two sets of studies that might account for the
discrepant findings. In many cases, the previous studies
(Healy & Kubovy, 1981; Lee & Janke, 1965; Ulehla, 1966)
used fairly inexperienced observers, analyzed the data col­
lapsed across observers, and used unidimensional stimuli.
Maddox (1995; Maddox & Bohil, 1998) and the present
study used highly experienced observers, analyzed the
data at the individual observer level, and used two­
dimensional stimuli. Thus, one possibility is that conser­
vative cutoffplacement is more likely to occur when stim­
uli are unidimensional and the data are averaged across
novice observers, whereas extreme cutoff placement is
more likely to occur when the stimuli are multidimen­
sional, observers are highly experienced, and single ob­
server analyses are performed. Several aspects of the cur­
rent data argue against this hypothesis. First, if novices
show conservative cutoff placement, we would expect to
find conservative cutoff placement early in learning and



extreme cutoff placement later in learning. This pattern
was not found. Second, if averaging data causes conserv­
ative cutoffplacement, we would expect to find a mixture
of conservative and extreme cutoff placement in the sin­
gle observer data. Again this was not found.

Other potentially important differences between the
studies conducted in our laboratory and previous studies
have been identified. For example, the distinction between
unidimensional and multidimensional stimuli might be im­
portant. In addition, the types ofstimulus dimension and d'
type measures differ across studies. We are currently ex­
amining each ofthese variables in a controlled setting, the
goal being to identify the variable (or variables) that pre­
dicts cases in which conservative or extreme cutoffplace­
ment will result.

In conclusion, the present study extends our under­
standing ofthe use ofbase-rate information in multidimen­
sionalperceptual categorizationto severalsituations in which
the categories are complex and the optimal decision bound
is highly nonlinear. Because greater category complexity
leads to highly nonlinear decision functions, decision­
bound theory predicts that learning of the decision func­
tion should be slowed by category complexity. On the other
hand, category base-rates affect only the decision crite­
rion and are independent of category complexity. In line
with these predictions, learning ofnonlinear decision func­
tions was more difficult and time-consuming in this study
as compared with the linear decision functions in Maddox
(1995; Maddox & Bohil, 1998). Even so, as predicted, base­
rate learning was similar in the two cases. Specifically, in
line with the results using simple category structures
(Maddox, 1995; Maddox & Bohil, 1996), most observers
showed extreme cutoff placement.
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NOTES

I. Perceptualnoise, in the visual case, is caused by fluctuations in the
numberof photons that reach the cornea and spontaneousactivitywithin
the central nervous system. For example, it is well known that the num­
ber of photons emitted by a light source of constant intensity and con­
stant duration is well described by a Poissondistribution (Geisler, 1989;
Wyszecki& Stiles, 1967). Because the mean and variance of the Pois­
son distribution are equal, the variability in the number of photons emit­
ted increases with stimulus intensity.

2. The most rigorous test of conservative and extreme cutoff place­
ment would require the free base-rate decision bound model to provide
the most parsimonious account of the data. However, only 8 of the 19
suboptimal observers' data were most parsimoniouslyaccounted for by
this model, and the remaining II were most parsimoniously accounted
for by the general quadratic classifier. Even so, we decided to includeall
19observers in our subsequent analyses for the followingreasons. First,
for the II general quadraticclassifier observers,the free base-ratemodel
and the general quadratic classifier fits were similar (average fit: free
base-rate model = 79.71, general quadratic classifier = 69.08). Second,
the percent of responses accounted for by each model was high, and the
percentswere very similar (averagepercent of responses accounted for:
free base-rate model = 89%, general quadratic classifier = 90%). Third,
the main theoretical conclusions werenot affected by including these II
observers in the subsequent analyses.
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