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Each subject performed two tasks, dividing a line segment so that either (a) the ratio of subjective
lengths corresponded to the ratio of the magnitudes of two numerals or (b) the difference in length was
proportional to the numerical difference. Had subjects actually performed two operations on the same
scale, the responses would have been nonmonotonically related. Instead, data for the two tasks were
nearly identical and ordinally compatible with either a ratio or a subtractive model. The ratio model
implied scale values for numerals that were a positively accelerated function of numerical value,
inconsistent with previous results. With a nonlinear response function for graphic length, the subtractive
model fit well, yielding scale values that were a negatively accelerated function of numerical value and a
linear function of previously obtained scales. These results, together with other recent findings, suggest
that subjects may perform the same operation in spite of instructions to judge "ratios" or "differences"
and that this operation can be best represented by a subtractive model.

In these experiments, subjects were presented
with pairs of numerals and asked to judge both the
difference in magnitude between the two numerals and
the ratio.

For the difference task, the subjects were instructed
to divide a lOO-mm line such that the difference in
length between the two segments would be
proportional to the "difference" between the numerals.
The "differences" were initially assumed to follow a
subtractive model:

(1)

where Si and Sj are the scale values of the ith and jth
levels of the stimuli, Rtf is the difference in graphic
.rating length (the dependent variable), and J is a
monotone function relating subjective differences to
graphic ratings.

For the ratio task, the subjects were instructed to
divide the 100-mm line so that the ratio of the lengths
of the two segments corresponded to the "ratio" of
numerical magnitudes. The "ratios" were initially
assumed to follow a ratio model:
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(2)

where Sj and Sj are scale values as above, Rft is the
ratio of graphic response lengths, and J* is a monotone
function relating subjective ratios to graphic length
ratios.

A study that uses only one task (difference or ratio)
cannot discriminate Equation 1 from Equation 2,
since a monotonic (logarithmic) transformation of a
ratio yields a difference. However, the simultaneous
evaluation of two or more judgmental tasks with the
assumption that scale values are independent of the
integration function limits the possible data
transformations so that it may be possible in principle
to reject at least one of the integration functions under
consideration (Birnbaum, 1974a; Birnbaum & Veit •.
1974). On the positive side, since subjective values
derived from Equation 1 are unique to a linear
transformation. and values derived from Equation 2
are unique to a power transformation, if a single scale
satisfies both equations. it will be unique to a
similarity transformation (Krantz. Luce, Suppes. &
Tversky, 1971). It is assumed that the values for s
derived from Equations 1 and 2 should not only be
consistent with one another but should also be a
negatively accelerated function of numerical value in
agreement with the results of previous research (e.g.,
Birnbaum. 1974b; Rule & Curtis. 1973).

In the Birnbaum (l974b) study, subjects rated
numerals ranging from 108 to 992 and presented in
varying frequency distributions; the psychophysical
function for numerals was derived from the fit of a
model of contextual effects based upon range­
frequency theory (Parducci & Perrett, 1971). The
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Figure 1. Mean difference In length as a function of the left· side
numeral. (A) Difference task data. (8) Ratio task data.
(Experiment I.)

Results
Effect of instructions. Figure 1 plots the mean

difference in length between the two line segments as
a function of the left-side numeral, with a separate
curve for each level of the right-side numeral. The
similarity of the data for the two panels shows that the
instructions to judge "differences" or "ratios" has
little effect on the responses. If the subjects were
taking both ratios and differences as instructed,
Figures lA and 18 would look quite different from
one another and the three-way interaction would be
quite large. Instructions by Left by Right interaction
was very small, but statistically significant.
F(64.3136) = 1.49. Considering the power of the test.
these data indicate that instructions to judge
differences or ratios had little effect.

If only one of these tasks were studied. it would
seem reasonable to rescale the data in accord with the
model dictated by the instructions; however, the
finding that instructions have little effect suggests that
both subtractive and ratio models will have to be
considered.

All of the following analyses were performed
separately for each set of data. and the results were
nearly identical. Therefore, the following analyses are
reported for the combined data.

Test of subtractive model, assuming J linear. With
the assumption that J in Equation 1 is linear, the
difference in lengths would be directly proportional to
the subjective difference in length. If the subtractive
model were valid and J linear, then the curves in
Figures lA and IB would be parallel. Instead, the two
panels show consistent violations of this graphical
prediction: the lower curves are positively accelerated,
and the upper curves are negatively accelerated. The
steepness of the curves in the region between 391 and
409 does not influence the interaction but may reflect
a tendency for subjects to place greater relevance on
the first digit. The nonparallelism of Figures lA and
1B is demonstrated statistically by large and
significant Left Side by Right Side interactions.

model describes the ratings as a composition of a
judgment function that depends on contextual effects
and a psychophysical function assumed to be
independent of context. The resulting psychophysical
function for numerals was negatively accelerated and
was demonstrated to be invariant across contexts.
Rule and Curtis (1973) had subjects compare integers
from I to 9 with the heaviness of weights. Assuming a
subtractive model for number-weight comparisons,
they derived a function for subjective number. The
function for subjective number was approximated as a
power function of objective number with an exponent
of .63. The Birnbaum (1974b) scale values were nearly
linearly related to the Rule and Curtis (1973)
function, extrapolated to the larger stimulus range.
Rule and Curtis also summarize other reports that
have derived similar results for numerals.

EXPERIMENT I

Method
Stimuli. The stimuli were 81 pairs of numerals based upon a

9 by 9lLeft-Side Numeral by Right-Side Numeral) factorial design.
The lett-side numerals were 114. 263. 391. 409. 538. 686. 774. 853.
and 927. The right-side numerals were 196.257,326.433.579.612.
761. 820, and 982.

Procedure. The 81 stimulus pairs were printed in random order
on five pages to form booklets. Page ordering within booklets used
all 120 permutations of the five pages.

For both tasks. a lOO-mm horizontal line containing a short
vertical mark at the midpoint and at each end point was printed to
the right of each stimulus pair. Judgments were made by drawing a
vertical mark on the horizontal line, For both tasks. the subjects
were instructed not to try to formulate precise rules or to perform
numerical calculations. Each subject performed both the difference
task and the ratio task using the same set of 81 stimulus pairs.

For the difference task, the printed instructions directed the
subjects to divide the lOO-mm line so that the difference between
the line segments would indicate the difference between the two
numerals. The instructions read (in part): "Ifyou judge the number
on the left to be larger. then your mark would be to the left of the
midpoint. If you judge the number on the right to be larger, then
your mark would be to the right of the midpoint. The greater the
difference, the further your mark should be from the midpoint."

For the ratio task, the printed instructions directed the subjects
to judge the ratio of the numeral on the left to the numeral on the
right. "Your mark will divide the line SO that the ratio of the length
to the left of your mark to the length to the right of your mark will
correspond to the ratio of the number on the left to the number on
the right."

In the booklet for each task. the subjects were given two general
examples and five warm-up pairs: (657 281). (423 704). (135962),
(576533). and (819 348). The subjects were allowed as much time
as they needed to complete each task. requiring between 30 and
50 min for the completion of both tasks.

Subjects. The subjects were 78 University of California. Los
Angeles undergraduates fultilling a requirement in introductory
psychology.

Thirty-nine subjects received the difference task first. and 39
subjects received the ratio task first. Since the two tasks required
responses in opposite directions for the same numeral pair, it was
possible. at least superficially, to check whether the subjects
redirected their scales with the change in instructions. Fourteen
subjects were eliminated from each task order. most for failing to
reverse the scale as instructed, leaving 25 subjects in each group.
Analysis of the effect of task order indicated no discernible effect of
task order for the data of either task.

A. DIFFERENCE TASK
F(64,3IU)·IB.54

B. RATIO TASK
FI64.3136)·IB.69
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Figure 2. Mean ratios of length as a function of ratio model scale
value (marginal mean) for numerator numeral; separate curves
represent different numerals for the denominator.(Experiment I.)
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figure 3. Scale values for the ratio model as a function of the
physical values of the numerals; the curve depicts the
psychophysical function for numerals derived from the ratio model
(Experiment 1-)

function for graphic rating length (J* in
Equation 2). The fit of the ratio model would be
preserved by any power function transformation; the
psychophysical function would be changed by the
same transformation. It might seem possible, then, to
find a power function of graphic rating length that
would yield scale values for the ratio model that .are
compatible with previously obtained results (BIrn­
baum, 1974b; Rule & Curtis, 1973). An attempt was
made to find such a power function; however, for
powers ranging from 1 to .01, the ratio ~odel scale
values were a positively accelerated function of the
physical value of the numerals and of the previously
obtained scales. The following argument shows why
this attempt failed. From Equation 2, assuming] is a
power function, Rij = (Si/Sj)£l<, where a is the power
function exponent. Taking logarithms, log (sdSJli =
oflog s, - log Sj). Hence, the marginal mean logarithm
of the ratio of lengths (marginal mean of Figure 4)
should be logarithmically related to the scale values
for numerals, irrespective of the value of the
exponent. Instead, marginal mean logs were linearly
related to the scales previously obtained by Birnbaum
(I 974b) and Rule and Curtis (1973). Since power
transformations of the ratio model scale values

.continue to yield positively accelerated psychophysical
functions for numerals, acceptance of the ratio model
would require a psychophysical function for numerals
inconsistent with previous research.

Test of subtractive model, assuming J nonlinear.
Figure 4 plots the mean difference in the logarithms
ofthe lengths as a function of the marginal means for
the left-side stimulus. If differences in graphic rating
length represent larger subjective differences when the
response is near the ends of the scale. a logarithmic
transformation of the ratio of lengths may rectify the
graphic rating responses.
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F(64,3136) = 18.54 and 18.69, p < .001, for the two
respective sets of data. The nonparallelism of the
curves in Figures l A and IB indicates that either the
subtractive model is inappropriate, and/or the
assumption of linearity of J is inappropriate.

Test of ratio model. Figure 2 plots the mean ratio of
length as a function of the marginal mean for the
left-side stimulus (ratio model scale value for
numerator number). With the assumption that J* in
Equation 2 is linear, the ratio model predicts a family
of linear, diverging curves that intersect at a common
point; the interaction should be significant but
located entirely in the bilinear component (Anderson,
1970). Consistent with the prediction, the Left by
Right interaction is large and highly significant,
F(64,3136) = 22.12, P < .001, with 90.6% and
87.6% of the variance in the bilinear component for
the difference and ratio task data, respectively. The
residual interactions are small. but statistically
significant, F(63,3087) = 2.61 and 2.58, respectively.
These residual deviations could easily be removed by
monotone transformation as noted below. Even
without transformation, the assumption that
subjective graphic length is proportional to physical
length leads to a reasonably good fit to the ratio
model.

The scale values for numerical magnitude, si and Sj.
derived from the ratio model are plotted in Figure 3 as
a function of the physical value of the numerals. The
derived function is a positively accelerated function of
numerical value, contrary to previous findings of a
negatively accelerated function (Birnbaum, 1974b;
Rule & Curtis, 1973). Although the ratio model can
be fit to the data, the nonagreement of the scale values
derived from the ratio model suggests rejection of this
model and/or the assumption of a near-linear
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EXPERIMENT II

The purpose of the second experiment was to
examine the effects of special instructions and
training in the numerical and graphical properties of
ratios and differences. It was thought that such
training might lead the subjects to use two distinct
integration strategies with common psychophysical
functions. Ifthe special training affected the data for
one task, but not for the other, it would seem likely
that the subjects had not understood the instructions
for that task in Experiment I. The second experiment
contained a brief arithmetic test to assess whether
subjects understood the distinction between the terms
"difference" and "ratio."
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conclusion that the subtractive representation be
retained for both tasks.

Figure 4. Mean difference in the logarithms of the lengths as a
function of the scale value (marginal deviation) for left- side
numeral. (Experiment I.)

Figure 5. Transformed response, from MONANOVA, as a
function of subtractive model scale value. (Experiment I.)
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Figure 6. Scale convergence: The plotted points represent the
psychophysical function for numerals derived from the subtractive
model (Experiment D; the dashed curve is the psychophysical
function for numerals derived by Birnbaum (l974b).

Following transformation, the curves are approxi­
mately parallel, as predicted by the subtractive model.
The interaction is small, but very regular and
statistically significant, F(64,3136) = 8.10, P < .Ol.
The nonparallelism is primarily due to the fact that
the curves are steeper in the region of zero on the
ordinate; that is, the judged differences are relatively
greater for differences of less than 100. The
interaction was markedly reduced by Kruskal's (1965)
MONANOVA, a computer program for monotone
transformation to reduce interactions in analysis of
variance (Kruskal & Carmone. 1969). The monotone
transformation had little effect on the ordinate of
Figure 4, except to reduce the slopes between -.1 and
.1, consistent with the interpretation that the
interaction is mainly due to a response tendency to
exaggerate small differences. The scale values for the
subtractive model (marginal means) were left virtually
unchanged by the rescaling. MONANOVA applied to
the raw linemark responses yielded equivalent results,
since the dependent variables in this constant-sum
experiment are monotonically related. Figure 5 plots
the rescaled responses, J-1(R;.j), estimated by
MONANOV A. The parallelism of the curves
demonstrates that MONANOVA was successful in
finding a J transformation to fit Equation l.

The scale values derived from the subtractive model
are plotted in Figure 6 against the physical values.
The function is virtually identical to the context-free
psychophysical function (dashed curve) derived from
range-frequency theory by Birnbaum (1974b). The
subtractive model (with the assumption of a nonlinear
J function) thus satisfies both the requirement of tit
and of scale convergence. Unless one were willing to
reject or redefine range-frequency theory, the
subtractive representation would be preferred to the
ratio representation.

In short, Experiment I suggests that subjects may
not distinguish "differences" from "ratios." The
assumption of scale convergence leads to the
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DISCUSSION

Figure 7. Mean dIfferences in length plotted for tbe two
instructional condItions as in Figure 1. (Experiment II.)
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Figure 8. Transformed response, from MONANOVA, as a
function of subtractive model scale value for left-side numeral;
separate curves represent different right-side numerals.
(A) Difference task data. (B) Ratio task data. (Experiment D.)

analysis reported for Experiment I was completed for
Experiment II, and the results of Experiment I were
replicated in detail. For example, MONANOVA was
applied to rescale the difference and ratio task data to
parallelism. The rescaled ratings are shown in Figures
8A and 8B, respectively. As in Experiment I, both
tasks appear to induce the same ordering, and the
scales derived from the subtractive model again agree
with the negatively accelerated function for numerals.
To tit the ratio model would require exponential
transformation, which would yield scale values for
numerals that are positively accelerated functions of
the previously obtained scales and of objective
numerical value.

The remarkable similarity of Figures 1 and 7 and of
Figures 5 and 8 shows that both experiments support
the same conclusions.

In both experiments, subjects appear to perform
the same operation regardless of instructions
specifying "differences" or "ratios." Had subjects
computed both ratios and differences of the same
scale values, then the responses would have been

Results
The mean differences in length are plotted for the

two instructional conditions in Figures 7A and 7B, as
in Figure 1. The results for the two panels are
strikingly similar to each other and to the previous
results. The instructions appear to have had little
effect. and the three-way Instructions by Left by Right
interaction was again of trivial magnitude and was
statistically nonsignificant, F(64,1024) = 1.06. The
Instructions by Left by Right interactions were
calculated separately for each subject; Fs(64,64) were
less than 1.5 for 13 subjects and less than 2.2 for all 18
subjects. In spite of the special training, subjects do
not appear to distinguish "differences" from "ratios."

Consistent with Experiment I, the curves in Figures
7A and 7B demonstrate Left-Side by Right-Side
interactions that are highly significant, F(64,1088) =
24.72 and 24.77 for the difference task data and the
ratio task data, respectively. For each subject, the
Left by Right interaction was significant; Fs(64,64)
were greater than 1.5 for all subjects and greater than
5.0 for 12 subjects.

All analyses were performed separately for the data
of each task with nearly identical results. Every

Method
Stimuli. The stimulus booklets were identical to those used in

Experiment I. Except as noted below. the general procedures were
those of Experiment I.

Numerical and graphical training. There were six parts to the
training and warm-up that preceded the actual experiment. First.
the subjects received a short test in which they were requested to
compute ratios and differences numerically. They were given
feedback on these items and were given an explanation of simple
arithmetic rules. Second. they were given a brief test (without
feedback) to ascertain whether they understood the meanings of the
terms without additional instruction. Third, they were given a brief
lesson in the mathematical and graphical properties of differences
and ratios. They were taught, for example, that the difference
between 2 and 3 equaled the difference between 3 and 4, but that
the ratios were unequal. Subjects were also taught that a ratio of
two lengths could be determined by counting the number of times
one length fitted into another, and that a difference in length could
be determined by cancelling one length from another. This lesson
included six examples in which the differences and ratios were
worked out arithmetically and graphically. Fourth, there was a
brief test to ascertain whether the subjects understood these
mathematical properties. Fifth, the subjects read the instructions of
Experiment I twice for their first task. Sixth, the subjects
completed a set of warm-up trials for their first task.

Procedure. Each subject performed both tasks twice, with half of
the subjects performing difference-ratio-difference-ratio, and half
in the reverse order. Between each pair of tasks, the subjects read
the instructions twice again for the new task and were required to
fill out a warm-up. Each change of task required a reversal of the
response scale. Each set of warm-ups was checked to determine
whether the subject had redirected his scale with the new
instructions. and if the subject had not redirected his scale, he was
told to reread the instructions and complete another set of
warm-ups before proceeding. These procedures resulted in no
subject loss.

Subjects. The subjects were 18 University of California. Los
Angeles undergraduates who were fulfilling a requirement in
introductory psychology.
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different for the two tasks. In fact, they would have
been non monotonically related (Birnbaum & Veit,
1974; Krantz et al., 1971). Instead, Figures 1 and 7
show little difference between the data for the two
tasks. Experiment II ascertained that the subjects
understood intellectually the distinction between the
terms "difference" and "ratio," being able to
compute them mathematically. But when asked to
perform this task subjectively, their responses appear
to be largely unaffected by the task. Since both
models cannot be tit to their respective sets of data
with a single scale, and there appears to be only one

. operation, the problem shifts to one of choosing
between the models.

In order to assess whether the subtractive or ratio
model provided a better representation, two
constraints were applied simultaneously: first, the
model must be consistent with the data; second, the
inferred psychological scale for numerals must agree
with the scale derived in previous research. These two
constraints led to the conclusion that the subtractive
model was appropriate and that the J function for
graphic length is nonlinear.

It would seem inappropriate to assume that the J
function for graphic ratings would generalize to all
other situations. The graphic rating procedure has
been widely used in recent psychological experiments,
usually with the assumption that responses are an
interval measure of the subjective values (e.g., Leon &
Anderson, 1974). However, if the J function for
graphic rating is nonlinear, interpretation of these
studies would require reconsideration. Assuming the
subtractive model, the present results would indicate
that small differences in response have greater
subjective value near the ends of the scale than near
the center.

It might be possible to preserve a linear
psychophysical function for graphic length by
postulating some other form of integration function."
However, such complications seem unattractive given
the agreement between scales derived from the simple
subtractive model and the previous work.

Constant-sum method. In the constant-sum
method (Comrey, 1950; Guilford, 1954), subjects are
typically instructed to divide 100 points among two or
more stimuli to represent the ratios among the
stimuli. The scaling of the stimuli is based upon two
assumptions: (a) that the ratio model is the
appropriate representation and (b) that the subjective
magnitude of the number of points is directly
proportional to the number. The present results
suggest that both assumptions could easily be in error.
When analyzing the results of the constant-sum
procedure, the possibility that subjects divide
subjective values of the points to represent subjective
differences should also be considered.

Functio';al measurement vs. correlational analyses.
Goodness-of-fit is frequently assessed in psycho­
physical research by reducing equations to linear

functions and computing correlations of fit. Often,
these analyses are based upon a priori assumptions
about the form of the psychophysical functions. Such
correlations can be large in spite of serious
discrepancies from the model, and inappropriate
comparisons of correlations can lead to incorrect
conclusions (Birnbaum, 1973, 1974c). For example,
in spite of highly significant discrepancies due to the
inappropriate assumption that J is linear, the
subtractive model achieved a correlation of .99 for
Figure 1. The situation is even worse, for the marginal
means of Figure 1 showed a near-linear relationship
to the previously obtained psychophysical function for
numerals. This means that it would be possible to
have good scale convergence between situations in
spite of serious model discrepancies. Functional
measurement (Anderson, 1970) provides more
appropriate techniques for testing models. Graphical
tests like those in Figures I, 2, 4, 5, and 8 provide
more adequate assessment of the appropriateness of
the model than do plots of predicted vs. obtained,
which can be misleading (Birnbaum, 1973, 1974c).

Several tasks and scale convergence. The finding
that the subjects were apparently unaffected by
instructions is consistent with previous conjectures
that subjects may not distinguish between "ratios"
and "differences" (Birnbaum & Veit, 1974;
Torgerson, 1961). Birnbaum and Veit (1974) found
that ratings of differences and estimations of ratios of
heaviness were monotonically related, inconsistent
with the hypothesis that subjects compute ratios and
differences on the same scale. Garner (1954) found
that subjects made the same settings when instructed
to adjust a tone to bisect a loudness interval or to
establish equal ratios. Veit (1975) observed that
"ratios" and "differences" of grayness of pairs of gray
chips were monotonically related. On the basis of a
series of experiments, she concluded that the
subtractive representation was appropriate and that
the ratio model could be rejected. Although the
possibility remains that the fault may lie with the
instructions or the particular tasks, the special
training in Experiment 11 did not appear to affect the
results.

Further research is needed to determine whether
there are situations in which simultaneous evaluation
of additive and multiplicative processes would yield
two distinct models with a single psychophysical
function. If it were found that subjects could generate
ratios and differences of a common scale, the
measurements would be unique to a ratio scale. This
finding would fulfill a goal of psychophysics: the
development of measurements that interlock
psychological laws. On the other hand, it may be that
subjects perceive only a single relation between a pair
of stimuli for many continua. If so, it may be possible
to explain the troubling lack of agreement between
so-called "ratio" and "interval" procedures.

The present results provide an example of a
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situation where the appropriate model cannot be
determined from a priori consideration of the
instructions. The use of two tasks not only made
possible a test for the effect of instructions, but led to
the test of two models. The present data in the hands
oftwo separate investigators, each investigating one of
these tasks, most likely would have led to acceptance
of two different models. If the ratio model were
hypothesized, a reasonable fit could be obtained with
the assumption of a power function for graphic rating
length; if the subtractive model were assumed, the
model would be fit with a nonlinear function for
graphic length. The investigator utilizing a ratio task
and hypothesizing a ratio model would present
Figures 2 and 3; the investigator with a difference task
and subtractive model might present Figures 4 and 6.
The two investigators would be puzzled by the lack of
apparent agreement between their findings, when in
fact the data are identical-only the hypothesis
differs. The use of two tasks does not, in this case,
resolve the indeterminacy, but it clarifies the
distinction between the task and the model and forces
one to confront the indeterminacy problem.

A criterion that goes hand in hand with the
evaluation of several tasks is the assumption that
psychophysical scales should have greater generality
than their role in fitting a single model. This
assumption is the basis for deciding between the ratio
and the subtractive model. The assumption of the
validity of the previously obtained psychophysical
function for numerals together with the assumption of
scale convergence leads to a preference for the
subtractive representation for both tasks.
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NOTE

1. One possibly attractive speculation is that subjects may be
relating each component to the total, i.e., Si/(si + sjl. This
formulation is equivalent to the ratio model for this experiment and
also yields scales for numerals incompatible with previous research;
therefore. this interpretation would also be rejected.
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