
Behavior Research Methods, Instruments, & Computers
1987, 19 (5), 462-466

Efficient estimation of probabilities
in the t distribution
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The probability (p) of a value in the t distribution can
be calculated exactly by means of Student's (1908) co­
sine series, which Fisher (935) elucidated and which
Zelen and Severo 0964, sections 26.7.3-4) reprinted.'
Cooper (968), Morris (968), Levine (969), Hill
0970a), and Dudewicz and Dalal (1972) prepared com­
puter functions based on these series or on a closely related
method. Precise computation also can be achieved by nu­
merical integration (Wood & Wood, 1984, 1986). Alter­
natively, exact calculations can bemade by evaluation of
the F distribution (e.g., Dorrer, 1968; Dunlap & Duffy,
1975; Lackritz, 1984; Morris, 1969) or the incomplete
beta function (e.g., Kennedy & Gentle, 1980, chap. 5;
Selvin & Wong, 1975), after the given t value is converted
to its equivalent value in the other distribution.

When precise calculation is not required, numerous
methods are available to approximate the p of a t value
(Johnson & Kotz, 1970, chap. 27). O'Grady (981),
Ogasawara (1982), von Collani (1983), and Evans and
Gilfillan (1986) have provided recent examples. The most
popular approximation may be Jaspen's (1965), which
transforms an F ratio to an approximate normal deviate
(z) by Palson's (1942) formula, which itself is based on
Wilson and Hilferty's (931) normalizing approximation
of the chi-square distribution, and then estimates the p
corresponding to zby an approximation from Zelen and
Severo (1964) that was adapted from Hastings (1955).
When Jaspen's method is used with the t distribution, the
t value is first converted to its equivalent F value (Pt.n ==
t/; the p of F is equivalent to the two-tailed p of t).

Computer routines that use exact methods to determine
the p of a t value are relatively long and slow, and they
do not ordinarily handle nonintegral degrees of freedom
(n), whereas many of the approximation routines are fairly
inaccurate. Futhermore, generic routines such as Jaspen's
(1965) are unnecessarily complex if they are to be used
only with the t distribution. There is need for a short, fast
routine that is sufficiently accurate for applications such
as determining the significance of an obtained t value. A
fast routine would be particularly advantageous for real­
time processing in the laboratory. Reasonable target ac­
curacy is four decimal places.

Ling (978) found that approximations of Wallace
0959, Approximation u.) and Peizer and Pratt 0968,
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Equation 4.7) were the most accurate, simplest methods
of several tested, and Prescott (974) confirmed the su­
periority ofWa1lace's approximation to four other approx­
imations. Moreover, Wallace provided an even more ac­
curate approximation (Approximation us) that was not
investigated by either Ling or Prescott. The present study
tests both of Wallace's approximations, Peizer and Pratt's
approximation, and four newer approximations. In addi­
tion, comparisons are made with a Jaspen-type approxi­
mation.

Listing 1 shows the approximations, in BASIC, with
a brief driver program to input values of t and n, call a
selected method, and print the calculated one-tailed p.
Each approximation is a normalizing transformation that
estimates the z corresponding to t; the p of z is assessed
by an approximation from Zelen and Severo 0964, sec­
tion 26.2.17) that is accurate to six decimal places
(Brophy, 1983a).

The first two approximations are by Wallace (959).
He adapted a normalizing approximation from Chu
(956):

0)
which is an upper bound on the z corresponding to t. Wal­
lace constructed other bounds and empirically developed
two related approximations. The simpler of the approxi­
mations (Approximation u.) is

z == (8n+ 1)/(8n+3)[n InO +t2/n)]If2. (2)

His other approximation (Approximation us) is

z == u - 2u/(8n+3)[l-exp(-s2)]If2, (3)

where s == 0.368(8n+3)/(2n lf2u), and u is the zof Equa­
tion 1. The third approximation is one of a family of
methods developed by Peizer and Pratt 0968, Equa­
tion 4.7; Pratt, 1968) for major sampling distributions,

z == [n - 2h + l/(lOn)][l/(n -%)

InO +t2/n)]If2. (4)

The fourth approximation, by Hill 0970a), is a three­
term Cornish-Fisher form of expansion with the third-term
divisor adjusted to increase accuracy:

z == w + (w 3+3w)/b - (4w7+33WS+240w

+855w)/[10b)b+O.8w4+ 100)], (5)

where w == [a InO +t2/n)f h , a == n- V2, and b == 48a2
•

Hill, who sought very high accuracy, combined this
asymptotic expansion in an exceptionally elegant program
with two other methods: Student's (908) cosine series
for small values of n, and a precise tail series expansion
for large values of t. These enhancements are not neces­
sary to attain the more modest accuracy desired here. Nor
is it necessary to adopt Hill's (1970a, 1981) or el Lozy's
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Listing 1
Approximations of the t Distribution

10 CLS
20 INPUT"t, df "; T,N
30 INPUT"Which approximation (1-8) "; AP
40 ON AP GOSUB 110,210,310,410,510,610,710,810
50 PRINT"p (one-tailed) =" P
60 PRINT: GOTO 20
70 END
90 I

100 I Wallace. Approximation u4
110 Z=(1-.25/(N+.37S»*SQR(N*LOG(1+T*T/N»
120 GOTO 1010
190 I

200 I Wallace. Approximation uS
210 Z=SQR(N*LOG(l+T*T/N»: IF Z=O THEN 1010
220 W=(4*N+1.5)/Z: Z=Z-SQR(1-EXP(-.13S*W*W/N»/W
230 GOTO 1010
290 I

300 ' Peizer & Pratt, Equation 4.7
310 Z=(N-2/3+.1/N)*SQR(LOG(1+T*T/N)/(N-5/6»
320 GOTO 1010
390 I

400 I Hill, Asymptotic approximation
410 A=N-.5: B=48*A*A: W=A*LOG(l+T*T/N): Z=««(-.4*W-3.3)

*W-24)*W-85.S)/(.8*W*W+100+B)+W+3)/B+1)*SQR(W)
420 GOTO 1010
490 '
500 ' Mickey, Approximation Pc (modified)
510 Z=SQR«N-.475)*LOG(1+T*T/N»
520 GOTO 1010
590 '
600 I Bailey, Equation 5
610 W=N+1/12: Z=(1-1/(N+1.125»*SQR«W+1.5)*LOG(1+T*T/W»
620 GOTO 1010
690 '
700 ' Gaver &Kafadar, Equation 2.7 (inverted)
710 Z=(N-1)*SQR(LOG(1+T*T/N)/(N-1.5»
720 GOTO 1010
790 '
800 ' Exact calculation for df = 1,2
810 IF N>2 OR N>INT(N) THEN 840
820 IF N=l THEN P=.3183099*ATN(T) ELSE P=T/SQR(T*T+2)/2
830 P=.5-ABS(P): RETURN
840 STOP: ' (GOTO routine for df>2 or noninteger df)
990 I

1000 I Approximation of p of z (Zelen & Severo, #26.2.17)
1010 Y=.3989423*EXP(-z*z72): S=1/(1+.2316419*Z)
1020 P=««1.330274*S-1.821256)*S+1.781478)*S-.3565638)*S

+.3193815)*S*Y: RETURN

(1979) methods for evaluating lnx in calculating w when
x is close to unity.

The fifth approximation is based on a slight modifica­
tion of Equation 1 proposed by Mickey (1975, Approxi­
mation Pc):

Empirical tests showed that substitution of 0.475 for lh
in the equation provided greater overall accuracy (albeit
somewhat larger errors with moderate and large n), so
the approximation was used with 0.475. The sixth approx­
imation is by Bailey (1980), who pointed out that Equa­
tions 2 and 6 suggest a general class of approximations:

z = [(n-V2)ln(1+t2/n)]'h. (6)

z = (n+b)/(n+c){(n-a)ln[1 +t2

/(n+h)])~, (7)

for which he used the constants a = _17';9, b = 1,11, c =
%, and h = Xz. Bailey asserted that this approximation
is more accurate uniformly than any previous normaliz­
ing transformation. The seventh approximation, obtained
by inverting an approximation of percentage points of t
from Gaver and Kafadar (1984, Equation 2.7), is

z = (n-1)[1I(n-Yz)ln(1 +f/n)]~. (8)

All the approximations except Hill's (1970a) are simi­
lar in structure, differing primarily in the multiplier of
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Approximation .25-.40 .005-.100 .0001- .0025 oo5סס.

Degrees of Freedom = 1,2

Table 1
Maximum Absolute Error of Approximations at Selected

Probability Levels for Two Ranges of Degrees of Freedom

Probability Level

Wallace
Approximation u, .000776 .000678 .000351 .000027
Approximation u, .000776 .000155 .ecoos- .000002

Peizer & Pratt .001322.000602 .000290 .000024
Hill oo8סס0. .oeoon oo5סס0. oo1סס0.

Mickey (modified) .001200 .002068 .000581 .oocoss
Bailey .000491 .000274 .000189 .oocon
Gaver & Kafadar .004675 .004070 .000060 .000009
Jaspen (improved) .003607 .002042 .000608 .000183

*For 2 degrees of freedom;approximationis not applicablewith 1 degree
of freedom.

the logarithmic expression. Pratt (1968) observed that
there is little difference in the multiplier of Equations 2
and 4 unless n is very small; that is true to a lesser extent
of Equations 6 and 8.

Listing 1 includes a routine for exact calculationwhen
n = 1 or 2 that was derived from Student (1908, p. 13).
The Jaspen-type approximation usedin the studywassimi­
lar to Ogasawara's (1982) program, but it containedtwo
improvements: (I) substitution of the Zelen and Severo
(1964, section23.2.17) approximation shownin Listing 1
for the less accurate approximation (Zelen & Severo,
1964, section 26.2.18) employed by Jaspen (1965) and
Ogasawara, and (2) additionof Brophy's (1983b) correc­
tion for values near the middleof the F distribution(i.e.,
in the region of one-tailedP = .25 in the t distribution).

Tests of the Approximations. The approximations
were tested with critical t values at 11 one-tailed levels
of P from oo5סס. to .4 for all integral n from 1 through
20 and for n = 30,40,60, and 120.Severalsourceswere
used in an effort to obtain t valuesof high precisionover
a widerangeofps. Three-decima1 t values forp = oo5סס.

and .0001 were takenfromFederighi (1959); four-decima1
t values for p = .0005, .0025, .1, and .4 from Smimov
(1961, p. 125), with two corrections supplied by Hill
(I970b) and two additional corrections (for n = 1 and
2 at p = .0025) made from exact calculations; five­
decimal t values for p = .005, .01, .025, and .05 from
Owen (1965); and five-figure t values for p = .25 from
Merrington (1942). (Federighi'stabledoesnotgivevalues
for n = 120, so values for n = 100 were used from that
source.)

Approximation 1,2 3-120

Wallace
Approximation u, 516 54
Approximation u, 24 4

Peizer & Pratt 91 48
~ ~ I
Mickey (modified) 2,324 77
Bailey 280 34
Gaver & Kafadar 63* 18
Jaspen (improved) 4,438 365

*For 2 degrees of freedom;approximation is not applicablewith 1 degree
of freedom.

Table 2
Maximum Percentage Relative Error of Approximations for

Two Ranges of Degrees of Freedom

Degrees of Freedom

Becauseof discrepancies among the tables, as well as
limited precision of some t values, the nominal tabled
p values were not used as the test values with which to
compare the results of the approximations. Instead, test
valuesof p correspondingto the t valueswere computed
by Wood and Wood's (1986) numerical integrationpro­
gram. (Wood and Wood's program was modifiedto ex­
tendits rangethrough n = 120,to acceptvalues of t rather
than F, and to yield one-tailedrather than two-tailed ps.)
For p -s .05, all computed p values agreed with the ta­
bledp to at least six decimalplaces, presumably testify­
ing to the accuracy of both the tables and Wood and
Wood's program. For larger ps, the discrepancies were
as great as ,OO2סס. probably reflectingthe limited preci­
sion of the tabled t values.

The maximum absolute value of the absolute error
[(pa-Pt), whereP» is the approximated p, and Pt is the
true p] and the maximum absolute value of the percent­
age relative error [Ioo(Pa -Pt)lptl were determined for
each approximation. Absolute errors were analyzed
separately for four rangesofp. Because errors for n s 2
are substantially greater than those for larger n, the er­
rors for the two rangesof n also wereanalyzed separately.

Tables 1 and 2 summarize the results for absolute er­
ror and relative error, respectively. For n ~ 3, Hill's
(I970a) asymptoticseries is the most accurate of the ap­
proximations, providing at least four-decimal-place ac­
curacy in p for all t values tested and five-decimal-place
accuracy when p -s .0005. Wallace's (1959) Approxi­
mation Us is second in accuracy; it is the most accurate
of all for n S 2. Bailey's (1980) approximation also is
relatively accurate, although the results do not support
the claim of overall superiority. The accuracy of Gaver
and Kafadar's (1984) approximation varies substantially
with the level of p, but its relative error is low. On the
other hand, Jaspen's (1965) approximation is relatively
poor, particularlyat low p. It shouldnot beused to make
differential decisions regardingp < .01. For n ~ 3, even
Mickey's (1975) simple approximation, as modified, is
as accurate as Jaspen's rather complex method. The lat­
ter does, however, provide two-decimal-place accuracy
for n S 2, as well as for larger n; of the other approxi-

.000258

.cooou

.000046

.000049

.001162

.000140

.ooooaz

.002220

.002927

.000205

.002025

.001777

.009538

.001666

.001300
>.002264

.007515

.000499

.048102

.013988

.033405

.003406

.023561

.004372

.002260

.002260

.061574

.011657

.023173

.004304

.025933

.004372

Degrees of Freedom = 3-120

Wallace
Approximation u,
Approximation u,

Peizer & Pratt
Hill
Mickey (modified)
Bailey
Gaver & Kafadar*
Jaspen (improved)



mations tested, that is true only of Bailey's approxima­
tion and Wallace's Approximation us.

To illustrate theperformance of theapproximations and
to clarify thenature of themeasures used intheerroranal­
ysis, Table 3 shows the p values estimated by each ap­
proximation for t values with n = 5 and 10 at p = .05
and .OO5סס. The absolute error (p. -p,), a simple mea­
sure of the discrepancy between the approximated value
and the true value, helps to answer a common question:
To how many decimal places is an approximation cor­
rect? It is sometimes all thattheapplied statistician wants
to know in evaluating an approximation. The relative er­
ror [(Po -pt)lpt] is valuable, however, as an index of ac­
curacy in relation to the magnitude of the true value. It
is particularly informative when the true value is very
small (or very large, although that does not occur with

Table 3
Performance of Approximations with Selected Values of t

Percentage
Approximation Estimatedp Absolute Error Relative Error

t = 2.01505, n = 5, P = .05
Wallace

Approximation u, .050101 .000101 .202
Approximation u. .050039 .oecoss .078

Peizer & Pratt .050051 .oeoos: .102
Hill OOסס05. .o00ooo .000
Mickey (modified) .050489 .000489 .978
Bailey .049984 oo16סס.- -.032
Gaver & Kafadar .049623 -.000377 -.754
Jaspen (improved) .049315 -.000685 -1.370

t = 11.17771, n = 5,p = oo5סס.

Wallace
Approximation u. .000060 .oocoio 20.
Approximation u. .000048 -.000002 -4.

Peizer & Pratt oo59סס. .000009 18.
Hill .ooeoso .o00ooo O.
Mickey (modified) .000062 oo12סס. 24.
Bailey oo55סס. oo5סס0. 10.
Gaver & Kafadar .oooos: oo7סס0. 14.
Jaspen (improved) .000133 .oeoosa 166.

t = 1.81246, n = 10, p = .05
Wallace

Approximation u, .050009 .000009 .018
Approximation u. .050008 oo8סס0. .016

Peizer & Pratt .050013 .oeoon .026
Hill .050000 .o00ooo .000
Mickey (modified) .049999 oo1סס0.- -.002
Bailey .049995 oo5סס0.- -.010
Gaver & Kafadar .049959 -.000041 -.082
Jaspen (improved) .048635 -.001365 -2.730

t = 6.21105, n = 10, P = oo5סס.

Wallace
Approximation u, .occosz .000002 4.
Approximation u, oo50סס. .o00ooo O.

Peizer & Pratt .oeeosa .000002 4.
Hill .ocoeso .o00ooo O.
Mickey (modified) .ocoosz .000002 4.
Bailey oo51סס. oo1סס0. 2.
Gaver & Kafadar .oooosa .000002 4.
Jaspen (improved) .000063 .oooon 26.
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p). Anapproximation thathasa largerelative error when
p, is small may be sufficiently accurate for use when p,
is larger. Nevertheless, themaximum percentage relative
error, as shown inTable 2, offersa useful assessment of
theadequacy of an approximation over a range of values
of Pt.

Allof theapproximations canbe used withnonintegral
values of n, suchas occur in testsof means frompopula­
tions with unequal variances and in some multiple com­
parison procedures. However, accuracy with non­
integral n was not tested.

In conclusion, Hill's (l970a)asymptotic approximation
is recommended as a reasonably accurate, short routine
to estimate the p of a t value. If necessary, it can easily
be supplemented by theexactroutine for n ;:5; 2 givenin
Listing I. If two-decimal-place accuracy is acceptable,
when n ~ 3 anyof the approximations can be used, and
a shorter method of estimating thep of z, suchas Zelen
andSevero's (1964, section 26.2.18) method or Brophy's
(l983a)modification of Cadwell (1951), willbeadequate.

Language and Execution Time. The approximation
routines are written in GW-BASIC, but they use only
statements common to most BASIC dialects. Theapprox­
imations were tested in single-precision arithmetic on a
Tandy 1000 microcomputer. They run without modifi­
cationin ffiM Personal Computer BASIC on an ffiMPC
microcomputer. Representative execution time for each
approximation is 0.1 sec.

Avallability. A listing of theapproximations, as shown
in Listing 1, can be obtained without charge from the
author.
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NOTE

1. Student's (1908) cosine series involve the terms sinx and cos,r,
where x = arctan(tln~) and n is the number of degrees of freedom.
Computation can be simplified by substituting t/(n+t 2)'I> for sinx and
[n/(n+f)]~ for cosx. Thus the sine and cosine functions are not re­
quired. (Thearctangentfunction is requiredwhenn is odd.) Computer
routines utilizing the series often make these substitutions.
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