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MED-PC is a software system that implements the MEDSTATE NOTATION dialect of state
notation on IBM PC and compatible computers equipped with MED Associates interfacing. It
provides a programming environment in which users can write short programs in a specialized
language to control and record the events of operant and classical conditioning experiments. As
many as eight experimental stations, each with up to 8 inputs and 32 outputs, running the same
or different experimental procedures, may be active simultaneously. The system provides a stan-
dard set of run-time features, including mechanisms for displaying real-time data, simulation
of responses, manipulation of array and variable contents, and writing of disk files. The system
is based upon polling techniques, and is implemented as a translator that generates Pascal units,
which are then linked to previously compiled Pascal routines.

MED-PC is a programming environment that imple-
ments the MEDSTATE NOTATION (MSN) dialect of
state-notation language developed for the real-time con-
trol of operant and classical conditioning experiments. It
runs on an IBM PC, AT, 386, or compatible computer
with 640K RAM. An appropriately matched coprocessor
and hard disk are highly recommended. Since the language
is implemented with a translator written in Turbo Pascal,
it will be relatively easy to port the system to the next
generation of microprocessors. The system, which oper-
ates on a single computer, has the ability to control as
many as eight independently functioning experimental sta-
tions (each running the same or different experimental
procedures) simultaneously, with up to 8 inputs and 32
outputs per station.

There are three primary advantages derived from us-
ing state notation to describe and implement psychologi-
cal experiments: (1) state notation produces an unambig-
uous description of experimental procedures, (2) the
structure of the language is similar to the way psycholo-
gists describe experiments, and (3) many workers are
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familiar with state notation’s syntax (Leslie, 1981; Snap-
per, 1973; Snapper, Kadden, & Inglis, 1982).

The concepts used in state-notation languages were first
advanced in a paper by Mechner (1959), in which he
presented a flow-chart system for describing behavioral
experiments. Moore (1956) also developed certain key
state-notation concepts (Snapper, 1973). Of the three main
state-notation systems implemented on minicomputers
(ACT by Millenson, 1971; SKED by Snapper, Knapp,
Kushner, & Kadden, 1967; SCAT by Stadler, 1969), only
SKED-11 is still readily available. SCAT is no longer
available, and ACT is only available to a limited extent
from BRS/LVE, Incorporated. Several other minicom-
puter versions of state notation have appeared, including
those of Elsner (1982), Gilbert and Rice (1978, 1979),
Takigawa and Mino (1981). These, however, have not
seen wide use outside of the authors’ laboratories. Butler
(1980) and Orr (1984) each produced microcomputer ver-
sions of state notation, however, these codes were limited
in their syntax and controlled only one operant condition-
ing chamber. Lucas (1986) implemented a relatively com-
plete version of state notation that controlled four oper-
ant conditioning chambers, but this version was limited
by providing a resolution of only 100 msec, and complete
commercial hardware interfacing was unavailable. Our
implementation of state notation attempts to provide an
inexpensive microcomputer-based system to control up
to eight chambers with complete, commercially available
hardware interface. In addition, it has a user-definable
temporal resolution of 10 to 50 msec, depending on the
microcomputer used. Our system also provides an ex-
tended version of state-notation language. More than 50
such systems are presently in use in laboratories.
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DESIGN OBJECTIVES

MED-PC was developed as a commercial product to
satisfy the following criteria: (1) implementation on com-
mercially available microcomputers; (2) implementation
with commercially available interfacing; (3) a total cost
for computer(s), interfacing, and software affordable to
small academic departments; (4) rapid, flexible program-
ming of novel and standard conditioning paradigms;
(5) accommodation of user extensions; and (6) a reasona-
ble development time for actually implementing the sys-
tem. These criteria are generally similar to those described
by other developers of conditioning software (Chayer-
Farrell & Freedman, 1987; Kaplan, 1985a).

The first two criteria emphasize basing the system on
commercially available hardware. Excellent ‘‘home-
brew’’ hardware, most notably the ECBASIC controller,
has been previously described in this journal (Palya, 1988;
Walter & Palya, 1984). However, for many researchers,
the labor and technical expertise required to construct and
maintain custom equipment is beyond their means. Fur-
thermore, many of these researchers already have access
to commercial microcomputers and /or interfacing, and
would like to avoid investing in alternative technology.

Specifically, we chose the PC (used loosely to refer to
any computer that operates under the MS-DOS operat-
ing system with an 8088, 8086, 80186, 80286, or 80386
microprocessor) as the host computer because it is already
available in many laboratories, its performance/cost ra-
tio has been steadily increasing, and it seems likely that
it will continue to be available for many years to come.
After conceiving MED-PC, it was necessary to choose
the appropriate interfacing. The first author chose MED
Associate’s hardware because of their excellent reputa-
tion for providing technical support and the moderate cost
of their popular equipment. Collectively, a PC and inter-
facing to control four two-lever operant conditioning
chambers can be obtained for less than $3,000, which
satisfies Criterion 3.

Criteria 4 and 5 were satisfied by implementing a di-
alect of state notation. Most people, even those with
minimal prior programming experience, can rapidly learn
to program in state notation, and can quickly progress
from writing simple, to very complex programs (Butler
& Grisham, 1977). State notation provides programmers
with high-level commands that insulate them from the low-
level details of switching outputs, sensing inputs, and tim-
ing that can often intimidate novice programmers. In order
to facilitate user extensions, we extended the syntax of
state notation to accommodate user-written in-line state-
ments and procedure calls embedded in the output sec-
tion of MSN statements. User-written procedures must
be nominally written in Pascal (upon which MED-PC is
based), but code written in Assembler, C, or Prolog may,
in turn, be linked to user-written Pascal procedures.

The goal of rapidly developing a system that met Cri-
teria 1 through 5 influenced our decision to base the sys-
temn on Pascal. Strictly speaking, MED-PC is not a com-
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piler, but rather a translator that translates MSN source
programs into Pascal code. The resulting code is then
linked to a library of compiled routines that control in-
puts, outputs, screen displays, and timing. Implementing
this system as a translator (as opposed to a true compiler),
presumably reduced system development time. However,
even implementing the system as a translator was very
time-consuming; the first author spent approximately
1,500 h developing MED-PC prior to its commercial
release.

A variety of languages are well suited for implement-
ing real-time control systems, including Pascal, C, Forth,
and Modula-2 (Balsam, Deich, O’Connor, & Scopatz,
1985). However, we chose Turbo Pascal because it
produces tight, fast code, and the compiler (which users
must purchase separately) is inexpensive (approximately
$100). Pascal is also relatively easy to learn, and is taught
at most academic institutions; users who wish to program
their own extensions should find it easy either to become
or to obtain a suitable programmer.

MED-PC FEATURES

The MEDSTATE Dialect of State Notation

MED-PC is based on the MSN dialect of state nota-
tion. MSN is a hybridization of state-notation dialects to
which new language elements and features have been ad-
ded. Figure 1 lists several MSN commands, including
many language elements not commonly implemented in
state notation.

Installation

The MED Associates interface chassis holds up to 16
input and/or output cards (each with eight channels), but
the number may vary according to the user’s needs. An
installation program, INSTATE, is used to create a sys-
tem configuration file name MEDRTM.PAS. The query-
driven installation process, which takes about 5 min to
complete, also partitions the input and output cards into
a series of logical boxes. Individual boxes may have a
maximum of 8 inputs and 32 outputs, subject to the limi-
tation that the system may contain a maximum of 128
combined inputs and outputs. Boxes need not have iden-
tical configurations; one box may have 2 inputs and 6 out-
puts, while another box may have 3 inputs and 16 out-
puts. During installation, the user also selects the polling
rate (determined by the computer’s processor speed) and
options that pertain to data storage.

A particularly interesting feature of the system is the
SHOW command. SHOW allows each box to display the
value of as many as six variables, along with their descrip-
tive labels. This feature facilitates the monitoring of ex-
perimental sessions. Another useful feature is the addi-
tion of constants so that outputs and inputs may be
referenced by a descriptive label, rather than by a num-
ber. For example, ‘*5#R "LEFTLEVER: ON "FEEDER
— S2”’ is considerably more self-documenting than **5#R
1: ON 3 — §2’°. All variables in MSN programs are im-
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discarded.

Command__|__Example | __Comments_on_Example
DATA DEFINITION COMMANDS
DIM | DIM A=100 | Declare an array named A with elements 0..100.
| I
LIST | LIST B = 1w, 2n 3 | Declare array B with B(0)=1", B(1)=2", B(3)=3"
I |
” | ~FEEDER = 1 | Declare a constant named FEEDER with a value of 1.
| I
#R | __5#R1:ON_"FEEDER--->S2 |__After 5 responses _on_input 1_activate feeder and_goto $2.
INPUT COMMANDS
#START | #START:ON "LIGHTS--->S2 | Activate lights after keyboard start command is issued.
| |
#1 | Vv #T ---> 82 | Goto S2 after the amount of time specified by v.
| I
#2 |  #21--->82 | 1f synchronization pulse 1 is received goto $2.
| !
" | 2":0FF “HOPPER ---> 32 | After 2" deactivate hopper and goto state 2
I |
! | 60'--->STOPABORT | End session and save data after 60'.
| I
! |__60" 1 5#R1 ---> S2 |__Goto S2_after 60" OR 5 _responses on_input 1.
QUTPUT COMMANDS
ADD | #R1: ADD C --->S2 | Increment variable C after every response on input 1.
| I
IF | #R1:IF C=50 (QGO,aQuUIT] | 1f C equals 50 then continue session else save data and
| aG0:--->S2 | end session.
| AQUIT:--->STOPABORT |
I [
LIST | 2"%:0FF A; LIST A=B(I);ON A--->SX | Every 2" turn off output A, assign a value to A
| | sequentially drawn from array B, then turn
| | on output A.
| I
OFF | 2":0FF "FEEDER ---> S2 | Deactivate the output named "FEEDER.
| |
ON | 60" : ON “FEEDER ---> §2 | Activate the output named “FEEDER.
| I
RANDD | 2":0FF A;RANDD A=B;ON A--->SX | Same as LIST example, but A is drawn pseudorandomly
| | without reptacement, from array B.
| I
RANDI | 2":0FF A;RANDI A=B(1);ON A--->SX | Same as RANDD example, but with replacement.
! !
SET | #R1:SET D=E/F--->SX | Arithmetic assignment of E/F to D.
I |
SHOW | #R1:ADD A;SHOW 2,RESP,A--->SX | Every response increments A and displays
| | A's value in screen channel 1 with the labet "RESP".
I I
SuUB | 1":SUB X--->SX | Every 1" decrement the value of X by 1.
I I
WITHPI | #R1:WITHPI=2500 (QRF,aNORF] | After every response on input 1 pass through a
| @RF:ON "FEEDER--->S2 | probability gate set to 2500/10000; there is a 25%
| @ANORF:--->SX | probability of operating the output named “FEEDER.
I |
2 | S#R1:ON “FEEDER;Z"RF--->S2 | Send synchronization pulse named "“RF.
| I
= |__1":~SOUNDON(100);~ --->SX | __Execute_user-defined Pascal procedure named SOUNDON.
TRANSITIONS
$X,$1-832| 2":0FF "“FEEDER--->S5 | Goto state 5. SX indicates no transition.
I !
STOPABORT| 50#Z"RF--->STOPABORT | After 50 reinforcers (signaled by Z pulse named "RF)
AND | end session, shut off all outputs and retain data.
| STOPKILL is similar to STOPABORT, but data are
|

I
STOPKILL |
I

Figure 1. Brief examples of MSN commands.



plemented in Pascal as real (decimal point) numbers. This
extends the flexibility and usefulness of computations per-
formed within MSN programs. The overhead normally
associated with the use of real numbers is mitigated by
using a math coprocessor. Perhaps the most important fea-
ture of MSN is the ability to declare up to 10,000 array
elements per program; recording complete interresponse-
time data for most experimental paradigms should there-
fore be feasible.

Steps in Producing Executable Programs

MSN source code is turned into executable (.EXE) pro-
grams via a sequence of steps beginning with the crea-
tion of a source file (with a .MPC file name extension).
Turbo Pascal’s integrated environment is particularly well
suited to produce such files. Source files are then
processed by a program named TRANS. At this point,
a run-time file name is declared with a file name exten-
sion of .RTM; eventually the Pascal compiler will gener-
ate a file with the same name, but with an executable
(.EXE) extension. TRANS permits specification of up to
eight different state-notation programs that will be trans-
lated and compiled into the run-time (executable) pro-
gram. TRANS then translates the specified MSN pro-
grams into new run-time programs.

TRANS logs all detected syntax errors to an error file;
translation does not stop when errors are detected. The
error file documents the name of the source program, the
offending line number, the text of each offending line,
and a description of the error. Many compilers and trans-
lators halt after detecting a single error, but TRANS’s
approach substantially accelerates program development.

When all bugs have been removed from the MSN pro-
grams and they have been successfully processed by
TRANS, the run-time (.RTM) file is compiled using TPC
(R), the command-line version of the Turbo Pascal com-
piler. In addition to compiling and linking the out-
put files of TRANS into an executable file, TPC links
these files with the installation data file (named

Cmd:

B:1S: 1E:1G: I; VI;7:18:03;0N:
B:2 S: 2 E: 1 G: 1 VI;7:18:03;0N:

B:3 S:10 £: 2 G: 1; FRSFI30;T:18:03;0N:

B:4 S:11 £: 2 G: 1; FRS5FI30;T:18:03;0N:

B:5 S:20 E: 1 G: 2; FR5FI130;7:18:04;0N:
B:6 S:40 E: 5 G: 1; DRL;T:18:04;0N:
RSPS: 13.00 RFS: 2.00

B:7 S:41 E: 5 G: 1; DRL;T:18:04;0N:
RSPS: 24.00 RFS: 1.00

B:8 S: 3 E: 1 G: 2; VI;T:18:05;0N:

11/04/88 18:06:25 Speed warnings:
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MEDRTM.PAS) created by INSTATE and with optional
user-written Pascal procedures contained in a file named
USER.PAS. Upon completion of these steps, a program
is created which can be executed from the DOS command
line.

General Run-Time Features

All run-time programs provide a standard set of fea-
tures and commands designed to maximize the amount
of information displayed, minimize the likelihood of los-
ing data, and provide maximum flexibility to monitor and
modify the progress of experimental sessions. Particular
empbhasis has been placed on error detection, which be-
gins from the moment run-time files are executed from
DOS. The first error detection routine determines whether
a powered-up interface is present; if an interface is not
found, the operator is asked to indicate whether the ses-
sion should be terminated or should proceed in emula-
tion mode (which permits debugging of programs without
an interface). After an interface is connected or emula-
tion mode is selected, a standard display is presented. The
display is comparable to the first and last lines of the
screen portrayed in Figure 2.

The top line of the screen lists the keyboard commands
available. Commands are invoked by typing the first let-
ter of the command name. Most commands generate ad-
ditional prompts in the menu area between the command
line and the first station-status line (which begin with
*“B’*). The bottom line is a status line that shows the cur-
rent date, time, cumulative timing errors (speed warn-
ings), name of the run-time file, and bytes of available
memory.

Experimental procedures are assigned to specific boxes
with the ‘‘Load’’ command. The operator then indicates
which MSN procedure should be loaded, followed by the
subject, experiment, and group identification numbers.
Boxes may be loaded without interfering with the timing
and processing of events in currently active boxes. After
a box is loaded, a status line, similar to the second non-

A)bort C)1r B)atch D)mp I)dnt J)rnl K)il L)}d Q)t R)sp S)tart V)ar

23
23

23
23
23
BRMIC.EXE Free memory: 125846

Figure 2. A representative MED-PC run-time screen.
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blank line of Figure 2, is placed in the central portion of
the screen. It indicates, from left to right, that Box 1 con-
tains Subject 1, a member of Experiment 1, Group 1. The
MSN program running in Box 1 is named VI, the box
was loaded at 6:03 p.m., and Outputs 2 and 3 are turned
on. Immediately beneath the status line for each box is
a line reserved for the output of SHOW commands. For
example, Box 6 has a SHOW statement labeled RSPS with
a value of 13.00.

A variety of other keyboard commands are provided.
‘‘Identifier’” changes the subject, experiment, and group
numbers of a currently executing box. ‘‘Abort”’ and
“*Kill’’ are keyboard versions of the MSN STOPABORT
and STOPKILL commands described in Figure 1. Inputs
may be simulated from the keyboard with the ‘‘Response’’
command. ‘‘Start’” generates a signal detected by the
MSN #START command.

The “‘Variables’” command allows the user to view and
alter the contents of arrays and variables. This feature
facilitates debugging and setting of experimental
parameters at run-time. The ‘‘Journal”> command pro-
vides information on the history of all loads, aborts, kills,
and data dumps since the initial loading of the run-time
program. In addition, a ‘‘Batch’’ facility can be used to
record keystrokes to a disk file for subsequent playback;
this feature is especially useful when a large number of
parameters are routinely set with the ‘‘Variables”
command.

Data Recording

Data from sessions terminated at the keyboard or by
transition to STOPABORT may be written to disk with
the *“Dump’’ command. Writing a disk file is an extremely
time-consuming task, so the ‘‘Dump’’ command will only
write to disk if no boxes are currently active (an error
message is printed if any boxes are active). Data from
specific stations may be abandoned, but the operator must
verify such requests; this is a safeguard against acciden-
tal data loss. Although data recording and analysis prac-
tices vary widely among laboratories, MED-PC accom-
modates this variability by providing two schemes for
naming and segregating data, and three formats for struc-
turing their contents. One segregating system places all
data from all subjects into a single file, named according
to the date of the session. The alternative format places
data from individual subjects into separate files that grow
larger across sessions; under this scheme, files are named
according to subject, experiment, and group identifiers.

Regardless of the growth scheme used, any of three file
structures may be produced. The first structure is a fully
annotated file in which background information (e.g., date
and time of each session) is included along with explana-
tory labels. The values of all variables are listed in al-
phabetical order, one variable per line, after which the
contents of all array elements are listed in five columns.
This format produces a virtually self-documenting print-
out, but it consumes a large amount of disk space.

The second type of file format is a nonannotated struc-
ture that includes virtually all of the information provided
in the annotated format. However, in the nonannotated
structure, all nonnumerical data are removed, including
labels and blank spaces. For example, a session’s start
time is printed by placing the hours on one line and the
minutes on the following line. This format conserves space
at the expense of legibility, and assumes that a computer
program will be used for data analysis; it would be
difficult to visually inspect data written in this format. This
format, however, requires less disk space than the fully
annotated structure, and is easier to analyze with com-
puter software.

The third and most efficient file structuring option
produces a stripped file with a structure similar to the
nonannotated file. However, this structure includes only
background information and the contents of a single data
array which must be named C; all other arrays and sim-
ple variables are omitted from the dump. This format
should be particularly useful when collecting very large
data sets.

Safeguards against accidental data loss include an op-
tional disk identification/verification system. This system
assures that data are dumped onto a given disk only if
the disk holds a file named ‘‘ID’’; this file must contain
subject, experiment, and group numbers that correspond
to those that are being dumped. If ““ID’’ is missing, or
contains inappropriate data, then the operator may either
override verification or attempt to insert the appropriate
disk. Verification prevents data from being fragmented
among multiple disks and files when using the filing sys-
tem in which data from successive sessions are appended
to a growing file segregated by subject, experiment, and
group number.

Further safeguards against data loss include determin-
ing the amount of free space left on data disks prior to
every dump. If enough space remains for the present dump
but not enough for another dump of the same size, a warn-
ing message is generated. If insufficient space remains
for even the present dump, the system requires the oper-
ator to insert another disk.

TECHNICAL ASPECTS

Timing

Two basic methods may be used to determine the flow
of execution of real-time programs. The first method is
the interrupt-driven approach, in which high-priority
events suspend the processing of lower-priority tasks. Af-
ter executing the code that caused the interruption, the
system returns control to the original task at the point at
which it was interrupted. For example, a typical system
might allow responses to interrupt screen updates in order
to determine if schedule contingencies require feeder oper-
ation. In theory, interrupt-driven software has the desir-
able feature of allowing the user to react to important
events as soon as they occur. This approach works



properly, though, only if interrupts do not occur in very
rapid succession; if they occur too rapidly, some inter-
ruptions must be queued until the preceding interrupts
have been serviced. Under these circumstances, the lat-
ency to service a given event is indeterminate and poten-
tially very long. Interrupt-driven systems, unless they are
very simple ones in which periodic clock ticks generate
interrupts, tend to be difficult to write, maintain, and
modify. Furthermore, interrupts actually degrade system
performance because of the processing overhead they re-
quire {(e.g., pushing and popping the stack and the pro-
cessor’s flags when entering and exiting the interrupt
routines).

An alternative approach to determine the handling of
real-time programs is polling, in which very small sec-
tions of code are executed in rapid succession. There are
a number of variations to this approach, but the one im-
plemented in MED-PC will be described. Our approach
defines two sections of code: (1) high-priority sections
that control and sense experimental events, and (2) low-
priority sections that perform functions such as screen up-
dating and handling of keyboard input.

High-priority sections are serviced on a fixed, periodic
time schedule. The frequency with which active high-
priority sections are serviced is referred to as the system
resolution, and typically has a value of 50 msec on 8088-
equipped PCs and 25 msec on 80286 PCs. Conceptually,
experimental sessions are divided into 50-msec ‘‘time
slices’” (assuming an 8088 system). At the beginning of
each time slice, a new ‘‘sweep’’ is initiated. At the be-
ginning of a sweep, the status of all inputs is recorded
and the system clock is read. Active experimental cham-
bers are then sequentially serviced, during which the sys-
tem updates response counters, adjusts output channels,
tracks the progress toward satisfying schedule contingen-
cies, executes user-written procedures, and so forth. Af-
ter servicing all chambers, the system consults the milli-
second timer in the interface to determine the duration
of the sweep. Sweeps longer than 50 msec result in a
speed warning on the screen and immediate initiation of
the next sweep. However, the overwhelming majority of
sweeps require substantially less than 50 msec. Low-
priority events are serviced if at least 40 msec remain be-
fore the scheduled starting time of the next sweep, or if
low-priority events have not been serviced for at least
500 msec. The latter provision is necessary to prevent
keyboard lockups. After low-priority events are serviced,
the system continuously monitors the timer until it is time
to initiate the next sweep.

Programmers sometimes avoid polling techniques be-
cause of concerns about the possibility of missing
responses of short duration. This concern is well founded
if the polling software is relatively slow and the interval
between responses is less than the system’s resolution.
MED Associates’ input cards drastically reduce the like-
lihood that responses will be missed due to short dura-
tion, however, because onboard memory locations latch
indefinitely until they are sampled. The other concern,
that of interrespone times being shorter than system reso-
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1 \FRSFI30
2 S.s.d,
3 sl
4 S4R1:0n 1--->52
5 S2,
6 1M:0FF 1--->S1
7 s.s.2,
8 sl,
9 30"--->52
10 s2,
11 14R2:0n 1--->53
12 s3,
13 J1":0FF 1--->S1

Figure 3. A simple MSN program for a concurrent fixed-ratio 5
(left manipulandum), fixed-interval 30-sec (right manipulandum)
schedule. Line numbers are not part of the syntax of MSN, but have
been added to the left margin for clarity.

lution, is alleviated by having the system poll inputs at
a rate that exceeds the maximal local response rates typi-
cally encountered in conditioning paradigms. Ex-
perimenters who require extraordinarily rapid polling may
match their choice of PC to their requirements simply by
acquiring an especially fast computer system.

Translation of MEDSTATE NOTATION
to Pascal

Programs written in MSN consist of independently
functioning code segments known as *‘state sets.”’ Each
state set contains several states, each of which has one
or more statements. Figure 3 shows the listing for a con-
current fixed-ratio 5 (FR 5), fixed-interval 30-sec (FI 30)
schedule. Lines 2-6 constitute State Set 1 and dictate that
program execution begins with line 4. After five responses
on Manipulandum 1, Output 1 is activated and control is
transferred to State 2. After 0.1 sec, Output 1 is deacti-
vated and control is returned to State 1. The code of State
Set 2 (lines 7-13) executes in parallel to State Set 1, but
is totally independent of events in State Set 1. State Set 2
should be recognizable as an FI 30 schedule on
Manipulandum 2.

Although state notation’s parallelism is alien to most
programmers who use conventional languages, there is
a surprisingly direct correlation between state sets and cer-
tain features of structured languages. The key to trans-
lating MSN to Pascal resides in exploiting the structural
similarities between state sets and Pascal case statements.
Case statements are conditional control structures simi-
lar to, but more powerful than, ““if’’ statements in BASIC
or FORTRAN. For example, the following Pascal frag-
ment would write ‘“‘One’’ on the screen:

A= 1;

Case A of
1:Write(’One’);
2:Write("Two’);
3:Write("Three’);

end;

Changing “‘A := 1""to “‘A : = 3"’ would place ‘‘Three’
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grocedure FR5FI30(Box:integer);
egin
F 5FI30Record£Box] Do
{StateSet 1 Follows}
Case StateSet[Box][1]} of
1:be$1n{State 1}
Response[Box&[l Then
ResBonseCount[ ox}[1 [ ] = ResgonseCount[Box][ 1011 + 1;
esponseCount{Box][1][1] >
begin
TurnOn(Box,l%
ResponseCount[Box][1
Timer[Box][l] = Cur
StateSet[Box][1] :=
end;
end; {State 1}
2: be%1n(3tate 2}
CurrentTime >= Timer[Box][1] Then

begin

TurnOff{Box,1);
Timer[Box] [1] CurrentTime + TimeValue[Box][11[1];
SgateSet[Box [1] 1= 1;

end;{State 23
end;{StateSet 1

{StateSet 2 Follows}
Case StateSet[Box][2] of
be$1n{5tate 1}
CurrentTime >= Timer[Box][2] Then

T?mer[Box [2] = CurrentTime + TimeValue[Box]{2]{2];
StateSet[Box [2 =2

end;
end {State 1}
2: be$1n(State 2}
Response[Box][Z] Then
ResponseCount[Box 2][ ] ResponseCount[Box][Z][Z] + 1;
If ResponseCount[Box][2][2] > 1 Then
begin
TurnOn(Box,1);
ResponseCount[ ox]{2][2 0;
T1mer£80xg[2] ;= Curre ntT1me + TimeValue[Box][2][3];
Sgate et[Box]i[1] := 3;

end;
end;{State 2}
3:be$1n{5tate 3}
CurrentTime >= Timer{Box][2] Then
begin
TurnOff(Box,1);
TimergBox [2] := CurrentTime + TimeValue{Box][2][1];
StateSet[Box]|
end;
end;{State 3%
end;{StateSet 2
end;{With}
End; {Procedure}

-sn_.-

:= 0;
gn%T1me + TimeValue[Box][11[2];

b

{MAIN LOOP}

Begin
Repeat

DoLowPriorityTasks;

GetTime:

For Box := 1 to 8 Do

begin

Case ProcedureToRun[Box] of

1:FR5FI30(Box);

2:Some_Other Schedu]e(Box)
end;

end;
Unti] QuitSignal = True;
End.
Figure 4. A Pascal code fragment similar to the one which TRANS would generate for

the MSN code listed in Figure 3. Note the correspondence between state sets and case
statements.



on the screen. The following code is an equivalent BASIC
fragment:

10A =1
20 If A = 1 Then Print “‘One”’
30 If A = 2 Then Print ““Two”’

40 If A = 3 Then Print ‘‘Three’’

A case statement differs from a series of ‘‘if”” statements
in that a maximum of 1 alternative may be executed on
each pass through a case statement; in the preceding case
statement, changing the third line from *‘1:Write('One’);”’
to ““A := 2"’ would not place ‘“Two’’ on the screen, un-
less the case statement was executed a second time without
resetting A to 1.

Translation of MSN to Pascal is achieved by treating
each state set as a case statement and each state as a case
statement alternative. Figure 4 shows simplified Pascal
code that corresponds to the concurrent FR 5, FI 30 MSN
code in Figure 3. The Pascal code is conceptually simi-
lar, but not identical, to the one that TRANS generates.
A two-dimensional array named StateSet controls the ex-
ecution of each state set. For example, StateSet[Box][1]
contains the current state of State Set 1 for each box. Tran-
sitions between states are accomplished by altering the
value of this variable. For example, when program exe-
cution begins, State Set 1 is in State 1 (by default). After
a response on Manipulandum 1, Output 1 is turned on and
transition to State 2 is effected by setting the value of
StateSet[Box][1] equal to 2.

Each array in Figure 4 is subscripted by a variable name
“‘Box,”” which enables multiple boxes to share proce-
dures. For example, the main loop of the example (at the
bottom of Figure 4) specifies that Boxes 1 through 8 will
be sequentially serviced. Assuming that all boxes are run-
ning the FR 5, FI 30 program, then FR 5, FI 30 would
execute only those statements appropriate to the current
status of Box 1 by accessing the values stored in Ele-
ment 1 of its arrays (StateSet, Response, ResponseCount,
etc.).

This system of storing data in arrays and records for
each station facilitates the sharing of single procedures
among multiple stations; code does not need to be redun-
dantly generated for each box. Furthermore, this is the
key to assigning procedures to stations at run time. In the
main loop in Figure 4 is a case statement controlled by
an array name ‘‘ProcedureToRun.’” This variable stores
the procedure number assigned to a given box when it
was loaded by the experimenter. Thus, Box 1 would ex-
ecute FR 5, FI 30 if the experimenter set ProcedureTo-
Run[1] equal to 1 via keyboard input; alternatively,
Some__ Other__Schedule would execute if ProcedureTo-
Run[1] had been set to 2. In reality, the code produced
by TRANS is conceptually similar, albeit more complex
than the code supplied here. It is hoped that this explana-
tion will serve as a useful starting point for other
programmers.
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CONCLUSION

Future Developments

We are currently in the process of testing and develop-
ing an enhanced version of MED-PC. Enhancements are
expected to include an expanded system for displaying
data via SHOW commands. Presently, up to six data
values per box may be displayed, and all boxes may dis-
play their data simultaneously. The new system will per-
mit each box to display up to 40 values in a window at
the bottom of the screen. Data for a given box will be
displayed for 5 sec, followed by data for the next box,
and so on. The order and duration of data presentation
will be user-controllable.

We are also considering new language constructs, in-
cluding: (1) interbox Z pulses to facilitate synchroniza-
tion of events across boxes, (2) mechanisms for sharing
variables among boxes, (3) standard commands for plac-
ing text on the screen, (4) an input command named #F
which will treat function keys as inputs (e.g., #F10—S2),
(5) parenthetical mathematical expressions and computed
array subscripts, and (6) faster program execution.

Availability

MED-PC and associated hardware is available from
MED Associates, Incorporated, Box 47, East Fairfield,
VT 05448, 802-872-3825.
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