
Behavior Research Methods. Instruments. & Computers
/989. 2/ (2). /26-/29

Standards for PCM files

JOHN MERTUS
Brown University, Providence, Rhode Island

One problem facing the speech research community is how to share complex programs and AID
sampled data. This paper is a general discussion of different approaches to sharing and the ad
vantages, disadvantages, and implications of each method. The focus is on setting a standard
for PCM (Pulse Code Modulated) data files and how this could be accomplished.

At the Department of Linguistic and Cognitive Sciences
at Brown University, we have five different types ofcom
puters on our local ethernet: VAXes, PC/AT equivalents,
Macintoshes, a Celerity, and a TRACE Multiflow mini
super. Our feeling is that no single system or even a single
vendor can provide all we need. Rather, the network is
our computer system. The VAXes are used for speech
analysis and waveform editing or program development,
the ATs are used as subject testing stations, the Celerity
is used for graduate student program development, the
TRACE is used for research number-crunching, and the
Macintoshes are used for word processing.

For this reason, we try to write analysis programs so
that data files, most notably the ftles that contain sam
pled audio (PCM, or Pulse Coded Modulated) data, can
be transferred directly to each machine and used without
conversion. Thus, most users ship files back and forth
without thought of compatibility. But our laboratory is
isolated, and the types of files supported are limited. Pro
grams that cannot be converted to read our files are
doomed to a short life. Likewise, our programs are not
used in many places other than Brown. Furthermore, I
find myself unable to fulftll users' needs for more modern
programs and different types of analyses.

For example, recently I received a program that runs
digital spectrograms on an mM PC/AT. It was a nice pro
gram, with good displays and menu commands. It also
ended up in my trash can. Why? Because the cost of sup
porting it was too high for the benefit. I call these pro
grams "black boxes" because neither the source code nor
a detailed explanation of how they work is available.

We at Brown are not at all unusual; most researchers
find themselves in the same position. If the speech
research community defines a set of standards that are
carefully followed, it would allow all of us to share pro
grams, even black-box software, and use them produc
tively. In order to make that spectrogram program useful
to Brown, it would have to read a standard file format
and be able to play out what is currently being displayed.

Below is a discussion of how I see this could be done.
It is in no way intended as a proposal, but rather as

Correspondence may be addressed to John Mertus, Department of
Cognitive and Linguistic Sciences, Brown University, Box 1978,
Providence, RI 02912.

something to open up further discussions. Furthermore,
I am an AT and VAX programmer; I do not understand
Macintoshes and I warn that this discussion will be slanted
toward the AT and VAX machines and their operating
systems. These ideas come from discussions about such
issues with various people, most significantly Terry Neary
of the University of Alberta, and Philip Rubin and Lance
Maverick of Haskins Laboratories.

For various reasons, we cannot look to large software
companies, for example ILS, to lead the way with stan
dards. First, as a group we do not spend enough money
to affect their sales. Second, since these companies have
committed vast resources to their proprietary formats,
changing them would cost too much, both in money and
in compatibility. But most of all, the more they keep their
software different, the more they force the user to con
tinue buying their systems.

It has been shown time and again (UNIX as the prime
example, KERMIT as another) that a public standard,
even a mediocre one, is better than no standard at all.
Furthermore, a standard may become de facto if it is fairly
and reasonably done and fulfills a need.

FILE PORTABILITY

We would like a standard sampled format for audio
data. However, this begs the more fundamental problem
of the desired approach to file portability. For now, I will
mention the three approaches that I use. I am sure there
are other approaches.

First, the software should employ a binary standard.
This means that files can be shipped from one machine
to another and read directly by the programs on the
machines. This standard is very difficult to define and re
quires good, careful programming.

Second, there should be a conversion standard. This
means that files generated on one machine can be con
verted into the host machine format semiautomatically.
This is more difficult than it sounds because one has to
identify the type of file, the format of the data, and
so forth.

Third, software should conform to ASCn standards.
Here, the header and the data are converted into ASCn,
which can be read by all machines (even EBDIC systems).

Copyright 1989 Psychonomic Society, Inc. 126



Of course, there are no sharp lines dividing these stan
dards, and no standard is best in all situations.

I use the binary standard for all sampled audio data,
the conversion standard when ftles are created in float
ing point on the Multiflow and shipped to be displayed
on the VAX, and the ASCII standard for the files that
I might want to read and modify.

The Binary Standard
This may be the most difficult standard, but it offers

the best rewards. It is impossible to deal with all computer
architecture, but most of the traditional machines such as
VAXes, ATs, Macintoshes, and most RISC machines
have a standard 8-bit, byte-oriented architecture.

Assuming only an 8-bit architecture, it seems possible
to define a binary standard, that is, a standard that allows
both for transparently shippingdata files between machines
and for running black-box programs on the same machine.
The latter requirement means that we must agree on a
PCM format that is general enough to support different
hardware. The former requirement will necessitate some
sort of internal translation. This should not be too hard
because on these machines the subroutines for reading and
writing the data can be made to behave in the same man
ner. Thus, as part of the standard, header definitions and
basic I/O subroutines could be distributed, making the
standard tighter and easier to use.

But even assuming an 8-bit architecture, there may be
a problem of which byte has more significance. This can
be dealt with in at least two ways.

First, a byte in the header defines which is the high byte
or bytes. But whenever the data is read in, and is not in
the correct intrinsic format for that machine, the bytes
are swapped. The main disadvantage becomes the over
head of this type of conversion. If the data is read just
to be analyzed, the overhead of a single subroutine that
transparently gets data from the file can be tolerated. But
in the real-time case, usually machine-dependent routines
are necessary for fast reading, and byte swapping may
not be possible due to time constraints.

Second, if the format does not agree with the intrinsic
machine format, when the file is first referenced, the pro
gram converts the entire file in place and changes the
format byte in the header. From then on, the file can be
referenced without any conversion overhead. The major
disadvantage of such an approach is that write access is
necessary to a file that has not been converted. Thus, one
user cannot simply look at the data of another. Strictly
speaking, this is not a binary standard but, as mentioned
above, the line demarcating the two is fuzzy. Because the
data size andposition in the files does not change, I choose
to defme this type of internal conversion as belonging to
the binary and not conversion standard. Sometimes I call
this a translation standard.

A combination of both methods could also be used.
especially if general purpose routines for that purpose are
written and are well documented.

The same problem occurs. but to a much larger extent.
for floating point. Here, althoughthere are IEEE standards.

STANDARDS FOR PCM FILES 127

nothing pleases everyone. so most systems use different
floating-point representations. Again, assuming an 8-bit
byte architecture, then floating-point words usually occupy
4 or 8 bytes. To ship floating-point ftles back and forth,
it becomes essential to deal with this incompatibility. Both
of the integer solutions can be used. This area needs much
more exploration.

A major disadvantage of the binary standard is the tight
computer architecture to which it is tied, and the fact that
programs must be rewritten to deal with the different types
of byte significance and floating points.

The Conversion Standard
At first glance, conversion seems to avoid reprogram

ming by making the data translation occur outside the pro
gram rather than inside it. However, this has major im
plications for transparent use.

It is not hard to write a program that converts data from
one machine to another or translates files for one program
type into files for another. However, bookkeeping be
comes more difficult. For instance. files from two or more
systems may result. A conversion program should. at
minimum, (1) support wildcard file names. (2) not con
vert files that have already been converted. and (3) know
from the file how to convert it. The latter two require
ments imply that ftles from different machines or differ
ent programs need to be marked differently (i.e .• global
information about where the data came from and what
programs use them). From past experience, the amount
of global information should be kept to a minimum. Thus,
careful definitions for the header are required; in fact,
I would claim that these definitions should be as careful
as the binary standard.

Besides reprogramming, an obvious advantage of the
conversion standard is that it supports different computer
architectures and can deal with wildly different file for
mats. But a binary standard for 8-bit machines can also
be a conversion standard for all machines.

Still. for transparent use, having different file formats
is bad. For example. one could have several black-box
programs for the same machine written by many people
with many different file formats. Unless file extension
narning conventions are strictly enforced. the user will
quickly lose track of which program takes which type of
file. and so forth.

One of our IBM ATs is DECNetted to our VAXes; that
is, a program on the AT can open a ftle on the VAX and
read it. With a binary standard, it is possible to open that
file transparently. With a conversion standard, one must
copy the file, convert it, and then work with it. Rather
than considering this a special case, such sharing is be
coming more and more commonplace.

I think the conversion standard is fine for some data.
but I would argue that it is not acceptable for PCM files.
If the conversion route is followed. there should be one
PCM format for each operating system/machine. Thus.
reprogramming is still necessary. It would be just as
simple to build a binary standard. Also, a good binary
definition will allow conversion programs to be written



128 MERTUS

for machines, such as supercomputers, that do not use
8-bit architecture.

The ASCn Standard
Certainly the ANSI ASCn standard is one of the most

universal in the entire computer industry-only ffiM re
mains a holdout on its high-end systems. It is also very
easy to dump data in ASCn format and read it back. But
it has major problems.

There are at least two ways to represent different types
of data within an ASCn me. First, by position; that is,
the first word is the sampling rate, the second is the size
of the me, and so forth. The second method is by key
word information; that is, the me contains lines such as

Sampling Rate ooסס2=

File Size =12448.

However, for large files, such a representation con
sumes a great deal of disk space and the cost of reading
in the data is very high. Even in this day of gigabyte disks
and 5-mips machines, disk space and central-processing
unit power are and will remain at a premium. I like ASCn
for files that may be read or edited by people, but it is
wholly unsuitable for the real-time PCM meso

PCM FILES

Now we come to the crux of the matter-how to repre
sent PCM meso I am not married to the ideas represented
here and am not proposing them as the standard. They
are just the first steps in defining a header.

I really think we should go for a binary standard. I be
lieve it is workable. The first question is where the header
should reside-at the beginning of the data me or in a
completely separate me. I strongly support placing it at
the beginning of a me. Joanne Miller of Northeastern
University encountered problems when her lab separated
the header from the me. Having two files around caused
all sorts of problems.

Next, how should the PCM data be represented? There
can be bytes in the header telling the IEEE type of the
floating point and the integer type. Furthermore, another
byte can tell the format of the PCM data (i.e., if it is float
ing point or integer, and how large). Conceivably, one
could represent the PCM data in a variety of ways. But
is there any reason for not using only integers? Or for
using only 2-byte integers? This is another area to study.

Should the data be only PCM data or should it per
haps allow other sampled types, such as differential or
/L-companded? Let me digress a moment before address
ing this issue.

A Universal Audio Command
One of the most useful features of a speech-analysis pro

gram is the ability to hear a section of the speech wave
form while within that program. At first glance, a stan
dard that supports the hundreds of AID and DfA boards
of the real world seems impossible to define. However,

one solution is to require all programs to have the ability
to run another program. Thus, a command line can be
passed to the operating system for playing out a section
of the me. The individual system can have such a pro
gram tailored to the specific hardware.

For MS-DOS, UNIX, or VMS, the command could
look like:

PLAYOUT fI1e=junk.pcm repts=4 start= 1200 stop=4800

This command is driven by keywords. If a keyword is
not specified, a standard default would be assumed. For
example, the default for "start" could be 0 and for "stop"
the end of me. Another similar idea can be used on the
Macintoshes, which do not easily support command lines.

Of course, this does not prohibit specialized programs
such as waveform editors, where-in order to have a
reasonable response-the audio is directly tied to the pro
gram. This standard just requires that the program be able
to pass the PLAYOUT command line to the operating sys
tem, and in most operating systems that is trivial.

PCM Files Continued
I discuss a "universal" audio command at this point

because it greatly affects the data format of a PCM me.
The current class of machines is hard-pressed to output
dichotic files at 20K per channel from disk. Thus, one
cannot afford a large overhead in reading in the me. Even
if we are to agree that all data is in 16-bit PCM format,
this will not be enough. The reason is hardware. Do we
try to dictate 12-bit bipolar? I think at minimum we must
support different bit resolutions and the different formats
of unipolar and bipolar.

The question becomes, How can this be done? I do not
have a totally satisfactory solution, but below are three
alternatives.

First, the PLAYOUT program could create a new me
in the proper format and play that out. This could be very
time consuming.

Second, the program calling the PLAYOUT program
could convert the me before requesting a playout. Because
the calling program may have been written for different
hardware, the formats acceptable to the PLAYOUT pro
gram must somehow be coded on the current machine and
not hardwired into the calling program.

Third, the PLAYOUT program could convert the me
once and only once. Then the calling program must reread
the file header so that proper data translation will take place.

In each of these cases, the calling program must be
able to support multiple file formats. As mentioned above,
that is not hard at all. For example, a routine called
"get_FP_buffer" in C and Pascal, or "GetFPB" in
FORTRAN, could be written that has the me header as
one of its arguments and returns the PCM data as a
floating-point buffer with zero voltage corresponding
to O. Distributing such subroutines now makes it easier
for programmers to follow these standards. In fact, it
makes writing programs easier because the I/O has already
been done.



The PCM Header
Anotherarea that needscareful examination is exactly

what is in the header. That, of course, dependsupon the
user community. Striking a balance betweena large and
unwieldy universal header and one that is too simple is
essential and is more of an art than a science.

My preference is for all data files, PCM or otherwise,
to have a few bytes in the beginning that mean exactly
the same thing. For example,

1. The first 4 bytes are an identifier usually coded in
ASCn, but not necessarily so. This identifier could be
something like "PCM1," standing for a PCM file,
version 1.

2. A word giving the offset into the file where the
data starts.

3. A wordor bytegivingthe sizeof the headerin bytes.
4. Somebytesgiving the representationof the floating

point and integer withinthe file (e.g., the IEEE floating
point standard assumed, order of significance, two's or
one's complement, etc.).

5. A byte givingthe format of the data in the file (e.g.,
floating point, doubleprecision, byte, short integer,etc.).

6. A link word to another header in the file. This is
zero if there is not another header.

The rest of the header, such as the size, sampling rate,
number of channels, and cursor marks, is something the
user community needs to hashout. Furthermore, we could
distribute simple subroutines for manipulating headers. For
example, thesecouldbe called "Make_PC~eader,"
"Write_~eader," and "Read-PC~eader."
This makes the programmer's job easy.

The idea of the link word is very important. The word
is zero, which meansthat nothingfollowsthe data or the
offset into a file where another file header starts. This
is useful for taking a PCM file and attaching to it infor
mation such as a mark file,

Some people would like a section of the header they
could define. However, using a link word avoids the
problemby reservinga sectionof the header for this pur
pose.The link wordsgo to anotherheader,andthisheader
might link to another. Each header has an identification.
Thus, a program can search out the specificheader, and
if one does not exist it can be addedat the end of the file.

My waveformeditor does this; when it reads in a large
file that takes a lot of processing in order to create the
display of the entire waveform, it first checks if such a

STANDARDS FOR PCM FILES 129

display is stored. If so, it reads it in; if not, it creates it
and storesit so loading the nexttime is quitefast. Another
person who reads my audio files wouldjust skip this data
altogether.

REPRESENTING STANDARDS

How can we go about achievingsuch goals? That is a
tough question, but I have a few ideas.

1. Thereshould bea goodwritten standard of theheader
contents.

2. There should be header files that define the PCM
header in the standard languages of FORTRAN, C, and
Pascal.

3. A few general-purpose subroutines for data manipu
lations written in FORTRAN, Pascal, and C should be
distributed. We mayor may not want this code to meet
the ANSI standard definitions for those languages.

4. A template for the PLAYOUT program should be
distributed, which would make writing this machine
dependent program easier.

5. Mostof all, thereshould be an agreement by as many
labsas possible thatthey will support thecommon standard.

The finalquestion remains, howmuchsupportare peo
ple willing to give? Should we try to get funding to de
velop a standard? In the long run, that money would be
returned quickly. On the other hand, should we rely on
established laboratories to talkandtry to reachan accord?

CONCLUSION

Everyone agrees that a PCM standard would be very
useful and desirable. Initially, the cost will be very high,
and converting to a standard will cause much pain and
local incompatibility. However, in the long run the return
will be enormous. Imagine reading a paper about some
result using a new type of measurement, realizing that
it might shed some light on one of your own problems,
calling that person, findingout that he or she has an AT,
and receivingan executableimage over arpanet that you
can run right away on your data.

I think that goal is attainable, but to reach it each of
us will have to give a little. If we can come up with a
good standard, I pledge that the Linguistics Laboratory
at Brown will spend the necessary time supporting and
using it.




