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A common problem in the social sciences is to form
a set of relatively independent and internally consistent
scales from a large pool of items. Frequently, these
scales are formed by simply summing the responses to
keyed items. The problem, then, is to determine how
best to partition the initial set of items into subsets or
scales that are highly internally consistent and relatively
independent. A common alternative is to factor analyze
the interitem correlation matrix and then to select
items on the basis of factor loadings. Those items with
a high loading on a particular factor are combined into
a scale by applying unit weights to the items. This
method, although probably the most common scale
construction procedure, has several drawbacks: Inter­
item correlations are usually small (average interitem
correlations ~.3) and the sample sizes are usually not
much larger than the number of items. These problems
tend to lead to overfactoring (extracting too many
factors), unstable rotations, and generally nonsensical
solutions. In fact, because of the problems encountered
in factoring items, many experienced factor analysts
recommend against such procedures (Cattell, 1973;
Comrey, 1961; Nunnally, 1967). However, a sampling
of journals in the social sciences suggests that this
advice is rarely followed.

When the item pool is large (greater than 10-20 items),
when the item intercorrelations are small (between 0.0
and .5), or when the sample sizes are small, an alterna­
tive method that is particularly appropriate is cluster
analysis. Cluster analysis is a loosely defined set of
procedures associated with the partitioning of a set of
objects into nonoverlapping groups or clusters (Everitt,
1974; Hartigan, 1975). Although normally used to group
objects, occasionally cluster analysis has been applied to
the problem of grouping variables and, as such, is similar
to procedures of group factor analysis (Loevinger,
Gieser, & Dubois, 1953; Revelle, in press; Tryon &
Bailey, 1970). A disadvantage for scale construction of
many clustering procedures is that they do not include
basic psychometric decision rules to evaluate either the
quality or the number of clusters to extract. It is
possible, though, to combine psychometric principles
with clustering procedures. This combination results
in a simple but useful approach to scale construction,
and, for forming scales from items, may be compared
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favorably with more elegant factoring algorithms.
Clustering's advantage over more complex factoring
algorithms (principal factor, maximum likelihood, etc.)
is that clustering is specifically designed for the task at
hand: finding unit-weighted item composites that are
internally consistent and independent of other com­
posites. This is, of course, also the goal of factoring and
rotation procedures; and clustering and factoring
normally give similar solutions when the same number of
clusters (factors) is extracted (Revelle, in press).

The ICLUST (item cluster analysis) package of
programs is a group of routines for performing explora­
tory and confirmatory scale construction. The
exploratory routines use a hierarchical clustering
algorithm to determine an initial grouping of the
variables into clusters based upon the principle that
scales should be combined into higher order scales if
and only if the internal consistency of a higher order
scale is greater than that of its component scales. The
scales identified through this initial routine may then be
subjected to a step-down iteration procedure that
compares the overall quality of cluster solutions using
different numbers of clusters. Alternative cluster solu­
tions, and their fit to the very simple structure (VSS)
criterion (see Revelle, Note I), are presented for user
inspection. An alternative use of the ICLUST package
is to do confirmatory cluster analysis, which involves
defining certain sets of items as cluster scales and then
examining the internal structure of each of these scales,
as well as the quality of the overall solution. Yet a third
possibility is to do a mixed confirmatory-exploratory
analysis, in which certain items are forced by the user to
form scales and other items are assigned by the program.
Once again, statistics of clustering adequacy are reported
for this option as well.

ICLUST Algorithms. The ICLUST package makes
use of two different clustering algorithms. The first is
a hierarchical algorithm that is used for the initial
definition of clusters and for the evaluation of the
quality of individual clusters. This algorithm is used in
exploratory analyses to determine the number and
membership of unpurified clusters, and in confirmatory
analyses to determine the internal consistency of the
final clusters. The second algorithm is a nonhierarchical
one that is used for cluster purification, confirmation,
and for step-down iterations.

The hierarchical clustering algorithm may be sum­
marized as follows: (1) Find the interitem proximity
matrix. (2) Find the most similar pair of variables
in this matrix. (3) If the internal consistency of the
cluster formed by combining this pair ofvariables would
be greater than that of its two components, then
combine the two variables into a new (composite)
variable. If this test is not satisfied, return to Step 2
and find the next most similar pair of variables. (4) If
the test at Step 3 is passed, add the new composite
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variable to the set of previous variables, delete its two
component variables, and calculate the proximity of the
new composite with the remaining variables. (5) Repeat
Steps 2-4 until no more variables pass the increase-in­
internal-consistency criterion of Step 3. (6) Find the
value of the VSS goodness-of-fit criterion.

The proximity matrix found in Step 1 is the matrix
of Pearson correlations. In the case of dichotomous
items, this is equivalent to the phi coefficient. As a user­
controlled option, either the raw correlation or a
correlation corrected for cluster unreliability may be
used as the proximity measure. The reliability estimate
is the highest correlation an item has; cluster reliability
is estimated using coefficient alpha (Cronbach, 1951).
The effect of using the highest correlation as a reliability
estimate is to form the initial clusters from reciprocal
pairs of variables, that is, variables that have their
highest correlations with each other (McQuitty & Koch,
1975).

In Step 2, in order to insure that the clusters are
reasonably compact, and in order to make the searching
routine faster, a list is formed of the most similar vari­
able for each cluster variable. This list is then searched
for its maximum value and the program proceeds to
Step 3. When variables are combined at Step 4, this
maximum value list is updated. By limiting the search
to those pairs of variables in which one member or the
other is most similar to the other member of the pair, it
is possible to avoid clusters being formed from variables
that have higher proximities with other variables but
fail to meet the increase-in-internal-consistency criterion.
That is, if variables x and yare each more similar to
variable z than they are to each other, but neither x nor
y can combine with z because of the internal consistency
criterion, then x and y will not be allowed to combine
with each other.

Step 3 is the most important element in the ICLUST
exploratory routine. Two variables (or clusters) are
formed into a higher order cluster only if both of
two tests of internal consistency are passed. The first
test is that coefficient alpha (Cronbach, 1951) of the
composite should be greater than that of either of
its two components. This test is very appropriate when
single items are combined into a large cluster, and
its use has been suggested previously by Loevinger et al.
(1953) for the case of nonhierarchical clustering and by
Kulik, Revelle, and Kulik (Note 2) for the case of
hierarchical clustering. Unfortunately, for the case of
hierarchical clustering, the criterion is not very useful
for testing whether large clusters should be combined.
It has been shown (Revelle, in press) that, as the cluster
size increases, almost any two clusters will meet the
increase-in-coefficient-alpha criterion.

A more appropriate test for hierarchical clustering
is the application of a test for an increase in coefficient
beta. Beta is defined to be the worst split-half reliability
of a test (Revelle, in press). If coefficient beta of the

composite cluster is greater than the average beta of the
two components, then these two components should be
combined. If, on the other hand, beta of the composite
would be less than the average beta of the components,
then the composite would be less homogeneous than
these components and should not be formed. When
compared to coefficient alpha, the use of coefficient
beta always is more conservative and becomes even
more conservative as cluster size increases, but relatively
less conservative as cluster homogeneity decreases
(Revelle, in press).

To better understand the relationship between these
two coefficients of internal consistency, consider the
following example. Consider a test formed by combining
two unrelated subtests which themselves are internally
consistent. Assume each subtest has 10 items. Let the
average interitem correlation within each subtest be .25
and the average interitem correlation between the two
subtests be equal to 0.0. This means that each subtest
has an alpha of .77 and an average item-to-whole corre­
lation of .44. Since the two subtests are unrelated,
they should not be considered to form one test. But
the conventional estimates of internal consistency for
such a test would be high. In this example, alpha for
the entire test would be .73, and the average item-to­
whole correlation would be .31. These values are typical
for tests of such length. Coefficient beta, on the other
hand, being based upon the correlation between the
two worst halves of the total test, would properly
reflect that the total test is made up of unrelated parts.
In this example, coefficient beta would be 0.0. In
the case that a test is truly univocal, alpha and beta
will give similar estimates of internal consistency,
although beta, being based upon the worst split half,
will always be less than or equal to alpha. The "lumpier"
a test, the greater will be the disparity between alpha
and beta.

Although beta does give a better indication of the
lumpiness of a test than does coefficient alpha, it has at
least one serious drawback when compared to alpha.
Alpha is independent of the order in which items are
combined. Exact calculation of beta, on the other hand,
is dependent upon finding the worst split half of a
test. To find the worst split half analytically requires
considering all possible splits. For the 20-item example,
and considering only splits of equal size, this requires
examining 184,756 possible splits. Beta can be estimated,
however, by using hierarchical clustering procedures
(Revelle, in press). Thus, beta can be estimated by
hierarchical clustering procedures and also can be used
by these same procedures as a stopping criterion.

The application of the alpha and beta criteria for
forming higher order clusters allows for a dynamic
stopping criterion. Rather than stop clustering when
some arbitrary value of homogeneity is passed, ICLUST
will form clusters as long as the higher order clusters
are more internally consistent than their components.



CLUSTER ANALYSIS 741

and comparing them to the mean of the original squared
correlations.' This ratio is then subtracted from 1 to
give an index of fit:

This index is a psychometric goodness of fit, and it
should not be used for determining significance tests.
The distribution of the residual correlations found by
using Equation 2 is not known.

A problem with hierarchical clustering for scale
construction is that it is possible for items to be grouped
into clusters with which they do not have their highest
correlations.i To avoid this unfortunate consequence of
hierarchical clustering, ICLUST derives the initial cluster
solution using a hierarchical algorithm, but this solution
is then purified by reassigning items that have been
misclassified. The cluster purification algorithm may
be summarized as follows: (1) Identify the cluster
centroids. (2) Calculate item by cluster correlations.
(3) Assign items to the cluster with which they correlate
most highly. (4) Return to Step I until no more items
are reassigned or until a certain number of iterations
have been done.

The cluster centroids found in Step I may be either
those identified by the hierarchical routine (for an
exploratory analysis) or those prespecified by the user
(for a confirmatory analysis). For confirmatory runs
used to evaluate the quality of a particular a priori
solution, the initial centroids are formed from the
a priori scales.

In the exploratory mode, after clusters have been
determined by the initial hierarchical procedure with
purification iterations, the quality of the overall solution
is assessed by means of the VSS criterion. The initial
solution may then be "stepped down" to progressively
fewer clusters by repeated use of the cluster purification
cycle. At each step-down level, the cluster from the
preceding level that accounted for the least variance
is discarded, and items assigned to that cluster are
reassigned to the remaining clusters. Also, at each step­
down level, the values of alpha and beta for each cluster
and the goodness-of-fit index (VSS) is calculated. This
allows the user to compare the quality of various
solutions, in order to determine which one to consider
final. Step downs are not automatic, but they may be
requested.

Statistics Reported. Three types of statistics are
reported for each analysis: those having to do with
the characteristics of the overall solution, those having
to do with the quality of particular scales, and those
having to do with individual items.

The best description of the overall quality of a
cluster solution is the VSS criterion. VSS values for both
orthogonal and oblique clusters are reported. The
"orthogonal" VSS is an index of how well the solution
fits when the between-clusters correlations in Equation 1
are set to 0.0 for items not defining the same cluster.
The mean squared residual correlations for both the
orthogonal and oblique solutions are reported, as is the
mean square of the original correlation matrix.

The quality of each particular scale can be evaluated
by the value of coefficients alpha and beta, as well as

(1)

(3)VSS 1 = I
MS r

It is important to note that, if a true cluster solution
exists [i.e., if each item is of Complexity 1 but is
embedded in a matrix of higher rank (K)] , then the
index will be maximized if K clusters are extracted
(see Revelle & Rocklin, Note 3, for examples). Second,
if the cluster solution is rotated away from the simple
true structure, then the goodness of fit will also
diminish. That the goodness-of-fit test peaks at the
appropriate number of clusters is particularly useful
for evaluating the relative quality of various solutions.

That is, the predicted correlation between the ith and
jth items (rij) is the product of the loading of the ith
item on the cluster with which it has its highest loading
(fiCi)' the loading of the jth item on its defining cluster
(rjc.), and the intercorrelation between these two
cluJters (rc.c.). This special case of the general factor
law is forniea by assuming that each item is of Rank 1
and that, therefore, all loadings other than the greatest
loading are zero. To the extent that R is a good fit to R
(the observed correlation matrix), the clustering model is
appropriate. The goodness-of-fit index is formed by
finding the mean squared residuals,

When they would not be, they should not be formed
into clusters, for further combination would obscure
and reduce their interpretability.

The fourth step of the hierarchical algorithm involves
calculating the proximity of the new composite cluster
with the remaining clusters or variables. This is done
by standard psychometric principles. That is, the corre­
lation of two tests is the sum of their unweighted
interitem covariances divided by the square root of the
product of their variances.

Steps 2-4 are repeated until no new clusters pass the
increase-in-internal-consistency criteria of Step 3. At
this point, an overall summary statistic of the goodness
of fit of the entire solution is calculated. This is the
VSS criterion, which measures how well the cluster
solution reproduces the initial correlation matrix
(Revelle, Note 1). To find the VSS criterion, a predicted
correlation matrix (R) is formed according to the
cluster analytic equivalent to the general factor
equation:
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the average interitem correlation within the cluster,
and the percentage of total variance for which a cluster
accounts. The intercorrelations of the clusters can be
used as additional indications of which clusters are
most independent of the remaining clusters.

Statistics reported for individual items include the
mean, variance, minimum, and maximum values, as
well as item-cluster correlations (loadings). The cluster
"loadings" are corrected for item-whole overlap and
for cluster unreliability. Uncorrected correlations are
also reported.

The interpretability of each cluster and the relation
of the items to the clusters is shown in a summary table
in which each item is listed in descending order of its
(absolute) correlation with its defining cluster. As an
additional aid to interpretation, up to 75 characters
of identification (i.e., the content of the item) are listed
for each item in this summary table?

Availability and Cost of Operation. ICLUST was
written in FORTRAN IV for a CDC 6400-6600 series
computer with extended core storage (ECS). It has been
adapted to other CDC systems without ECS and to
IBM 370 equipment." On a CDC 6600, it takes approxi­
mately 10 sec to find a purified solution for 57 variables,
30 sec for 92, 50 sec for 140, and less than 300 sec for
290 variables. The current compilation is limited to 300
variables with no limit on subjects. To facilitate semi­
interactive use, ICLUST saves the initial correlation
matrix, which can be used repeatedly for later restarts
comparing different solutions. This allows the user to
examine the output from an exploratory run, decide
how many clusters to retain, and then proceed to do
step-down analyses.
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NOTES

1. The degrees of freedom are taken to be one less than the
number of correlations [n(n - 1)/2] minus the number of
intercluster correlations.

2. Consider eight variables arrayed on a line ranging from 0
to 100. Applying a hierarchical clustering algorithm using either
centroids or diameters to assess distance produces the following
two-cluster solution:

« 0 13) ( 31 ( 46 60 ) ) ) (79 (90 100 ) ).

But 60, although included in Ouster 1 (0, 13, 31, 46, 60), is
actually closer to the centroid (89.67) of Ouster 2 (79, 90,
100) than it is to the centroid of Ouster 1 (30). Similarly,
applying the criterion of cluster diameters, 60 is closest to
Ouster 2, although hierarchical analysis assigned it to Ouster 1.
In actual analyses, between 5% and 15% of the items are
misclassified according to this criterion.

3. For a more detailed listing of the user options available,
the statistics reported, and procedures for using the program,
consult the ICLUST users' guide (Revelle, Note 4).

4. To obtain a users' manual, program listing, sample runs,
and a computer tape with the object deck and test data, send
$25 to William Revelle, Department of Psychology, North­
western University, Evanston, Illinois 60201.
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