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Temporal integration and segregation
of brief visual stimuli: Patterns

of correlation in time
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Two brief sequential displays separated by a brief interstimulus interval (lSI) are often per­
ceived as a temporally integrated unitary configuration. The probability oftemporal integration
can be decreased by increasing the lSI or (counterintuitively) by increasing stimulus duration.
We tested three hypotheses of the relative contributions of stimulus duration and lSI to the break­
down of temporal integration (the storage, processing, and temporal correlation hypotheses). In
the first of two experiments, stimulus duration and lSI were varied factorially, and estimates
oftemporal integration were obtained with a form-part integration task. The second experiment
was a replication ofthe first at two levels of stimulus intensity. The outcomes were inconsistent
with the storage and processing options, but confirmed predictions from the temporal correlation
hypothesis. Whether two sequential stimuli are perceived as temporally integrated or disjoint
depends not on the availability of visible persistence, but on the emergence of a neural code that
is based on the temporal correlation between the two visual responses.
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A brief stimulus may remain visible for some time after
it has been switched off. This additional period of visi­
bility is known as visible persistence. Under a wide range
of conditions, duration of visible persistence has been
found to vary inversely with the duration of the inducing
stimulus. For example, Efron (1970) found that, as stim­
ulus duration was increased to 130 msec, duration of visi­
ble persistence decreased correspondingly. This relation­
ship has come to be known as the "inverse duration
effect" (Coltheart, 1980). The effect is stable and robust,
and has been obtained with a variety ofexperimental tasks
(e.g., Allport, 1968; Bowen, Pola, & Matin, 1974;
Di Lollo, 1980; Efron, 1970; Haber & Standing, 1969).

One consequence of the inverse duration effect was dis­
confirmation of the "storage" hypothesis (e.g., Neisser,
1967). According to the storage hypothesis, visible per­
sistence is regarded as the content of a sensory store that
is charged rapidly at stimulus onset and begins discharg­
ing when the stimulus is turned off. The duration of dis­
charge of the sensory store is held to mediate the tem­
poral integration of brief sequential displays. For example,
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two sequential displays, separated by a brief temporal gap
(interstimulus interval, or lSI), often appear to be tem­
porally contiguous or overlapping. According to the stor­
age hypothesis, such temporal integration occurs if the
lSI can be bridged by the decaying contents of the sen­
sory store (Le., by the visible persistence of the leading
stimulus). Thus, two stimuli will be seen as temporally
overlapping if the lSI does not exceed the period of dis­
charge of the leading store. Assuming an initially full store
and a fixed rate of discharge, temporal integration is held
to depend solely on the duration of the lSI. The storage
hypothesis is disconfirmed by the evidence of the inverse
duration effect, because it is implausible that the dura­
tion of discharge of a store should vary inversely with
the duration of charge.

Instead, the evidence is consistent with an interpreta­
tion in terms of a period of processing activity that is time
locked to the onset of the inducing stimulus and indiffer­
ent to stimulus duration. According to this processing hy­
pothesis (Di Lollo, 1980), visible persistence corresponds
to a period of neural activity (which we refer to as the
visual response) that starts at stimulus onset and lasts for
a fixed period, irrespective of stimulus duration. The du­
ration of visible persistence is equal to the period by which
the visual response outlasts the duration of the physical
stimulus. Thus, visible persistence will be longest for brief
stimuli and will decrease as stimulus duration is increased
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(the inverse duration effect). Stimuli longer than the du­
ration of the visual response are held to have no persis­
tence at all. Several variants of this hypothesis have been
proposed (Di Lollo & Dixon, 1988; Irwin & Yeomans,
1986; Loftus, Duncan, & Gehrig, 1992).

Much like the storage hypothesis, the processing hy­
pothesis postulates that temporal integration is mediated
by the visible persistence of the leading stimulus (i.e., by
the visual response). That is, temporal integration will oc­
cur if the duration of the leading visual response is suffi­
cient to bridge the lSI and to overlap with the trailing
visual response. Thus, for both the storage and the pro­
cessing hypotheses, temporal integration depends on the
degree of overlap between the two visual responses. How­
ever, the processing hypothesis differs from the storage
hypothesis in one crucial aspect: The salient variable

governing overlap of visual responses is not lSI but SOA
(stimulus onset asynchrony: the temporal interval between
the onset of the leading stimulus and the onset of the trail­
ing stimulus).

According to the processing hypothesis, an inverse du­
ration effect may be equivalently induced either by a
longer stimulus or by a longer lSI. This is illustrated in
Figure 1. The three pairs of stimuli shown in panel a of
Figure 1 have the same SOA but different ISIs. Accord­
ing to the processing hypothesis, temporal integration
should be the same in each case, as illustrated in panel b.
This follows from the assumptions that the visual response
is time locked to stimulus onset, that it has a fixed dura­
tion, and that integration is based on the degree of over­
lap between the two visual responses. Thus, provided that
SOA remains constant, any combination of stimulus du-
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Figure 1. Temporal integration of two sequential stimuli at fixed stimulus onset asynchrony (SOA) but at varying
durations of leading stimulus and interstimulus interval OSI). The sketches are not intended to illustrate the condi­
tions of Experiment 1; rather, they illustrate tbe hypothetical relationship between physical stimuli and visual re­
sponses as predicted by the processing hypothesis and by the temporal correlation model. Panel a contains timing
diagrams that indicate the physical configuration of the stimuli; the lSI is longest in tbe stimulus pair at the top
of the panel, shorter in the middle pair, and equal to zero in the lowest pair. The duration of the leading stimulus
increases correspondingly. Panel b shows the visual responses generated by the corresponding stimuli according
to the processing hypothesis. The predicted degree of temporal integration is indexed by the overlap between pairs
of visual responses, indicated by the shaded areas. Integration is said to depend on SOA, so equal degrees of in­
tegration are predicted for each combination of stimulus duration and lSI. Panel c shows the visual responses generated
according to the temporal correlation model. Panel d contains scatterplots of the relationship between the correspond­
ing visual responses illustrated in panel c. The visual response curves in panels c and d represent the outputs of
linear filters with input provided by the corresponding stimuli in panel a. Details of the filtering operation are specified
in Equation 11 and in the related text.
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ration and lSI should produce the same level of temporal
integration. In other words, stimulus duration and lSI are
equivalent determinants of temporal integration.

A different prediction is made by the temporal corre­
lation model, proposed recently by Dixon and Di Lollo
(in press). According to this model, temporal integration
depends not on the duration of the visible persistence of
the leading stimulus, but on the correlation between the
visual responses triggered by the two stimuli over time.
A detailed description of the model is presented later in
the text; here, we outline its basic tenets. Upon presenta­
tion, a stimulus is assumed to trigger a temporally ex­
tended visual response that can be represented by the out­
put of a linear filter. The stimuli in panel a of Figure 1
represent the inputs to the filter; the corresponding re­
sponse functions in panel c represent the filtered outputs.
It is assumed that a correlational mechanism within the
visual system takes regular samples of the two response
functions and computes a correlation between the two sets
of activity estimates, having first weighted them in terms
of an exponentially shaped sliding temporal window. The
scatterplots in panel d of Figure 1 illustrate the results of
sampling and correlating the visual responses over time.
The correlation coefficient associated with each scatter­
plot is an index of the degree of temporal integration pre­
dicted by the model.

Clearly, stimulus duration and lSI affect temporal in­
tegration differently in the processing hypothesis and in
the correlational model. According to the processing hy­
pothesis, stimulus duration and lSI are equivalent; increas­
ing the duration of one while decreasing the other by the
same amount should have no effect on temporal integra­
tion. By contrast, according to the correlational model, tem­
poral integration should be affected more by a change in
lSI than by a corresponding change in stimulus duration.
These contrasting predictions were tested by studying tem­
poral integration as a joint function of stimulus duration
and duration of lSI over a range of SOAs. The outcome
was as predicted by the temporal correlation model.

GENERAL METHOD

The experimental task required temporal integration of two stimuli
displayed in rapid succession. Viewed separately, the stimuli ap­
peared as random aggregates of 12 small patches of light, but,
viewed together, the two stimuli portrayed 24 of the 25 elements
of a 5 X 5 square matrix. The task of the observer was to identify
the location of the missing element within the matrix. Often used
for studying temporal integration (Breitmeyer, Kropfl, & Julesz,
1982; Hogben & Di Lollo, 1974; Shioiri & Cavanagh, 1992), the
matrix task is performed easily by most observers after little prac­
tice. At brief SOAs, the missing element stands out clearly against
the integrated matrix; however, at long SOAs, the observer sees
a matrix riddled with empty locations, all of which, on analysis,
turn out to have been occupied by elements of the first stimulus.

Observers
Two of the authors and a colleague served as observers. All had

normal or corrected-to-normal acuity.

Visual Displays
Stimuli were displayed on a Hewlett-Packard 1333 oscilloscope

with P15 phosphor. The x, y, and z (intensity) coordinates of points
to be displayed were stored in a fast-plotting buffer (Finley, 1985)
that drove the oscilloscope at a rate of 1,000 points/msec. At the
viewing distance of 57 em, set by a headrest, the 8 X 8 em display
surface subtended a visual angle of 8 0 on the side. Ambient light
provided screen illumination of approximately 0.1 cd/m2

•

The display consisted of 24 of the 25 elements defining a 5 X 5
matrix. Each element was made up of 36 dots that filled a small
square whose side subtended 6' of visual angle. Separation between
elements was 36' between adjacent sides. The visual angle subtended
by the entire matrix was 2 0 54'. Four dim fixation points were dis­
played at the corners of a 4 0 square area within which the matrix
was centered. The observers sat in a dimly lit room and viewed
the displays with natural pupils. Upon a buttonpress, the 24 matrix
elements were displayed in two images of 12 elements each, sepa­
rated by an lSI. The 12 elements in each image were chosen ran­
domly on each trial from the set of 25, so that the location of the
missing element varied randomly on each trial. The observers iden­
tified the missing element by row and column, guessing if unsure,
and encoded the response by using an array of buttons providing
input to the computer.

EXPERIMENT 1

Method
Experiment I was designed to study temporal integration over

a range of exposure durations of the leading stimulus and a range
oflSls. There were seven exposure durations of the first image (20,
40, 60, 80, 100, 120, and 140 msec), and eight durations of lSI
(0,20,40,60,80, 100, 120, and 140 msec), combined factorially
for a total of 56 conditions. The duration of the second image was
always 10 msec. Luminance of the displays was measured in
candelas-microsecond (cd-/lsec). These are units of luminous direc­
tional energy per point that provide an appropriate description of
the luminous intensity of oscilloscopic displays (Sperling, 1971).
The luminance of stimuli of different durations was adjusted by the
method described by Di Lollo and Finley (1986) so that all stim­
uli, regardless of duration, were seen to have the same brightness
as the lO-msec trailing display whose luminance was set at
0.0082 cd-/lsec.

One experimental session comprised 20 trials at each of the eight
ISIs, at one ofthe seven durations of the first image. The 160 trials
were sequenced randomly within each session. Each observer com­
pleted a total of 35 sessions, yielding 100 trials per condition.

Results and Discussion
The results are illustrated in Figure 2, separately for

each observer, as a function of SOA. Although suitable
for highlighting predictions from the processing hypoth­
esis, the pattern of curves in Figure 2 does not reveal an
inverse duration effect at first glance. Clear evidence of
an inverse duration effect is seen in Figure 3, where ac­
curacy of performance is plotted as a function of stimu­
lus duration at a fixed lSI of 40 msec. Curves similar to
those in Figure 3 were obtained for other ISIs.

The Processing and the Storage Hypotheses
It is immediately apparent from Figure 2 that perfor­

mance was not determined by SOA alone. Had SOA been
the sole determinant, there would have been a single level



Figure 2. Performance in Experiment 1 as a function of SOA,
shown separately for each observer. Separate curves are plotted for
each duration of the leading display.
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with a single SOA indicates that stimulus duration and/or
lSI must affect performance independently of SOA.

The results are just as unsupportive of the storage hy­
pothesis. According to that hypothesis, the sensory store
is charged rapidly upon stimulus onset, continues to be
charged while the stimulus is on display, and begins to
discharge upon stimulus termination. Temporal integra­
tion across an lSI is said to be possible if the trailing stim­
ulus is displayed before the leading store has had time
to discharge. With respect to Experiment 1, the predicted
relationship between stimulus duration and accuracy of
performance is unambiguous: Performance might con­
ceivably improve as stimulus duration (i.e., duration of
charge) is increased. However, given a full store, per­
formance should be unaffected by exposure duration.
Notably, under no circumstances should an increment in
exposure duration lead to a decrement in performance.
To the contrary, Figure 3 shows striking decrements in
performance as stimulus duration is increased with lSI
held constant.

An aspect of the results not immediately apparent in
Figures 2 and 3 can be seen in Figure 4, which shows
contour plots of accuracy as a function of stimulus dura­
tion and lSI. The transitions between gray bands in Fig­
ure 4 represent iso-accuracy contours for 25 %, 50%, and
75 % correct responses. The heavy contour lines repre­
sent predictions from the correlational model described
below; they should be ignored for the moment.

Figure 3. Performance in Experiment 1 as a function of duration
of the leading display at an lSI of 40 msec. A strong inverse dura­
tion effect is revealed by the negative slope of the performance curve
of each observer.
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of performance associated with each SOA or, equiva­
lently, a single performance curve for each observer. In­
stead, any given level of SOA in Figure 2 exhibits a range
of performance levels, depending on the combination of
exposure duration and lSI. For example, for Observer
J.H.H., an SOA of 100 msec yielded performance levels
ranging between 97% (exposure duration = 100 msec,
lSI = 0 msec) and 28% (exposure duration = 20 msec,
lSI = 80 msec).

This pattern of results is not consistent with expecta­
tions based on the processing hypothesis. In terms of that
hypothesis, temporal integration between successive stim­
uli should vary with the degree of temporal overlap be­
tween the visual responses initiated by the two stimuli, as
shown in panel b of Figure I. In tum, degree of overlap
should depend entirely on the temporal separation between
the onsets of the two stimuli, that is, on the SOA. The
finding that a range of performance levels is associated
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Figure 4. Contour plots of accuracy of performance in Experiment 1 as a function of stimulus duration and lSI.
From darkest to lightest, the shaded areas represent the foUowing ranges of correct responses: 0%-25%, 25%-50%,
50%-75%,75%-100%. Thus, the transitions between gray hands represent iso-accuracy contours for 25%, SO'.I',
and 75% correct responses. The heavy contour lines represent predictions from the temporal correlation model
for proportions of .25, .SO, and .75 correct responses. The segmented lines in each panel illustrate predictions from
the processing hypothesis, as explained in the text.

For each observer, the iso-accuracy contours are slanted
downward along the duration axis. The slant of these con­
tours is of interest because it conflicts with predictions
from both the storage and the processing hypotheses. Ac­
cording to the storage hypothesis, the iso-accuracy con­
tours should be horizontal and flat throughout the domain.
This is because, given a full sensory store, temporal in­
tegration (and, therefore, accuracy of performance) is held
to be determined solely by lSI. Thus, for any given lSI,
changing the duration of the stimulus should have no ef­
fect on performance; this leads to the following predic­
tions. First, the overall level of each iso-accuracy con­
tour should be determined entirely by the lSI (the longer
the lSI, the higher the contour's overall level in Figure 4).
Second, each contour should remain horizontal through­
out the domain, because stimulus duration is held to have
no effect on performance. Contrary to this prediction, the
iso-accuracy contours in Figure 4 exhibit uniformly down­
ward slants, indicating that stimulus duration affected per­
formance even if lSI was held constant.

Predictions from the processing hypothesis are just as
straightforward. As illustrated in Figure I, the process­
ing hypothesis holds that temporal integration is deter­
mined entirely by SOA, namely, by the sum of lSI and
stimulus duration. Thus, given a fixed SOA, level of per­
formance should remain the same regardless of what com­
bination of stimulus duration and lSI makes up the SOA.
In fact, by varying stimulus duration and lSI systemati­
cally while leaving the SOA fixed, it is possible to con­
struct iso-SOA contours in Figure 4. One such contour
(for an SOA of 100 msec) is shown by the segmented line
in each panel of Figure 4. The slant of the segmented lines
is constrained by the consideration that, for SOA to re­
main invariant as stimulus duration is increased, lSI must
be decreased by the same amount. A moment's reflec­
tion will show that, because accuracy is held to depend

solely on SOA, iso-accuracy contours should coincide
with iso-SOA contours. Notably, both sets of iso-contours
should have equivalent slant. But this is patently not the
case: the iso-accuracy contours in Figure 4 have a slant
that is far shallower than that of the iso-SOA contours
represented by the segmented lines. This indicates that,
contrary to the processing hypothesis, stimulus duration
and lSI are not equivalent determinants of temporal in­
tegration. In fact, temporal integration is hindered far
more by an increment in lSI than by a corresponding
increment in stimulus duration.

The Temporal Correlation Model
A new account of temporal integration has been pro­

posed by Dixon and Di Lollo (in press). Its principal te­
net is that temporal integration depends not on the avail­
ability of visible persistence, but on the emergence of a
neural code that determines whether sequential stimuli will
be perceived as temporally integrated or as temporally
disjoint. The model is couched on the premise that, in pro­
cessing trains of stimuli, the visual system must accom­
modate two competing requirements: to construct detailed
representations of objects and scenes, and to detect rapid
changes in the visual environment. To maximize the ac­
cumulation of detailed information, a suitable perceptual
strategy is to integrate incoming stimuli over a period of
time. In doing so, however, temporal resolution within
the period of integration is lost. On the other hand, if sud­
den changes in the environment are to be detected rapidly,
the opposite strategy is required: sequential stimuli should
be perceived as temporally separate or disjoint. The rules
governing temporal integration and segregation do not
seem to be based on a simple principle such as duration
of the lSI. Indeed, it is possible for stimuli separated by
a sizable lSI to be perceived as temporally integrated, and
for stimuli that actually overlap in time to be perceived
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as temporally disjoint. The correlational model describes
one way in which temporal integration and segregation
of sequential visual stimuli may be achieved.

We have proposed (Dixon & Di Lollo, in press) that
perception of the temporal relationship between two stim­
uli is determined by the outcome of a sensory coding pro­
cess that correlates the visual responses over time. If the
correlation is high (i.e., if the visual responses form sim­
ilar patterns over time), the stimuli are coded as tem­
porally coextensive and are perceived as belonging to the
same object or event. On the other hand, if the correla­
tion is low, the stimuli are coded as temporally disjoint
and are perceived as being independent of each other.

This approach bears notable similarities to correlational
models of spatial vision (e.g., Dodwell, 1971; Glass,
1969; Vttal, 1975). In those models, correlational prin­
ciples are used to index the similarity of spatial patterns;
in the present model, the same principles are used to in­
dex the similarity of temporal patterns. Application ofthe
temporal coding model to the outcome of Experiment 1
requires the three procedural steps described below: fIlter­
ing the stimuli, sampling and correlating the visual re­
sponses, and predicting performance.

Filtering the stimuli. We make the axiomatic assump­
tion that temporal integration and segregation arise from
interactions not between the physical stimuli, but between
the corresponding visual responses. The transfer from
physical stimuli to visual responses is predicated on the
assumption that, in its peripheral stages, the visual sys­
tem acts as a linear temporal fIlter (Ives, 1922; Kelly,
1961). On this assumption, any given visual response can
be represented as the output of a linear fIlter with input
provided by the physical stimulus.

The functions illustrated in panel c of Figure 1 repre­
sent outputs of the fIltering operation. In each case, the
fIlter's inputs are provided by the physical stimuli whose
luminance profIles are shown in panel a. By assumption,
each function in panel c represents a visual response,
namely, the spurt of activity produced within the visual
system by the corresponding stimulus in panel a.

Sampling and correlating the visual responses. The
visual code that determines whether two stimuli will be
perceived as temporally coextensive or disjoint is based
on the correlation between the two visual responses. To
arrive at an estimate of the correlation for any given con­
fIguration of stimulus duration and lSI, we proceed as
follows.

1. We assume that the visual responses are sampled
continually over time so as to yield a series of activity
estimates on which the correlation is computed. Illustra­
tive sets of such activity estimates for three pairs of visual
responses are shown by the scatterplots in Figure 1,
panel d. Elements in a scatterplot represent separate es­
timates of the activity levels of the two response func­
tions at lO-msec intervals.

2. Activity estimates are assumed to decay over time
and, therefore, to contribute in different measures to the
correlation. New estimates are given the highest weights,

whereas earlier estimates are given weights that dimin­
ish progressively as a function of the rate of temporal de­
cay. In essence, the rate of decay defInes a sliding tem­
poral window that is akin to Allport's (1968) concept of
traveling moment. This refers to a brief temporal period
(of the order of 100 msec) that contains a running sam­
ple of the visual input; new stimuli enter the moment as
it travels forward in time, and old stimuli become progres­
sively weaker and eventually disappear.

3. Each time a new activity estimate is obtained, new
weights are assigned to all earlier estimates in accordance
to the rate of temporal decay, and a new correlation is
calculated. This procedure ensures that new estimates of
the correlation continue to be produced at a rate that
matches that of the sampling process.

4. The activity estimates represented by the individual
points in the scattergrams in panel d of Figure 1 were cal­
culated for idealized conditions. That is, the visual re­
sponses were assumed to be noise free, their time courses
were assumed to remain unchanged from trial to trial, and
the sampling mechanism was assumed to be perfectly
timed. It goes without saying that, in a biological system,
none of these mechanisms would be noise free. This is
tantamount to saying that the estimate of the correlation
for any given combination of stimulus duration and lSI
should be expected to vary from trial to trial. The degree
of variation will depend on both the levels and the sources
of noise within the system.

At a fIrst approximation, we assume that the activity
samples (on which individual estimates of the correlation
are based) are drawn from a bivariate normal distribu­
tion with correlation p. In turn, the noisy estimates of the
correlation will form a probability distribution with mean
p, as shown in Figure 5. It is understood that p will vary
for different combinations of stimulus duration and lSI
(see Figure 1).

The distribution illustrated in Figure 5 provides the ba­
sis for deciding whether two stimuli will be perceived as
temporally coextensive or disjoint. SpecifIcally, two stim­
uli will be perceived as coextensive (i.e., as temporally
integrated) when the estimated correlation r is greater than
some criterion re • In order to calculate the probability of
integration, we use the well-known z' transformation of
the product-moment correlation developed by Fisher
(1922). According to this approximation, the probability
of temporal integration (Pi) is given by

Pi = Per > re) = P(z > Ze), (1)

where

Zc = ~ In C=~:)
and Z is approximately normally distributed with mean

1 (l+ P )
zp = 21n 1-p

and variance (n - 3t', where n is the effective sample
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Predicting performance. Finally, we present a pro­
cedure for computing the probability of a correct response

(11)

in Experiment 1 as a function of the correlation between
visual responses. First, we note that when two stimuli are
perceived as coextensive and are temporally integrated,
performance in the dot matrix task is generally accurate.
However, accuracy may not be perfect; occasional errors
may be caused by stray eye movements, lapses of atten­
tion, or by coding a response incorrectly. We use the pa­
rameter a to indicate the peak level attained when the stim­
uli are fully integrated. Under most circumstances, a will
be close to unity.

Next, we consider what happens when the two parts
of the matrix are not integrated. In this case, observers
have no clear sense of the location of the missing dot,
and a response must be made by guessing. However, ob­
servers do not guess randomly; we know that most er­
rors consist of selecting a location that contained a dot
in the leading stimulus (Di Lollo, 1980). That is, observers
can remember the locations of the dots in the trailing im­
age and avoid them when making a response. In addition,
observers may remember the locations of some dots in
the leading display, and also avoid selecting those as re­
sponses. We use the parameter g to denote the level of
accuracy attained by using guessing strategies of this sort.

On these assumptions, the probability of a correct re­
sponse (Pc) can be written as

Pc = aPi + g(l-Pi) = g + (a-g)pi. (9)

Combining Equations 6 and 9 yields an expression for
the predicted probability of correct responses as a func­
tion of p (which depends jointly on stimulus duration and
lSI) and the parameters of the model

(p'y-3
Pc = g + (a-g) (p')n-3+(r:)n 3' (to)

Fitting the model to the data required five parameters,
which were estimated by using a gradient descent search
that minimized the squared error of prediction. In estimat­
ing T, the temporal constant of the linear filter, we fol­
lowed earlier practice (Dixon & Di Lollo, in press) and
assumed that the impulse response was described by the
gamma function

tm-le/iT

let) = Tmr(m) .

We also followed earlier practice in setting the value of
m at to (see also Watson, 1986). Next, we computed the
effective number of activity estimates to be used in cal­
culating the correlation (n in Equations 6 and to). The
decay of these activity estimates was assumed to be ex­
ponential with a time constant of 340 msec, a value esti­
mated from the data reported by Dixon and Di Lollo (in
press). The third parameter was rc , the criterial correla­
tion given in Equation 1. The final two parameters to be
estimated from the data were a and g (Equations 9 and
to), which determine the probability ofa correct response
given that the stimuli are integrated or segregated, respec­
tively.

Predictions based on Equation 10 are illustrated in Fig­
ure 6. Within each panel, the continuous curve shows the

(5)

(7)

(6)

(8)

l+p
p' =--

l-p

, _ I +rc
r c - -1-'-rc

0.5 rc 0.75 P
Estimated value of r

Probability of
integration

0.25

Figure S. Sampling distribution of the correlation between visual
responses according to the temporal correlation model. The mean
of the distribution (p) is determined jointly by stimulus duration
and lSI. The criterial correlation (r.) separates integration from
segregation areas in the sampling distribution. Ifthe correlation be­
tween two visual responses exceeds r. (shaded area), the correspond.
ing stimuli will be perceived as temporally integrated; if not, the
stimuli will be seen as temporally disjoint.

Using this approximation, Equation 4 can be rewritten as

exp[2(n - 3)(zp - zc)]
Pi = ~-----'~-=---;--'---'::-~----''-=---:c::-

1 + exp[2(n-3)(zp-zc)]

(p')n-3

size. The effective sample size is determined jointly by
the rate of sampling of the visual responses and by the
rate ofdecay of the activity estimates. With some algebraic
manipulation, Equation 1 can be written as

Pi = P[ZI > (n-3)(zc-zp)], (4)

where z I is approximately normally distributed with zero
mean and unit variance. Further, the normal distribution
can be approximated with a logistic distribution

where

and
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model's fit of an observer's performance in Experiment 1.
Individual dots in Figure 6 represent the proportion of
correct responses for each observer in each condition of
Experiment 1. Details of the parametric fit are given in
Table 1.

It is manifest from the fits in Figure 6 that the temporal
correlation model provides an excellent account of the re­
sults of Experiment 1. The success of the model relative
to the storage and the processing hypotheses can be as­
sessed by referring to Figure 4. The heavy contour lines
in Figure 4 represent the model's estimates for propor­
tions of .25, .50, and .75 correct responses. The estimated
levels are remarkably close to the empirical levels for each
observer. It is especially noteworthy that the slants of the
contour lines closely match the slants of the gray bands.
This is a far closer match than that provided by either the
processing or the storage hypotheses which, as was noted
above, predict steeper or shallower slants, respectively.

A question of generality must now be considered. Un­
doubtedly, the temporal correlation model can account for
the relative effects of stimulus duration and lSI. Can the
same correlational principles provide credible accounts
of other known effects in temporal integration? Besides
the inverse duration effect studied in Experiment 1, at
least one other variable-stimulus intensity-is known to
affect temporal integration of brief sequential stimuli. In
Experiment 2, we investigated whether the same temporal
correlational principles that can account for the inverse

Table 1
Separate Parameter Estimates for Each Observer in Experiment 1

Parameter J.H.H. V.D.L. C.C.L.

r* 16.8 15.5 18.1
n 6.95 5.99 6.22
'c 0.440 0.442 0.362
a 1.000 1.000 0.982
g 0.094 0.048 0.129

Root-mean squared 0.031 0.040 0.040
error of prediction

*In milliseconds.

duration effect can provide a consistent account of the ef­
fect of intensity of stimulation.

EXPERIMENT 2

Duration of visible persistence is known to be related
inversely to the intensity of stimulation. This inverse in­
tensity effect (Coltheart, 1980) can be obtained in either
of two ways: by varying the intensity of the stimuli on
a background of fixed luminance (Allport, 1968; Efron
& Lee, 1971; Hogben & Di Lollo, 1985) or by varying
the intensity of the background on which the stimuli are
presented (Dixon & Hammond, 1972). In either case, the
duration of visible persistence diminishes as the intensity
of stimulation is increased. In Experiment 2, we aimed
at obtaining an inverse intensity effect by replicating Ex-
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Figure 6. Relationship between accuracy of performance in Experiment 1 and the correlation between visual
responses computed on the basis of Equation 10. Within each panel, the continuous curve shows the model's
fit to an observer's performance. Individual dots represent the proportion of correct responses obtained by
each observer in each condition of Experiment 1. Details of the parametric fit are given in Table 1.
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periment 1 at two levels of stimulus intensity. The major
purpose of the study was to check whether the results
could be encompassed within the temporal correlation
model.

In deciding what construct might best handle the effect
of intensity within the model, a plausible working hypoth­
esis can be based on the temporal constant of the input
filter. If the temporal constant, and hence the duration
of the visual response, were to vary inversely with the
intensity of stimulation, the inverse intensity effect would
follow. To wit, longer visual responses for dimmer stim­
uli would lead to higher temporal correlations and thus
to higher probabilities that the two parts of the matrix
would be coded as coextensive.

This working hypothesis derives a good deal of plausi­
bility from similar work done on the duration ofthe crit­
ical period of temporal summation, known as Blochs law,
at threshold. The duration of the critical period is known
to vary inversely with the intensity of stimulation. As in
the case of the inverse intensity effect, the critical period
diminishes with increments in the intensity of either the
adapting background (Roufs, 1972a) or the stimuli (Hood
& Grover, 1974; Veno, 1977). A formal model has been
developed to account for the effect of varying background
intensity (Roufs, 1972b), though not for varying inten­
sity of single pulses presented on a background of fixed
luminance. In that model, the temporal constant of the
impulse response function becomes smaller as background
intensity is increased. In tum, this reduces the period dur­
ing which temporal summation can occur. There is little
question that-mutatis mutandis-this reasoning can be
applied to a temporal correlation account of the inverse
intensity effect obtained with changes in background level.
Our working hypothesis is that a similar formal model
(perhaps along the lines suggested recently by Graham
& Hood, 1992) might apply to single pulses on constant
backgrounds. In fact, the outcome of the experiment was
in agreement with such an hypothesis.

Method
Experiment 2 was a replication of Experiment 1 at two levels of

stimulus intensity. In the dim condition, the brightness of the stim­
uli of all durations matched that of the 10-msec trailing display whose
luminance was set at 0.0055 cd-J.tsec. Similarly, in the bright con­
dition, all stimuli were brightness-matched to the IO-msec trailing
display whose luminance was set at 0.0866 cd-J.tsec. The former
yielded stimuli that were dimly but clearly visible; the latter yielded
bright stimuli that were almost flaring. The only other change was
the addition of a 10-msec duration of the leading display. This was
purely an exploratory measure intended to extend the range of very
brief SOAs.

Results and Discussion

The results are shown in Figure 7. For clarity of pre­
sentation, the results for each observer have been split
between two graphs (see caption of Figure 7). The re­
sults are orderly and consistent with the corresponding
results of Experiment I (Figure 2). A negative intensity

effect is indicated by a uniform shift of the curves for the
dim condition toward the longer ISis. However, the
regularity of the shift is not obvious at first sight.

A clearer cross section ofthe results is provided in Fig­
ure 8, which shows the critical lSI (obtained by linear in­
terpolation between the two data points straddling the 50%
level) that yielded 50% correct responses at each dura­
tion of the leading stimulus in both dim and bright view­
ing conditions, separately for each observer. Also illus­
trated in Figure 8, for comparison, are the corresponding
critical ISis (50% correct responses) obtained in Experi­
ment 1. Both an inverse duration and an inverse inten­
sity effect can be seen in Figure 8. An inverse duration
effect is revealed by the systematic decrement in critical
lSI across the domain: as stimulus duration is increased,
the extent of temporal integration-as indexed by the crit­
ical lSI-decreases apace. An inverse intensity effect is
evidenced by the longer critical ISis (by an average of
10 msec) in the dim than in the bright condition. By in­
ference, the extent of temporal integration is longer with
dim than with bright stimuli. As shown by the evidence
in Figure 8, the inverse intensity effect was asymptotic
for 2 of the 3 observers at the stimulus luminance em­
ployed in Experiment 1.

The temporal correlation model described in Experi­
ment 1 was applied to the data of Experiment 2. Param­
eters for the dim and the bright conditions were estimated
simultaneously, with the constraint that all parameters be
the same in the two conditions except for the temporal
constant of the input filter. This was done in accordance
with the hypothesized relationship between luminance
level and the temporal extent of the visual response func­
tion. The parametric fits listed in Table 2 show that, as
expected, the temporal constant of the input filter was
longer in the dim than in the bright condition for each
observer. As a further test, the model was fit to the data
of Experiments 1 and 2 simultaneously, using separate
values of T for Experiment 1 and for the bright- and the
dim-dot conditions of Experiment 2. The model fits the
combined experiments as well as it does in either experi­
ment alone. The estimated parameters and errors of pre­
diction are shown in Table 3.

Figure 9 shows the model's fit to the combined data
for both luminance conditions in Experiment 2. As was
the case in Experiment 1 (Figure 6), the fit is remarka­
bly accurate (see Table 2). A more comprehensive over­
view of the results is given in Figures 10 and 11, where
the data are presented as a function of stimulus duration
and lSI separately for the dim and the bright viewing con­
ditions. The heavy contour lines represent predictions
from the temporal correlation model. As in Experiment I,
the model provides an excellent fit to the contour plots.

Two related aspects of the success of the temporal cor­
relation model in predicting the outcome of Experiment 2
should be noted. First, as had been surmised, the inverse
intensity effect is handled successfully within the model
by appropriate modulation of the temporal constant of the
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input f1lter. This establishes a practical and conceptual
link between the present work and the extensive research
done on visual temporal responding under varying inten­
sities of stimulation (Barlow, 1958; Bowen et al., 1974;
Kelly, 1971).

Second, there is a close match in Figures 10 and 11
between the slant of the fitted contours (heavy lines) and
that of the iso-accuracy contours defined by the transi­
tions between adjacent gray bands. It goes without say­
ing that, as in Experiment 1, predictions from the stor­
age and the processing hypotheses are disconfirmed by
the slant of the iso-accuracy contours; the former predicts

horizontal contours and the latter predicts contours much
steeper than were obtained.

A further aspect of the iso-accuracy contours should
be highlighted: The remarkable similarity in slant among
all iso-accuracy contours in Experiments 1 and 2 (Fig­
ures 4, 10, and 11) suggests that the factor(s) underlying
these slants remained invariant across the experimental
manipulations. In the following text, we suggest that this
invariance represents a fundamental characteristic of the
temporal correlation process. For simplicity, let us con­
sider only the 50% iso-accuracy contours, namely, the
contours fitted by the middle heavy line in each panel of
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Figures 4, 10, and 11. These contours show the critical
ISis required to produce 50% correct performance at each
stimulus duration. That is, the contours can be regarded
as representing the functional relationship between an in­
dependent variable (stimulus duration) and a dependent
variable (critical lSI). In this sense, each contour line can
be regarded as representing the regression of critical lSI
on stimulus duration.

The relationship between stimulus duration and criti­
cal lSI for 50 % correct performance in Experiments 1
and 2 is illustrated in Figure 8. The plots are essentially
parallel; for each observer, the relationship is well ap­
proximated by a linear regression with slope approximat­
ing -.4. Individual slopes are reported in Table 4. We
regard the model's ability to account for this relationship
as strong support for our proposals. Notably, the rela­
tionship does not depend on a particular choice of param­
eter estimates; virtually identical slopes are found with
any plausible set of values. This strongly suggests that
the relationship is inherent in the structure of the model
and in the principles of linear filtering used to derive the
visual responses.

GENERAL DISCUSSION

Comparison With Other Models
Throughout this article, the rationale for the empirical

work was provided by a juxtaposition of three hypothe­
ses of temporal integration: storage, processing, and tem-

poral correlation. Thus far, we have made no reference
to a fourth model that has been proposed by Loftus and
co-workers. In that model, temporal integration is said
to be based on rate of information extraction (e.g., Loftus
& Hanna, 1989). In some respects, the information­
extraction model bears similarities to earlier storage
models. However, continued visibility of a display after
stimulus offset is said to depend not only on the amount
of decay during the lSI (measured from stimulus offset),
but also on the diminishing rate of information extrac­
tion whose decay is said to be time locked to stimulus on­
set. A more comprehensive description of the information­
extraction model has been provided by Loftus et al.
(1992). The present experiments were not designed to dif­
ferentiate the information-extraction model from other
models of temporal integration; nevertheless, the model

Table 2
Separate Parameter Estimates for Each Observer in Experiment 2

Parameter J.H.H. V.D.L. C.C.L.

T, bright dots* 12.9 14.0 19.4
T, dim dots* 15.3 17.1 24.6

n 7.13 7.25 6.12
rc 0.390 0.466 0.467
a 0.984 0.942 0.982
g 0.081 0.094 0.171

Root-mean squared 0.036 0.047 0.043
error of prediction

*In milliseconds.
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Table 3
Parameter Estimates for Experiments I and 2

Combined Separately for Each Observer

Parameter J.H.H. V.D.L.

7 (Experiment 1)* 16.1 16.6
7, dim dots (Experiment 2)* 16.0 16.0
7, bright dots (Experiment 2)* 13.4 13.4

n 7.01 6.63
rc 0.411 0.445
a 0.989 0.965
g 0.081 0.079

Root-mean squared error of prediction 0.034 0.046

*In milliseconds.

C.C.L.

21.0
23.6
18.7
5.90

0.442
0.996
0.146
0.040

does make explicit predictions regarding the effects of
stimulus duration and lSI under the conditions employed
in Experiment 1. Therefore, it behooves us to assess the
model's fit to the experimental outcome.

We implemented a computer simulation of the informa­
tion-extraction model, and derived predictions for the re­
sults of Experiment 1. The predictions provided a good
fit to the data. Indeed, the fit was virtually indistinguish­
able from that derived from the temporal correlation
model. However, the present work had not been planned
as a test of the two models, so the similarity in predic-

tions cannot be taken as an indication of unconditional
equivalence. It goes without saying that if the two models
are to be separated on empirical grounds, experiments
must be designed expressly for that purpose.

Locus of Temporal Correlation
If, as we propose, integration is governed by correla­

tional principles, we might speculate both on the neuro­
physiological implementation of the correlational process
and on the level at which the processing might take place.
As noted previously, correlational principles have been
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Figure 10. Contour plots of accuracy of performance in the dim viewing condition of Experiment 2 as a function
of stimulus duration and interstimulus interval. For details, see caption of Figure 4.

used extensively in theories of spatial vision. In some in­
stances, specific underlying mechanisms have been pro­
posed (cf. Dual, 1973, 1975). In a similar vein, correla­
tional principles have been invoked in accounts of
spatiotemporal events such as motion perception (e.g.,
Reichardt, 1961) and metacontrast masking (e.g., Bridge­
man, 1978).

In general, peripheral correlational mechanisms have
met with only limited success in accounting for complex
perceptual phenomena. For example, the explanatory
scope of the Reichardt motion sensor is restricted by such
limitations as aperture problems and a limited range of
plausible temporal constants. To account for complex as­
pects of motion perception, more central mechanisms have
been proposed (e.g., Adelson & Movshon, 1982). We be­
lieve that a peripheral correlational mechanism would en­
counter much the same problems in accounting for tem­
poral integration and segregation.

Strictly peripheral mechanisms are strained in account­
ing for the extant data on temporal integration. As shown
in Figures 2 and 7, integration can occur over temporal
intervals that are implausibly long for such mechanisms.
Also incompatible with a peripheral locus is the effect of
trailing-stimulus duration: the probability of two stimuli
being coded as temporally disjoint increases with the du­
ration of the trailing stimulus (Dixon & Di Lollo, in
press). The strength of this effect continues to increase
up to trailing-stimulus durations of several hundred milli­
seconds, an excessively long period for strictly periph­
eral mechanisms.

Perhaps the most telling argument favoring a central
locus is the relative complexity of the hypothesized cor­
relational process involving, as it does, the emergence of
a temporal code that determines whether stimuli presented
early in a temporal sequence are to be perceived as in­
tegrated with-or segregated from-stimuli presented later
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