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What has happened to Pragnanz?
Coding, stability, or resonance
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Three theoretical measures of Pragnanz were compared with four data sets. The theoretical
measures were a stimulus-coding one (structural information load, SIL), a measure related to
within memory processes (stability), and one based on the interaction of perception and memory
(resonance). The four data sets were obtained in two experiments and involved goodness rating,
grouping, and immediate and delayed recall. A complete set of seven-element binary serial pat
terns was used in each experiment. Both SIL and resonance were shown to correlate reliably
with the data sets across tasks. The resonance measure, however, performed best. Pragnanz thus
appears to be explained better by resonance than by stimulus coding or memory storage. Resonance
explained all systematic variance in the recall tasks, but not in the other tasks. Regarding these,
partial-correlation analyses showed that the effect of stability could be fully reduced to resonance.
SIL could not be similarly reduced. Therefore, additional perceptual constraints, other than res
onance, would be needed for a complete account of goodness in the judging or grouping tasks.
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Simply asking subjects for the "goodness" (Garner,
1974) of a serial pattern provides the experimenter with
quite consistent answers. A good series appears to be one
with repeating (Restle, 1970) or symmetrically arranged
substructures (Jones, 1975). Serial-pattern goodness,
therefore, is likely also to manifest itself in intersubjective
agreement on how the series are divided into groups
(Handel & Todd, 1981).

Goodness is not necessarily identical to simplicity of
a perceived structure (Hamada & Ishihara, 1988). A per
ceptually good stimulus could possess a regular, yet com
plex, structure. But a form of goodness seems also to oc
cur in memory tasks, where "good" patterns are ones
that are more easy to remember (Restle, 1970). Here, sim
plicity of structure may playa more important role. Un
like perceptual goodness, memory goodness may in ad
dition be sensitive to meaningfulness, frequency of
occurrence, or other factors related to the history of the
perceiver.

Throughout his entire scientific career, Kohler, (1925,
1950) has maintained that there is only one generic ac
count for what is both perceptually good and easy to
remember. This generic account was called the principle
of Pragnanz (Koffka, 1935), or the minimum principle
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(Hatfield & Epstein, 1985; Hochberg & McAlister, 1953).
Kohler sought its explanation at the neurophysiological
level, in terms of an isomorphism between the mental rep
resentation structure underlying both perception and
memory and the structure of an electrical potential field
in the brain. Van Leeuwen (199Oa, 1990b) argued that,
rather than at a neurophysiological level , the principle of
Pragnanz should be specified in a theory of mental
representation. Not neurological evidence, but preference
data could be used to evaluate such an account. If so, a
numerical measure of Pragnanz would be needed to order
different representational states according to preference.
Correlations with observed preferences could then be used
to evaluate the theory.

Such a measure was specified as structural information
load (SIL) of expressions within a representation system
for visual patterns (Leeuwenberg, 1971; Pomerantz &
Kubovy, 1986) called structuralinformationtheory (SIT).
It was introduced as a stimulus-eoding language. Its cod
ing rules have been revised by their authors more than
once. The version to be discussed is the most recent one,
which accords mostly to Buffart's work (see van Leeuwen,
Buffart, & van der Vegt, 1988).

The corresponding measure, SIL, was introduced in
1971 as a count of the number of symbols needed for the
shortest possible coding of a stimulus. Although SIL is
a stimulus-eoding measure, descriptions may sometimes
go beyond the stimulus actually given. But this is restricted
to amodal completion (Kanizsa, 1970), a phenomenon
characteristic of perception. Expressions, for instance,
were used to describe several alternative pattern comple
tions, rather than the pattern as actually given (e.g.,

Copyright 1991 Psychonomic Society, Inc.



436 VAN LEEUWEN AND VAN DEN HOF

Buffart, Leeuwenberg, & Restle, 1981). The emphasis
of the measure is thus on perceptual, rather than on
memory, goodness.

Leeuwenberg's approach to reduce Pragnanz to a sin
gle factor, SIL, represents a break with the traditional ap
proach of perceptual goodness. The latter specifies good
ness in terms of a combination (e.g., a weighted sum) of
otherwise unrelated characteristics or features of a stimu
lus, such as symmetry and proximity of the elements of
a pattern (Palmer, 1977), or uncertainty indicators (Vitz
& Todd, 1967). Such an approach attempts to account for
Pragnanz by eliminating it entirely from the theoretical
vocabulary.' In this approach, parameters are needed to
specify the relative weight among the various relevant
characteristics. Fits are obtained with parameters adjusted
to the data. It might therefore come as no surprise that
these measures correlate between .80 and .90 with data
(Vitz & Todd, 1967). Because a unitary measure like SIL
is obtained without parameter fitting, one might expect
lower correlations. However, in several studies using SIL,
correlations were reported between .85 and .95.

This might raise skepticism, because the height of these
correlations requires both the measure and the data to be
almost error-free. Even if we grant this for the former,
it is not very likely for the latter, given the necessary un
constrained character of perceptual organization tasks.
Tasks that are too constraining yield trivial results; if the
instruction tells a perceiver to rate series for symmetric
ity, ratings will, of course, highly correlate with measures
of symmetricity, irrespective of whether it captures the
essence of Pragnanz. If, on the other hand, the instruc
tion tells the perceiver to rate for goodness, it is left open
to what extent the symmetricity of the patterns will con
tribute to the ratings. Intuitively, the contribution is ex
pected to vary from subject to subject and from moment
to moment. These circumstances may set an upper limit
to the performance of any unitary, parameter-free mea
sure. If, therefore, such high correlations are reported,
they are likely to be called inflated, either because the
measure has been adapted to the stimulus set or the stimu
lus set has been adapted to the measure. In follow-up
research, correlations are then likely to fall back on lower
values. If such results are unreported because the weaker,
but still significant, correlations are viewed as merely bad
experimenting, this leaves for the measure an unwarranted
impression of reliability. In the face of such problems,
it must be agreed that correlations are not sufficient to
establish any measure (Restle, 1970).

Yet, a failure to obtain a correlation can be evidence
against a measure. This is why we have chosen to present
another correlation study; it could be read as an attempt
to eliminate certain alternative measures proposed within
the tradition of SIT. This representation system will be
used in order to allow a comparison of different measures
to be relevant for the alternative processing assumptions
on which these measures are based. Such a comparison
would be meaningless if the representation system would
vary across measures. We will avoid some of the sins of

the earlier mentioned correlation studies. First, to avoid
commitment to one specific model and the correspond
ing inclination to adapt the model to the data, several mea
sures will be compared. Second, among these will be a
baseline model based on common sense, which will be
used to find out whether the measures perform not only
better than chance, but also better than common sense.
Third, we will avoid selection of stimuli in adaptation to
the model by using a full variation of stimuli of a certain
type. Fourth, variation of tasks is introduced to investigate
to what extent the proposed measures capture perceptual
and memory aspects of goodness.

Structural Information Theory
SIL is the first measure to be discussed. As mentioned,

it is based on the expressions of Leeuwenberg's SIT.
These describe identity relations between elements of a
pattern. They do so by means of operators. There are three
types of operators: iteration, symmetry, and concatena
tion. Formulas la-5b show examples of expressions and
their evaluations. The operator is on the left side of the
"~"; the evaluation is on the right side. The operator
iteration expresses the identity of adjacent elements. The
expression "3*a," for instance, specifies the identity of
the three as in the sequence a a a. Formula la shows a
simple example. Formula 1b shows an iteration of a group
of elements, called a substructure. Substructures in an ex
pression are treated as units and are denoted by paren
theses. A variant of iteration is continuation, which indi
cates an indefinite amount of repetitions. Continuation is
indicated with the symbol "<< ..>> ." An example is
given in Formula le.

The operator symmetry expresses the identity of a sub
structure with the same substructure reversed, as shown
in Formulas 2a-2d. There are two symmetry operators,
the S operator shown in Formulas 2a-2b and the S' oper
ator shown in Formulas 2c-2d. The evaluation of the S'
operator contains the last argument only once as a center,
whereas the evaluation of the S operator does not have such
a center. Notice the difference in evaluation between For
mulas 2a and 2b and between Formulas 2c and 2d due to
the parentheses. A variant of the symmetry operator is
reversal, indicated by the symbol # in Formulas 2e and 2f.

The operator concatenation connects two or more struc
tures following each other. Simple examples are shown
in Formulas 3a-3b. Usually, the backslashes and paren
theses of the simple concatenations are omitted. The
relevance of the concatenation operator lies in its distribu
tive variant. It allows the description of the identity of
nonneighboring elements or substructures, as shown in
Formulas 4a-4e. The rule for the distributive iteration
prescribes that elements alternate from the leftmost square
brackets and from the rightmost ones; this is repeated until
the last symbol from the left follows the last symbol from
the right. This may lead to quite expanded evaluations,
especially if there is more than one element in both the
leftmost and the rightmost brackets, as in Formula 4e-4f.
The iteration too has a distributive variant. This is shown



in Formulas 5a and 5b, where the number of iterations
in the first argument is distributed over the substructures
in the second argument.

As shown in Formulas 6-9, arguments of an operator
may also be expressions containing operators. This nest
ing ofoperators in the language is in accordance with the
assumption underlying the code that representations have
a hierarchical character. Nested expressions can be evalu
ated stepwise using the evaluation rules for iteration, sym
metry, and concatenation, until the resulting series con
tains no more operators. A series of variables only is
called a pattern. Patterns are related to a stimulus by a
so-called "semantic mapping." For instance, the elements
of a pattern may be mapped one to one onto the elements
of a sequence of letters, of tones, or of colored dots, or
even onto the elements of a contour of a visual stimulus.

(1a) 3*a -. a a a
(lb) 3*(a b) -. a b a b a b
(lc) «a b> -. ... a b a b a b a b a ...
(2a) S[a b c] -. abc c b a
(2b) S[(a b) c] -. abc cab
(2c) S'[a b c] -. abc b a
(2d) S'[(a b) (c d)] -. abc dab
(2e) #[a b c] -. c b a
(2f) #[a (b c)] -. b c a
(3a) a\b\c -. abc
(3b) (a b)\(c d) -. abc d
(4a) <a>\<b c d» -. a b a cad
(4b) <a>\<b (d e) -. a bad e
(4c) <a b>\<c> -. a c b c
(4d) «a b) c (d e)>\<{f g)> -. a b f g c f g d e f g
(4e) <a b>\<c d e f> -. a c b d a e b f
(4f) <a b>\<c d e> -+ a c b d a e b cad b e
(5a) <2>*<a b> -. 2*a 2*b -. a a b b
(5b) <2>*«a b) c> -. 2*(a b) 2*c -. a b abc c
(6) «a>\<b c»\<p> -. <a b a c>\<p> -.

apbpapcp
(7) S'[«a b»\<c d> (e f)] -.

S'[a b cab d (e f)] -.
abcabdefdbacba

(8) 2*(S[a b] c) -. 2*(a b b a c) -.
abbacabbac

(9) « <a>\<b c»>\«2*a) (3*c» -+

«a b a c»\«a a)(c c c) -+

abacaaabacccc

The evaluation may map an argument of an operator
onto several variables in the pattern. Only if this is the
case is it implied that an identity relation between these
elements is being expressed. Because of the hierarchical
character of the expressions of the code, there are cer
tain restrictions on the identity relations between elements
of patterns that could be expressed. For instance, there
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is no expression for Pattern 10 that is able to describe the
identity of all its as and bs. Expression i, for instance,
can be evaluated into Pattern 10. The S operator in Ex
pression i describes the leftmost two as and the bs of Pat
tern 10 as identical, but not the rightmost two as. This
illustrates a consequence of the hierarchical character of
the representations (viz., that they cannot describe in every
case the identity relations of a pattern fully). Complemen
tary expressions are needed for doing so. Expression ii,
for instance, describes as identical the rightmost two as
in Pattern 10 using the distributive iteration operator, but
not the leftmost two.

The choice of an operator description for the coding
language makes it clear that representations are hierar
chical, but not its consequence (i.e., the need for com
plementary descriptions). The latter, however, is achieved
by using the technique of abstract evaluation. For this
technique, Expression iii is obtained from Expression i
by renaming the variables, so that identical ones no longer
occur at different positions. Expression iii is equivalent
to Expression i, because both express exactly the same
identity relations. Similarly, Expression iv is equivalent
to Expression ii. The evaluations of the newly obtained
Expressions iii and iv are Patterns 11 and 12. Identical
variables in these patterns refer to the identity relations
expressed in Expressions iii and iv or, equivalently, in
the original Expressions i and ii, respectively. For this
reason, Patterns 11 and 12 are called abstractevaluations
of Expressions i and ii.

(i) S[a b] a
(ii) a<2>*<b a>

(10) a b b a a
(iii) S[a b] c
(iv) a<2>*<b c>
(11) a b b a c
(12) a b b c c

The existence of complementary expressions constitutes
the kernel of the theory. It is assumed that the stimulus
coding system selects one of the complementary expres
sions as the preferred hierarchical interpretation of the
pattern. The interpretation is decided on the basis of the
minimum principle of the theory. The preferred interpre
tation is identified as the expression having the least SIL.
SIL is the number of degrees of freedom in an expression,
which is the sum of the unit elements, the numbers in an
iteration (where continuation has no number), and each
occurrence of the S or S' operator. Ambiguity results if
two complementary expressions have equal SILs (Buffart,
Leeuwenberg, & Restle, 1983). Examples of counting SILs
are given in Expressions v-viii, showing two expressions
for Pattern 13 and two for Pattern 14. Counting sym
metry, but not the other operators, might seem arbitrary.
Some theoretical arguments for doing so, however, have
been given in Buffart and Leeuwenberg (1983). In various
experiments, it is shown that the forrnallanguage of SIT
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in combination with its Sll, principle can be used to explain
perceptual organization phenomena (see, e.g., Leeuwen
berg & Buffart, 1983, for a review).

(13) a b a c dec d
(v) «S'[a(b)]) e>\«c d) >, " , , ,

(vi) S'[a(b)] S'[(c d)(e)]
, I , , , , I SIL = 7

(14) daadabd
(vii) <d>\<(2*a)(a b d) >, , , , , ,

SIL = 6
(viii) «d a»\<a(b d», , , , ,

SIL = 5

Structural Memory
The use of SIL as a preference measure implies com

mitment to the untenable view that perceptual preferences
are static; it amounts to denying the influence of prior
knowledge on perception. As a consequence, it is met with
many counterexamples. Rock (1983), for instance, has
shown that preferred interpretation depends on context.
Hochberg and Peterson (1987) showed that it depends on
the perceiver's intention. But the predictive success of Sll,
in various studies remains to be explained. Buffart (1986,
1987) and van Leeuwen et al. (1988) have therefore pro
posed a dynamic approach to Pragnanz, in which the in
fluence of history and intention could be accounted for.

This approach, called structural memory, retained from
Leeuwenberg's operator language the basic assumption
that expressions must have a hierarchical character. But
instead of using the operator language with all its intrica
cies, the constraint that expressions should be hierarchi
cal could be expressed in terms of abstract evaluations
directly. For instance, the abstract evaluation a b a b a b
could be viewed as a superstructure x x z, with sub
structure a b substituted for each occurrence of the x:
(a b)(a b)(a b). By contrast, a b a b a b could not be
viewed as having a superstructure x y with substructures
a b a and b a b for x and y, respectively. This is because
identities are not maintained over different substructures,
so the substitutions would yield a b a cdc (variables re
named in order of appearance). There is no expression
a b a a in the system, for instance, because it cannot be
obtained by substitution of a b a for x into x a. Such a
substitution would result in a b a c. Other attempts to ob
tain a b a a by substitution would also fail: substitution
ofa b for x in x a a would result in abc c, and substitu
tion of a b for the x in a b a would yield abc a.

The absence of a b a a in the structural memory cor
responds to the absence of an equivalent expression in
Leeuwenberg's operator language. The expressions a b a c,
abc c, and abc a in structural memory are equivalent to
the expressions <a>\<b a> (as can be checked through
abstract evaluation), a b 2*a, and SYMM[a (b a)], respec
tively, in the operator language. With only a few exceptions,
there is almost a one-to-one correspondence between the

representations in structural memory and the expressions
of Leeuwenberg's language (see van der Vegt, Buffart,
& van Leeuwen, 1989). Because of this, a meaningful
comparison between measures could be made. Otherwise,
a difference in adequacy of measures could be ascribed
to the expressions used.

In a series ofpapers, Buffart and his colleagues (Buffart,
1986, 1987; van der Vegt et al., 1989; van Leeuwen,
1989; van Leeuwen et al., 1988) used this principle to
construct a network memory model for their representation
system. Abstract evaluations were included in the network
as nodes. The links between the nodes are those between
superstructure and structure and between substructure and
structure. In addition, it was assumed that nodes with an
isolated position in the network (with few links to other
nodes) are difficult to activate, but once activated, their
activation is less likely to be disturbed. Thus, nodes in
the model which are isolated are assumed to have stable
activation functions. Stability here indicates invariance
over time as well as resistance of its characteristics over
random fluctuations (Thom, 1985). Structural stability,
in tum, was taken to represent Pragnanz. Therefore, iso
latedness, expressed as (minus) the number of links of
a node to other ones in the network, is called the (memory)
stability measure of Pragnanz.

For illustration, suppose a serial pattern consisting of
a blue cross, a red one, another blue cross, and another
red one is coded by a b a b. In the network model, this
node, according to the hierarchy principle, has a super
structure a a and a corresponding substructure a b (as can
be checked by substitution of a b for each occurrence of
the variable a in the superstructure). Therefore, a b a b
is linked with both a a and a b. Another way to compose
a b a b would be to alternate a a with a copy of itself.
Variables are named in order of appearance, so the copy
of a a becomes b b, yielding a b a b when the symbols
are alternated. This composition again implies that a a
is a neighbor of a b a b. There are no other super
structures and substructures for a b a b, according to the
network. In other words, a b a b has no other neighbors,
and the stability measure for this node amounts to 2. Note
that nodes other than a b a b are possible as (partial)
descriptions of the stimulus configuration of red and blue
crosses at issue; the node a b a c, for instance, also fits
the stimulus configuration. The node a b a c has super
structure a b and substructure a b a; that is, a b a c could
be composed by a substitution of the substructure a b a
for the a in the superstructure a b (since variables in the
node by convention are specified in increasing alphabetic
order, because a b has already been used in a b a, the
b in a b must become a c, resulting in a b a c). Thus,
a b and a b a are linked with a b a c. An alternative way
to compose a b a c would be to alternate a a and a b (be
cause an a is already used in the first series, the series
a b must be renamed into b c before the composition could
be made). In sum, therefore, a b a c is linked with three
neighbors-a b a, a a, and a b-resulting in a value of
3 for the stability measure. For comparison, consider a



lesser pattern of crosses than the previous one: a blue
cross, a red one, another blue one, and a yellow one. The
most isolated node for this pattern is a b a c.

Although it is easy to determine the value of the stabil
ity measure for such short patterns, this quickly becomes
extremely laborious for larger patterns, for which the cor
responding nodes in the network may have more than 100
links. Our present research will therefore use a computer
program (described at length in van der Vegt et al., 1989)
to determine the stability measure.

When van der Vegt's model was run, it was shown to
have an interesting emergent property that could be used
independently to predict Pragnanz, Because of what the
authors called the "confirmation" assumption, presen
tation of a stimulus configuration results in an increase
of activation in the nodes that fit the stimulus configuration
momentarily presented. The increase in activation could
be identified with resonance (Duncker, 1945; Gibson,
1979; Shepard, 1984). Averaged over all nodes, it will
be stronger, the more nodes fit. The number of fitting
nodes could therefore be used as a measure for Pragnanz,
on the basis of resonance, rather thanstability. For illustra
tion, if a b a b fits, this automatically implies that a b a c
also fits, but not vice versa. Consider the pattern of a blue
cross, a red cross, a blue cross, and a red cross. There
are two nodes other than the earlier mentioned abc c
and a b a c that fit the stimulus configuration (viz., abc b
and abc d). This yields 4 as the number of nodes that
fit the stimulus configuration. By contrast, the lesser pat
tern for which the node a b a c was fitting has only one
other fitting node (viz., abc d).

Stability and resonance measures are not unrelated. By
definition, the most stable node for a stimulus is an ele
ment of the set of nodes that resonate to a stimulus. How
ever, the number of resonating nodes determines the res
onance of a stimulus, whereas the number of links of the
most stable one among these determines the stability mea
sure. Statistically speaking, if there is a large amount of
resonance (a large set of fitting nodes), it is likely that
one among them is very stable (similarly, one is more
likely to find the new Einstein among a relatively large
class of students). But this does not imply a strict relation;
in principle, for two stimuli, one could have higher reso
nance and the other could be more stable. There is, there
fore, no reason a priori why data should correlate better
with resonance than with stability.

The Measures Represent Alternative Accounts
of Priignanz

A measure such as the number of fitting nodes is based
on the assumption that goodness is not primarily deter
mined inside of the system, rather it is based on the inter
face of organism and environment, where the system
resonates to an external patterned configuration (Shepard,
1984). By contrast, when the stability measure is used as
an account for Pragnanz, the focus is entirely on processes
within memory. Stability is a typical characteristic of in
ternal memory processes. Within the assumptions of SIT,
by comparing the goodness of fit for the alternative mea-
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sures SIL, stability, and resonance, it is possible to test
stimulus coding, perception-memory interaction and
within-memory processes as alternative accounts of Prag
nanz. A fourth measure to be compared has no theoreti
cal motivation at all, but serves as a commonsense alter
native. A theoretical approach has to make more sense
than just common sense, and, therefore, its predictions
will have to be superior to the fourth measure; it is our
baseline. The commonsense measure is calculated as fol
lows: Identify recurrent groups of elements, and rewrite
the series as a juxtaposition of such groups (a single ele
ment counts as a group by itself) in such a way as to mini
mize the number ofgroups. For instance, a b a b becomes
(a b)(a b); a a a a a a a becomes (a a a)(a a a)(a). Count
n equals the number of groups in a series, as a measure
of its Pragnanz.

EXPERIMENT 1

Hypotheses
We may assume that the same measures that are rele

vant in goodness ratings are also potentially important in
related tasks. Three tasks were therefore compared in Ex
perirnent 1. Together with goodness rating, we intrcxluced
a grouping task, in which subjects must indicate which
groups of elements they perceive in the series, and a recall
task, in which a briefly displayed series must be recalled
immediately after presentation. It was expected that, in
all tasks, subjects would prefer patterns for which there
was a low SIL, a high stability (i.e., a low minimum num
ber of links for its fitting nodes), and high resonance
(many fitting nodes).

Method
Subjects. Fifty-five undergraduate students were paid a small

amount of money for participation as subjects in Experiment I.
StimuU. Series of seven circles were used, which could be either

open or filled with an x. All 2' = 128 possible series of open and
filled circles were included in the stimulus sets. Each series ap
peared on the center of the screen of an Olivetti 24 personal com
puter, with a stimulus width of approximately S· of visual angle
for the entire series. 'Therewas equal spacing between theelements;
the space was approximately equal to half the size of an element.
For each of the series, SIL, the value of thestability and resonance
measures, and the commonsense measure were calculated. Van der
Vegt's model was used for determining the stability and resonance
of the series. See the Appendix.

Procedure. Threetasks-grouping, recall, and rating-were car
ried out. Eighteen subjects perfonned in the order grouping, recall,
and rating; 17 subjects perfonned in the order recall, grouping,
and rating. We thus hada balance in practice between the group
ing and recall tasks, and the rating task was always carried out by
the subjects already familiar with the patterns. In all tasks, thesame
128 series were presented in a random order. Another group of
20 subjects performed only the rating task, enabling us to compare
the untrained subjects with those familiar with the patterns from
the earlier tasks.

In the grouping task, a movable cursor appeared directly above
the series. The subjects could move the cursor to the left or the right
with the arrow keys on the keyboard. By pressing the slash key,
they could insert a separation mark (slash) between two elements
of the series at the cursor position. A separation mark could be
deleted by pressing thespace bar. The subjects could insert as many
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Table 1
Correlations of Measures with Data

Correlation with:

Theoretical Grouping Recall Ratings

Measure Entropy Errors Practiced Unpracticed

SlL .579t .30S* .629t .613t
Resonance .680t .SS6t .nOt .646t
Memory Stability .Il8 .167 .247* .303*
Common Sense .08S .027 .193 .282*

Note-N == 128 (series). *p < .01. tp < .0001.

separation marks as ~y wanted and correct them freely. By pressing
the return key, making the answer definitive, a trial was completed.
The groupings were registered automatically. In the recall task, a
beep was followed by a 2QO-rnsecpresentation of the series. There
w~ no mask. Immediately after the sequence haddisappeared, the
subjects typed the sequence. Two keys on opposite sides of the key
board of ~e computer were used for doing so. One key showed
an open Circle; the other one showed a filled circle. All typed
responses could be deleted before the return key was pressed. After
the return key was pressed, the series as recalled was registered
together with the number of errors (wrong elements, max == 7):

In the rating task, the subjects were instructed to rate the order
liness of the series according to a 7-point scale. The subjects typed
their ratings with thekeyboard of the computer, completing the trial
by pressing a return. If a subject did not provide a rating within
10 sec, the text "Hurry up a bit, please" appeared on the screen.
!he following text was displayed immediately below the series: "I
IS very orderly and 7 is very disorderly," in order to remind the
subjects of the extremes of their response scale. After the return
key was pressed, the rating was registered.

Results
Mean errors and ratings were calculated for the recall

and the rating tasks, respectively. An entropy measure
was calculated from the grouping responses, using the for
mula E(xj!n)ln{t;!n), in which x, = the number of subjects
who gave a grouping i to a certain series and n = the
total number of subjects. A higher entropy value indicates
less agreement between subjects in the grouping given to
a series. Agreement had been used as an indicator ofgood
ness by Handel and Todd (1981). Our entropy measure was
intended to give a numerical value ofagreement. The recall
errors, ratings, and entropy for individual patterns are
given in the Appendix. Entropy, errors, and ratings were
compared with the theoretical measures SIL, resonance
and memory stability (from van der Vegt et al., 1989),
and common sense. In accordance with van Leeuwen et al.
(1988), the resonance and memory-stability measure were
log-transformed. The correlations with the results of all
tasks are shown in Table 1. (Since all correlations were
in the expected direction, absolute values of the correla
tions will be given for convenience in all tables.)

Table 2
Intercorrelations of the Measures

As shown in Table 1, Leeuwenberg's SIL correlates
significantly with the results in all tasks. The correlation
with errors in the recall task, however, is considerably
lower than the others. Of the dynamic measures, the res
onance measure, but not the memory-stability measure,
correlates significantly with the results in all three tasks.
Resonance is slightly better thanSIL on all tasks, but sig
nifi~ll;Dtly better only on the recall task. The memory
stability measure correlates significantly only with the
goodness ratings (both practiced and unpracticed). In Ta
ble ~~ however, it is shown that resonance and memory
stability are correlated (r = .399). A partial-eorrelation
analysis revealed no significant relation between ratings
Il;Dd the memory-stability measure, with resonance par
haled out (r = - .064, for the practiced subjects, and
.065, for the unpracticed subjects). This suggests that the
significance of the predictions from the stability measure
was due to its correlation with resonance.

Alternatively, we could partial out SIL from the corre
lation between ratings and memory stability. This results
in r = .044, for the practiced subjects, and r = .127, for
the unpracticed subjects. These correlations are also not
significant (although .127 is significant at the .1 level).
By the same argument as before, the alternative sugges
non would be that the effect of memory stability should
be ascribed to SIL. To find out if our data allow a pre
ferred choice among these alternative suggestions, we cal
culated, first, a partial correlation between ratings and
resonance, with SIL partialed out. This correlation (r =
.510, for the practiced subjects, and r = .399, for the
unpracticed subjects) could be compared with correlations
between ratings and SIL, with resonance partialed out.
Th~se correlations amount to r = .268, for the practiced
subjects, and r = .306, for the unpracticed subjects. Thus,
for the practiced subjects' ratings, the partial correlation
with resonance was significantly higher than the one with
SIL (z = 2.211, P < .05). We may therefore conclude
that the stability correlations are explained better by res
onance thanby SIL. Finally, the commonsense measure
yielded a significant correlation with the ratings in both
practiced and unpracticed rating tasks. However, it was
considerably lower than the correlations obtained for SIL
and resonance.

SlL
Resonance
Memory Stability

Resonance

.686

Memory
Stability

.341

.399

Common
Sense

.214

.039

.20S

EXPERIMENT 2

In Experiment 1, the resonance measure was shown to
be a much better predictor thanthe memory-stability mea-
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Theoretical Correlation with
Measure Intermediate-Recall Errors

Table 3
Correlations of Measures witb Data

Results and Discussion
The number oferrors in Experiment 2, listed in the Ap

pendix, is larger than that in Experiment I, despite longer
presentation times. This shows that confusion between pat
terns must indeed have occurred in our procedure. Table 3
shows the correlations obtained. These are essentially the
same as the ones for the recall task in Experiment I, so

Method
Sixteen students received course credit for participation as sub

jects in Experiment 2. These subjects performed only a modified
version of the recall task of Experiment I. Experiment 2 was run
on another computer (Macintosh Il), and presentation times were
longer (1,000 msec). Most importantly, however, instead of the
stimulus presented on a trial, the one presented on the previoustrial
was recalled (intermediate recall). This implies that the subject must
face the confusion arising from the fact that two patterns must be
remembered, the one to be reproduced and the one just shown.

the confusion does not modify the correlations. This is
contrary to the prediction of our model.

Table 4 shows the intercorrelations between the results
obtained in Experiments I and 2. Without exception, these
correlations are highly significant. This result cannot be
ascribed to sameness of subjects across tasks, because
three independent groups of subjects were involved: the
practiced subjects in Experiment I, who also performed
the rating and grouping task, the unpracticed subjects in
Experiment I, and the subjects of Experiment 2. The less
than-perfect correlation between all the tasks supports the
claim made in our introduction that no parameter-free
measure could reach a perfect fit over tasks. The lowest
correlation was obtained between the recall tasks in Ex
periments I and 2. This seems surprising, because these
tasks seem very similar at face value. It is possible that
this correlation is low merely because it is an inter
experiment one (different subjects and apparatus). How
ever, this does not explain why the other interexperiment
correlations are so much higher. One way or another,
these recall tasks produce much random variance, which
delimits the correlations, perhaps because recall strate
gies are essentially random processes.

Nevertheless, the fact that highly reliable correlations
were obtained with the theoretical measures would im
ply that the systematic variance is almost fully captured
by them. To investigate this, we recalculated the correla
tions between the data sets with two of the theoreticalmea
sures partialed out. If a measure captures all or nearly
all of the systematic variance in the data, there must re
main zero or near-zero partial correlation between the
tasks when the measure is partialed out. As shown in Ta
ble 5, ratings and grouping contain systematic sources of
variance still not accounted for by resonance SIL. A near
zero value is obtained only for the partial correlation be
tween the two recall tasks (r = .044) when resonance is
partialed out, which would mean that this measure cap
tures all the systematic variation in the recall tasks. By
contrast, no near-zero partial correlation was obtained for
SIL. So, if a unitary measure is supposed to account for
all the systematic variance in a task, we might claim that
this is possible for the recall tasks on the basis of reso
nance. We might therefore conclude from this analysis,
that a unitary account of Pragnanz is not possible in terms
of SIL, but seems possible for the recall data in terms of

.411*

.568*

.174

.080

SIL
Resonance
Memory Stability
Common Sense

Note-N = 128 (series). *p < .0001.

sure. This result contrasts with the experiments reported
earlier (van Leeuwen & Buffart, 1989; van Leeuwen et al.,
1988), where the stability measure hadbeen usedsuccess
fully. An explanation for the success of the stability mea
sure in these experiments seems to be its correlation with
the resonance measure. Yet, it could also be argued that
the discrepancy is a consequence of a difference in method
between the experiments. Our Experiment I used immedi
ate ratings or reproduction with minimal risk of confu
sion between the patterns, whereas the earlier reported
experiments used confusion conditions (several patterns
had to be remembered simultaneously). Therefore, it
could be argued, the load of internal processing in these
experiments was higher than in our Experiment I, ex
plaining the predominance of the stability measure. Ex
periment 2 was designed to study the effect of all mea
sures in confusion conditions.

Immediate
Recall
Errors

Grouping
Entropy

Ratings
of Practiced

SubjectsCondition

Table 4
Intercorrelations of Tasks in Experiment 1 and between Experiments 1 and 2

Intermediate
Recall Errors

(Experiments 1
and 2)

Ratings (Unp)
Ratings (Pr)
Entropy
Immediate-Recall Errors

.945t .676t
.742t

.482t

.565t

.530t

.540t

.571t

.522t

.346*

Note-N = 128 (series). Unp
*p < .01. tp < .0001.

unpracticed subjects; Pr = practiced subjects.
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Table 5
Inten:orrelatioDS of Experiment 1 Tasks

with Intermediate Recall from Experiment 2

Resonance SIL
Condition Partialed Out Partialed Out

Ratings (Unp) .276* .400*
Ratings (Pr) .286* .441*
Grouping Entropy .225* .382*
Immediate-Recall Errors .044 .254*

Note-N = 126 (Number of series-2). Unp = unpracticed subjects;
Pr = practiced subjects. *p < .01.

resonance. This result may contribute to an identification
of Pragnanz with resonance.

GENERAL DISCUSSION

We investigated the same set of seven-element binary
serial patterns in four tasks: rating, grouping, immediate
recall, and intermediate recall. Correlations were obtained
between the responses and several theoretical measures
based on the economy principle. Fair correlations were
obtained for Leeuwenberg's SIL measure and resonance,
one of the network measures. The correlations obtained
for resonance were slightly better, on the average, than
those obtained for SIL. SIL performed considerably
weaker than did the resonance measure, however, on the
recall tasks. The height of the correlations was considered
appropriate, given the principled openness of all our tasks
to strategies not taken into account. This view was con
finned by our fmding that only the partial correlation be
tween two recall tasks reached zero when the effect of
the resonance measure was partialed out. Thus, the recall
tasks have Pragnanz as their only systematic source of
variance, whereas all the other tasks may have other sys
tematic, confounding factors.

It was assumed that if there are two tasks for which zero
or near-zero partial correlation remains when a measure
is partialed out, that measure captures all the systematic
variance in the data. Since such a result was obtained only
for resonance and not for SIL, resonance is clearly su
perior to SIL in the sense of having a domain where Prag
nanz can be a unitary source of preference. Therefore,
if it is required that a unitary account of Pragnanz be
given, resonance is a better candidate than SIL. Thus, it
might be concluded that Pragnanz is to be identified with
the amount of resonance a stimulus elicits in memory,
rather than in terms of internal memory processes (sta
bility or decay) or stimulus coding.

In this conclusion, no preference is given to SIL,
although the correlations obtained were lower than the
ones reported for SIL in Leeuwenberg's papers. The
lowering of correlations was expected, given the ex
perimenter freedoms mentioned in our introduction. The
fact that correlations were far from perfect is nothing to
worry about, if we view a Pragnanz measure as merely
a coarse approximation to the underlying process. The
resonance measure, as specified here in terms of the

amount of resonating nodes, is indeed only a first approx
imation of the resonance expected to occur in actually
processing these series by a model or a real subject.

But SIL, in contrast, is not a simplification of an im
plied process; Leeuwenberg's papers contain hardly a sug
gestion of what the processes should look like. In any case,
the significance of the partial correlations after elimina
tion of SIL in all our studies suggests that a unitary Prag
nanz account based on stimulus coding does not exist. If
a unitary account makes sense, it will have to start from
an interactive notion of Priignanz-as resonance. It ex
plains all the systematic effects in the recall tasks, the other
ones being random (e.g., random-walk search strategies
as in Ratcliff, 1978). To account for the goodness rat
ings and grouping task, more specific constraints or strate
gies would have to be added to a model. These constraints
could well be of a perceptual nature. For grouping, for
instance, a possible confounding factor is perceptual
"span," or length of a repeating substructure. In grouping
a pattern with long substructures (e.g., x x x 0 0 0 0), an
additional constraint that the long substructures be taken as
single groups leaves little choice for grouping, whereas it
leaves much more freedom in grouping for x 0 x 0 x 0 x.
Therefore, the amount of agreement in grouping, our en
tropy measure, should have to be considered relative to
the amount of choice one has under this constraint, pro
vided that it could be adequately specified.

Regarding ratings, a possible confounding factor is am
biguity. Gamer (1974) has shown that ambiguity is nega
tively correlated with goodness ratings (Gamer, 1974):
good patterns have few alternatives (i.e., complementary
descriptions). SIL is correlated with ambiguity (van Leeu
wen & Buffart, 1989), so this might explain the signifi
cant correlations with SIL in these tasks. Structural in
formation theory (Buffart et al., 1983) has described
ambiguity in terms of the existence of complementary ex
pressions with approximately equal SIL, or stability.
Though a high score on the resonance measure means that
many different representations respond to the pattern, res
onance is not to be confused with ambiguity. The corre
lation between resonance and ambiguity (in terms of the
proportion of the numbers of links [stability] of the two
most stable representations) amounts to .37 (.21 for l-load),
Ambiguity thus specified, however, did not contribute in
dependently to the correlations.

In accordance with our claim that the emphasis of corre
lation studies should be critical, there are critical conse
quences to be drawn regarding our own earlier work. The
present study shows that the memory-stability measure
could be replaced by a resonance measure. The present
results necessitate a major revision of the activation
spreading functions proposed in van Leeuwen et aI. (1988)
and implemented by van der Vegt et aI. (1989). The inter
active resonance processes in the model should be given
a more important role than the internal stability processes.
The resonance measure accords to what was labeled in
the model the "confirmation" assumption. Preactivated
nodes function as perceptual hypotheses regarding the



structure of the stimulus configuration presented. The
preactivation is determinedby the perceiver's history. The
fact that resonance was only an unconfounded measure
in the recall tasks, but not in the other tasks, is in accor
dance with this interpretation. However, only the repre
sentations that fit in the actual stimulus seem to play a
role (i.e., the ones that resonate to it). It is, therefore,
an interactive, rather than an internal, account of memory
that seems to be favored by our data. In contrast, an in
ternal stability measure seems to be irrelevant to Pragnanz.

REFERENCES

BUFFART, H. (1986). Gestaltqualities,memorystructure, and minimum
principles. In F. Klix & H. Hagendorf (Eds.), Human memory and
cognitive capabilities: Symposium in memoriam Hermann Ebbinghaus
(pp. 189-204). Amsterdam: Nonh-Holland.

BUFFART, H. (1987). Seven minus two and structural operations. In
E. Roskam& R. Suck (Eds.), Progress in mathematical psychology
(Vol. I, pp. 117-149). Amsterdam: Nonh-Holland.

BUFFART, H., '" LEEUWENBERG, E. (1983). Structural information the
ory. In H.-G. Geissler, H. F. J. M. Buffart, E. L. J. Leeuwenberg,
& V. Sarris (Eds.), Modem issues in perception (pp. 48-72). Am
sterdam: Nonh-Holland.

BUFFART, H., LEEUWENBERG, E., '" RESTLE, F. (1981). Coding the
ory of visual pattern completion. Journal oj Experimental Psychol
ogy: Human Perception <I Performance, 7, 241-274.

BUFFART, H., LEEUWENBERG, E., '" RESTLE, F. (1983). Analysis of
ambiguityin visual pattern completion.Journal ojExperimental Psy
chology: Human Perception <I Performance, 9, 980-1000.

CHURCHLAND, P. M. (1989). A neurocompuuuional perspective. Cam
bridge, MA: MIT Press.

DUNCKER, K. (1945). On problem solving.Psychological Monographs,
58 (Whole No. 270).

GARNER, w. R. (1974). Theprocessing of information and structure,
Potomac, MD: Erlbaum.

GIBSON, J. (1979). Theecological approach to visualperception. Boston:
Houghton Mifflin.

HAMADA, J., '" ISHIHARA, T. (1988). Complexityand goodness of dot
patterns varying in symmetry. Psychological Research, SO, 155-161.

HANDEL, S., '" TODD, P. (1981). Segmentationof sequential patterns.
Journal of Experimental Psychology: Human Perception <I Perfor
l1IDlICe, 7, 41-55.

HATFIELD, G. C., '" EPSTEIN, W. (1985). The status of the minimum
principle in the theoretical analysis of visualperception. Psychologi
cal Bulletin, 97, 155-186.

HOCHBERG, J. E., '" McAuSTER, E. (1953). A quantitative approach
to figural "goodness." Journal oj Experimental Psychology, 46
361-364. '

HOCHBERG, J. E., '" PETERSON, M. A. (1987). Piecemeal organization
and cognitivecomponents in object perception: Perceptually coupled
responses to moving objects. Journal of Experimental Psychology:
General, 116, 370-380.

JONES, M. R. (1975). Memory and rule structure in the prediction of
serial patterns. Journal ofExperimemal Psychology: Human Leam
ing <I Memory, 104,295-306.

pRAGNANZ AND RESONANCE 443

KANIZSA, G. (1970). Amodale Ergiinzung und Erwartungsfehler des
Gestalt-psychologen. Psychologische Forschung; 33, 325-344.

KOFFKA, K. (1935). Principles ofGestalt psychology. London: Kegan
Paul, Trench, & Trubner.

KOHLER, W. (1925). Komplextheorie und Gestalttheorie. Antwort auf
G. E. Miillers Schrift Gleichen Namens. Psychologische Forschung ;
6, 358-416.

KOHLER, W. (1950). Psychologyand evolution. Acta Psychologica, 7,
288-297.

LEEUWENBERG, E. (1971). A perceptualcoding languagefor visualand
auditory patterns. American Journal of Psychology, 84, 307-349.

LEEUWENBERG, E., '" BUFFART, H. (1983). An outline of coding
theory: A summary of related experiments. In H.-G. Geissler,
H. F. J. M. Buffart, E. L. J. Leeuwenberg, & V. Sarris (Eds.),
Modem issues in perception. Amsterdam: Nonh-Holland.

PALMER, S. E. (1977). Hierarchicalstructure in perceptual representa
tion. Cognitive Psychology, 9, 441-474.

POMERANTZ, J. R., '" KUBOVY, M. (1986). Simplicity and likelihood
principles. In K. Boff, L. Kaufman, & J. Thomas (Eds.), Handbook
ofperception andhuman performance (Vol. 2, pp. 36-1-36-46). New
York: Wiley.

RATCUFF, R. (1978). A theory of memory retrieval. Psychological
Review, 85, 59-108.

RESTLE, F. (1970). Theory of serial pattern learning: Structural trees.
Psychological Review, 71, 481-495.

ROCK, I. (1983). The logic ofperception. Cambridge, MA: Bradford
Books.

SHEPARD, R. N. (1984). Ecologicalconstraints on internal representa
tion: Resonant kinematics of perceiving, imagining, thinking and
dreaming. Psychological Review, 91, 417-447.

THOM, R. (1985). From the icon to the symbol. In R. E. Innes
(Ed.), Semiotics: An introductory anthology (pp. 275-291). London:
Hutchinson.

VAN DER VEGT, J., BUFFART, H., '" VAN LEEUWEN, C. (1989). The
"structural memory": A networkmodelfor humanperception of serial
objects. Psychological Research, SO, 211-222.

VAN LEEUWEN, C. (1989). PDP and Gestalt: An integration? Psycho
logical Research, SO, 199-201.

VAN LEEUWEN, C. (19908). Indeterminacy of theisomorphism heuristic.
Psychological Research, 52, 1-4.

VAN LEEUWEN, C. (199Ob). Perceptualleaming systems as conserva
tive structures: Is economyan attractor? Psychological Research, 52,
145-152.

VAN LEEUWEN, C., '" BUFFART, H. (1989). Facilitation of retrieval by
perceptual structure. Psychological Research, SO, 202-210.

VAN LEEUWEN, C., BUFFART, H., '" VAN DER VEGT, J. (1988). Se
quence influence on the organization of meaningless serial stimuli:
Economy after all. Journal ojExperimental Psychology: Human Per
ception <I Performance, 14,481-502.

VITZ, P. C., '" TODD, T. C. (1967). A model of learning for simple
repeating binary patterns. Journal of Experimemal Psychology, 75,
108-117.

NOTE
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APPENDIX

Pattern Stab
Expression

Res (after Leeuwenberg) I Groups

Rating

Unpr Pr

Imm Intenn
Recall Recall

Entropy Errors Errors

aaaaaaa 0

aaaaaab 2

337 «a»

110 «a»b

aaa.aaa.a

2 aaa.aaa.b

1.05 1.2222 0.8581 0.1667 0.6429

2.15 2.1111 1.2874 0.6389 1.6429

aaaaaba 4

aaaaabb 4

aaaabaa 7

99 «a»ba

72 «a»2"'b

90 «a»b2"'a

3 aa.aa.a.b.a 2.7 2.8148 1.7018 1.3611

3 aa.aa.a.b.b 2.7 2.4286 1.1254 1.1944 1.5357

4 aa.aa.b.aa 3.05 2.8571 1.6918 1.0278 1.6429

aaaabab 5 60 «<a»a>\<b> 3 a.a.a.ab.ab 4 4.2222 1.6166 1.5278 2.9286

aaaabba 6 67 «4"'a2"'b» 4 a.a.a.ab.ba 3.95 3.8148 1.7888 1.5278 2.0714

aaaabbb 5 65 «a»3"'b 3 aa.aa.b.b.b 1.8 2 1.1499 1.1944 1

aaabaaa 2 100 «3"'ab» 3 aaa.b.aaa 1.45 1.6071 1.3621 0.75

aaabaab 5

aaababa 5

aaababb 7

aaabbaa 2

aaabbab 7

aaabbba 7

45 a«2"'ab»

59 3"'a«ba»

36 <2>"'«a)(ab»b

63 «a»\<2>"'<ba>

39 «a»\<ba>\<b>

58 «<3>"'<ab»>

4 a.a.ab.a.ab 3.7 3.4074 2.0071 1.1944 2.5

4 a.a.ab.ab.a 3.8 4.3333 1.982 1.9722 2.3571

5 a.a.ab.ab.b 5.1 4.8889 2.0231 1.6389 1.2143

4 a.aab.baa 2.95 3.4074 1.5216 1.2778 3.5

4 a.a.ab.ba.b 4.8 4.6296 2.0402 1.6389 1.9286

3 a.a.ab.b.ba 2.85 3.5556 1.055 1.5833 2

aaabbbb 5 65 «a»4"'b 3 a.a.a.bb.bb 2.2 2.1852 1.1728 1.9286

aabaaaa 6

aabaaab 4

aabaaba 2

aabaabb 5

aababaa 4

aababab 4

90 #«4"'ab»

51 #«b3"'a»

45 «2"'ab»

36 «2ab»b

49 S'[2"'aba]

44 a«ab»

3 aa.b.aa.aa 3.2 3.037 1.7788 0.4444 1.7857

3 aab.a.aab 3.5 3.8214 1.949 1.1944 1.9286

3 aab.aab.a 3.1 3.4074 1.8344 1.3333 2.7143

4 aab.aab.b 4.25 4.6296 1.7668 1.0278 2.5714

5 aab.a.baa 1.9 2.6667 1.9846 1.3611 2.1429

3 a.ab.ab.ab 3.6 3.8889 2.0635 2.1111 2.6429

aababba 7

aababbb 5

34 a<ab>\«ba»

36 a<2>"'«ab)b>

5 a.ab.ab.ba 4.55 4.6296 2.2076 1.5

5 a.ab.ab.b.b 4.9 4.8571 2.2042 1.5

3.4286

1.4286

aabbaaa 6 63 <2>"'<ab>\«a» 4 aab.baa.a 3 2.6296 1.4804 0.6389 2.2857

aabbaab 4 34 «<2>"'<ab»> 3 aab.b.aab 3.45 3.4815 1.6432 1.4444 2.8571
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APPENDIX (Continued)

Pattern Stab
Expression

Res (after Leeuwenberg) Groups

Rating

Unpr Pr

lmm Intenn
Recall Recall

Entropy Errors Errors

aabbaba 11 35 «2"'ab)b>\<a> 5 a.ab.ba.ba 4.35 4.6786 2.1357 1.4167 2.8571

aabbabb 5

aabbbaa 5

aabbbab 2

aabbbba 4

aabbbbb 5

abaaaaa 2

abaaaab 2

abaaaba 2

abaaabb 4

abaabaa 2

abaabab 2

abaabba 4

abaabbb 2

ababaaa 2

ababaab 2

abababa 2

abababb 2

ababbaa 4

ababbab 2

36 a«a2"'b»

5 5 «2"'a3"'b»

38 <a(2"'b»\«ab»

52 «2"'a4"'b»

72 2"'a«b»

99 ab«a»

56 «ab3"'a»

53 «ab2"'a»

38 ab3"'a«b»

45 a«b2"'a»

40 «ab2"'ab»

33 <a(ab»\«ba»

39 <a>\<ba>3"'b

59 2"'(ab)«a»

38 <2>"'«ab)a>b

69 «ab»

44 «ab»b

35 «<ab>\«ba»»

40 <a«b»>\«ba»

4 a.abb.abb 3.6 4.0741 1.7538 1.5556 2

4 aa.b.b.b.aa 1.55 1.7037 1.3946 1.5833 1.4286

5 a.ab.b.ba.b 5.1 4.2857 1.8954 1.7778 2.5

4 a.ab.b.b.ba 3.2 3.7037 1.364 1.4722 2.5

3 a.a.bb.bb.b 2.6 2.5926 1.0772 1.1944 0.8571

3 a.b.aa.aa.a 2.7 2.6429 1.4993 0.3611 2.2857

4 ab.a.a.a.ab 3.75 3.7037 1.6829 1.0278 2.6429

4 aba.a.aba 2.05 2.1786 1.8159 1.1667 2

5 ab.a.a.ab.b 4.7 4.25 1.7202 1.4444 2.5714

4 a.baa.baa 2.95 3.6429 2.182 1.5556 1.8571

5 a.ba.ab.ab 4.55 4.4815 2.095 1.6389 4.2857

5 ab.a.ab.ba 4.45 4.7778 2.1703 1.4167 3

5 ab.a.ab.b.b 4.8 4.5714 2.0009 1.5556 1.8571

4 ab.ab.a.a.a 3.95 4.2593 1.4019 1.4167 2.1429

5 ab.ab.a.ab 4.5 4.8519 2.2361 1.9167 2.7857

2 ab.ab.ab.a 1.45 1.7407 1.4878 1.7778 1.5

3 ab.ab.ab.b 4.3 4.4074 1.9205 1.9444 2.0714

4 ab.ab.ba.a 4.5 4.963 2.0576 1.6667 2.4286

4 ab.ab.ba.b 3.55 4.1481 2.3448 1.6389 2.6429

ababbba 2

ababbbb 2

45 «<2>"'«ab)b»>

60 <a>\<b(<<b»»

4 ab.nb.b.ba 5

3 a b.ab.b.h.b 4

5.2963 2.1808 1.7222 2.1429

4.4444 1.786 1.0833 1.0714

abbaaaa 2' 67 a2"'b«a» 4 ab.ba.a.a.a 3.4 3.2963 1.5067 0.6667 2.2857

abbaaab 7

abbaaba 4

abbaabb 4

37 «S[ab1a»

33 «ab»\«ba)a>

34 «S[ab]»

4 ab.ba.a.ab 4.55 4.0741 2.2492 1.1389 2.3571

5 ab.ba.a.ba 4.1 4.2963 2.095 1.8333 2.2857

3 abb.a.abb 2.9 3.6296 2.0037 1.8889 2.1429
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APPENDIX (Continued)

Imm Intenn
Expression Rating Recall Recall

Pattern Stab Res (after Leeuwenberg) I Groups Unpr Pr Entropy Errors Errors

abbabaa 4 34 «ab»\<b(«a»» 4 ab.ba.ba.a 5.15 4.7037 2.124 2.1111 2.2857

abbabab 2 38 <a«b»>\<b«a»> 4 ab.ba.ba.b 4.55 4.6667 1.927 1.8611 2.2857

abbabba 2 42 «a2*b» 3 abb.abb.a 1.75 2.6667 2.0688 1.4444 1.5

abbabbb 6 45 S[ab]«b» 4 abb.abb.b 4.25 4 2.0764 1.4444 1.8571

abbbaaa 2 58 «#<3>*<ab»> 3 ab.b.ba.a.a 3,05 3.2963 1.3154 0.8611 2.0714

abbbaab 6 37 «S'[abb]» 4 ab.b.ba.ab 4.75 4.4815 1.9627 2 2.5

abbbaba 2 45 ««a>\<ba»\<b»> 4 ab.b.ba.ba 5.25 5.037 2.2937 1.4722 3

abbbabb 4 51 «a3*b» 3 abb.b.abb 4.6 4.3571 2.0185 1.5833 2.7857

abbbbaa 4 52 «#2*a4*b» 4 abb.bba.a 3.6 3.4815 1.8092 1.25 1.6429

abbbbab 4 56 «a4*b» 3 abb.bba.b 4.55 4.1481 1.9022 2.1389 2.4286

abbbbba 2 72 «a5*b» 3 abb.b.bba 1.5 1.5926 1.2958 1.1389 1

abbbbbb 2 110 a6*b 3 a.bbb.bbb 1.95 2.3929 1.1223 0.8611 0.7143

baaaaaa 2 110 #b6*a 3 b.aaa.aaa 1.95 2.1111 1.329 0.6389 2.0714

baaaaab 2 72 #«b5*a» 3 baa.a.aab 1.2 1.5926 1.4546 0.4444 1.8571

baaaaba 4 56 #«b4*a» 3 baa.aab.a 4.1 3.6667 2.0769 1.3333 2.7143

baaaabb 4 52 «2*b4*a» 4 baa.aab.b 4.15 3.7037 1.5972 1.3056 1.8571

baaabaa 4 51 #«b3*a» 3 baa.a.baa 3.35 3.6667 1.8948 1.3611 3.2857

baaabab 2 45 #««b>\<ab»\<a»> 4 ba.a.ab.ab 4.6 4.3571 2.0693 1.5278 2.8571

baaabba 6 37 #«S'(baa]» 4 ba.a.ab.ba 4.4 4.4074 2. 110 1 1.7222 2.7857

baaabbb 2 58 «<3>*<ba»> 3 ba.a.ab.b.b 3.7 3.7407 1.3682 1.4167 2

baabaaa 6 45 #S[ba]«a» 4 baa.baa.a 3.15 3.5926 1.6373 0.6111 1.9286

baabaab 2 42 #«b2*a» 3 baa.baa.b 1.45 2.1481 1.7317 1.0556 1.8571

baababa 2 38 #<b«a»>\<a«b»> 4 ba.ab.ab.a 4.5 4.8148 2.0924 1.8333 2.6429

baababb 4 34 #«ba»\<a(«b»» 4 ba.ab.ab.b 4.55 4.6667 2.0986 1.8333 1.9286

baabbaa 4 34 #«S[ba]» 3 baa.b.baa 3.75 3.5926 1.9602 1.5 1.8929

baabbab 4 33 #«ba»\«ab)b> 5 ba.ab.b.ab 4.05 4.2593 2.0688 1.75 2.6429
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Pattern Stab
Expression

Res (after Leeuwenberg) Groups

Rating

Unpr Pr

Imm Interm
Recall Recall

Entropy Errors Errors

baabbba 7

baabbbb 2

babaaaa 2

babaaab 2

babaaba 2

37 #«S[ba]b»

67 #b2*a«b»

60 #<b>\<a(<<a»»

4 5 #«<2>*«ba)a»>

40 #<b«a»\«ab»

4 ba.ab.b.ba 4.9 4.3704 2.1611 1.75 2.9286

4 ba.ab.b.b.b 4.3 3.8519 1.6027 1.3333 1.8571

3 ba.ba.a.a.a 4.05 3.8889 1.7826 0.7778 1.9286

4 ba.ba.a.ab 4.5 4.5926 2.148 1.2778 2.1429

4 ba.ba.ab.a 4.6 4.1111 2.2253 1.6667 2.2143

babaabb 4 35 #«<ba>\«ab»» 4 ba.ba.ab.b 4.2 4.5 1.9906 1.5556 2.4286

bababaa 2

bababab 2

bababba 2

bababbb 2

44 #«ba»a

69 #«ba»

38 #<2>*«ba)b>a

59 #2*(OO)«b»

3 ba.ba.ba.a 3.1 4.2593 1.8763 2.1944 1.7857

2 ba.ba.ba.b 1.65 2.1429 1.8077 2.25 2.2857

5 ba.ba.b.ba 4.65 4.9259 2.223 1.9444 2.2857

4 ba.ba.b.b.b 4.75 4.4074 1.8387 2.2778 1.9286

babbaaa 2 39 #<b>\<ab>3*a 5 ba.b.ba.a.a 5 4.963 2.2837 0.9167 2.4286

babbaab 4

babbaba 2

babbabb 2

babbbaa 4

babbbab 2

babbbba 2

babbbbb 2

bbaaaaa 5

bbaaaab 4

bbaaaba 2

bbaaabb 5

33 #<b(ba»\«ab»

40 #«OO2*ba»

45 #b«a2*b»

38 #ba3*b«a»

53 #«ba2*b»

56 #«ba3*b»

99 #ba«b»

72 #2*b«a»

52 #«2*b4*a»

38 #<b(2*a»\«ba»

55 #«2*b3*a»

5 ba.b.ba.ab 3.9 4.3704 2.1038 1.1389 2.5357

5 b.ab.ba.ba 4.4 4.2963 2.0579 1.7222 2.1429

4 b.abb.abb 3.3 4.1852 2.2193 1.4444 2

5 ba.b.b.ba.a 4.5 4.8889 1.8741 1.4722 2.0714

4 bab.b.bab 2.3 2.7407 1.684 1.0556 1.3571

4 ba.b.b.b.ba 4.25 4.3333 1.9675 1.6667 1.9286

3 b.a.bb.bb.b 3.2 3.037 1.5683 1.0556 1.7143

3 b.b.aa.aa.a 2.65 2.5556 1.2521 0.7222 1.3571

4 b.ba.a.a.ab 3.85 3.6667 1.5608 1.3611 1.9286

5 b.ba.a.ab.a 4.6 4.3704 1.9344 1.7222 1.8571

4 bb.a.a.a.bb 1.6 1.6786 1.4981 1.3333 2.1429

bbaabaa 5 36 #b«b2*a»

bbaabab 11 35 #«2*ba)a>\<b>

4 b.baa.baa 4.35 4.7143 1.9898 2.0556 2.7857

5 b.ba.ab.ab 4.65 4.5185 1.8728 1.8333 2.8571

bbaabba 4

bbaabbb 6

34 #«<2>*<00»>

63 #<2>*<ba>\«b»

3 bba.a.bba 3.25 3.6429 1.527 1.9167 2.1429

4 bba.abb.b 3.2 3.4444 1.4646 1.4444 2.2143
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Irnm Intenn
Expression Rating Recall Recall

Pattern Stab Res (after Leeuwenberg) I Groups Unpr Pr Entropy Errors Errors

bbabaaa 5 36 #b<2>*«ba)a> 5 b.ba.ha.a.a 4.65 4.6071 1.9476 1.25 2

bbabaab 7 34 #b<ba>\«ab» 5 b.ba.ba.ab 4.9 5.0741 2.3594 1.7778 2.6429

bbababa 4 44 #b«ba» 3 b.ba.ba.ba 4.3 4.8148 2.059 2.1111 3

bbababb 4 49 S'[2*bab] 5 bba.b.abb 1.95 2.9259 2.0493 1.8056 1.2857

bbabbaa 5 36 #«2ba»a 4 bba.bba ,a 3.85 3.7037 1.4804 1.6389 1.7857

bbabbab 2 45 #«2*ba» 3 bba.bba.b 3.8 3.8929 2.1968 1.7222 3.2143

bbabbba 4 51 «a3*b» 3 bba.b.bba 3.9 4.1481 1.7508 1.8333 2.2143

bbabbbb 6 90 «4*ba» 3 bb.a.bb.bb 3.7 3.037 1.9233 1.3333 1.7143

bbbaaaa 5 65 #«b»4*a 3 b.b.b.aa.aa 2.15 2.2222 1.2169 0.5833 1.6429

bbbaaab 7 58 #«<3>*<00»> 3 b.b.ba.a.ab 3.85 3.6296 1.0894 1.2778 2.4286

bbbaaba 7 39 #«b»\<ab>\<a> 4 b.b.ba.ab.a 4.95 4.4444 1.6378 1.3333 2.7143

bbbaabb 2 63 #«b»\<2>*<ab> 4 b.bba.abb 3.15 3.6667 1.9481 1.5833 2.0714

bbbabaa 7 36 #<2>*«b)(ba»a 5 b.b.ba.ba.a 5.1 4.5556 2.0069 1.4444 1.7857

bbbabab 5 59 #3*b«ab» 4 b.b.ba.ba.b 4.35 4.5185 2.0973 1.8611 2.2857

bbbabba 5 45 #b«2*ba» 4 b.b.ba.b.ba 4.15 4.0357 2.1822 1.1944 1.5714

bbbabbb 2 100 #«3*ba» 3 bbb.a.bbb 1.3 1.7037 1.0691 1.2778 1

bbbbaaa 5 65 #«b»3*a 3 bb.bb.a.a.a 1.8 2.2143 1.3318 1.1944 0.7143

bbbbaab 6 67 #«4*b2*a» 4 b.b.b.ba.ab 4.15 3.8148 1.661 1.3611 1.3571

bbbbaba 5 60 #«<b»b>\<a> 3 b.b.b.ba.ba 4.3 4.037 1.885 1.75 0.9286

bbbbabb 7 90 #«b»a2*b 4 bb.bb.a.bb 3.65 3.4074 1.5058 1.4444 2

bbbbbaa 4 72 #«b»2*a 3 b b.bb.b.a.a 1.9 2.3333 1.0597 1.1667 1.0714

bbbbbab 4 99 #«b»ab 3 bb.bb.b.a.b 2.95 2.8148 1.6215 1.4722 1.2857

bbbbbba 2 110 #«b»a 2 bbb.bbb.a 2.25 2.5926 1.2851 1.3056 0.9286

bbbbbbb 0 337 #«b» bbb.bbb.b 1.4444 1.2179 0.8056 0.5

Note-In the patterns, "a" indicates an open circle and "b" indicates a closed one. Stab = stability; Res =
resonance; I = SIL; Unpr = unpracticed subjects; Pr = practiced subjects; imm = immediate; intenn =
intermediate.

(Manuscript received September 25, 1990;
revision accepted for publication June 24, 1991.)




