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Observers were shown patterns composed oftwo textures in which each texture contained two
types of elements. The elements were arranged in a striped pattern in the top and bottom regions
and in a checked pattern in the center region. Observers rated the degree to which the three
regions were seen as distinct. When the elements were squares or lines, perceived segregation
resulting from differences in element size could be canceled by differences in element contrast.
Minimal perceived segregation occurred when the products of the area and the contrast (areal
contrasts) of the elements were equal. This dependence of perceived segregation on the areal con
trasts of the elements is consistent with a simple model based on the hypothesis that the per
ceived segregation of the regions is a function of their differential stimulation of spatial-frequency
channels. Two aspects ofthe data were not consistent with quantitative predictions of the model.
First, as the size difference between the large and small elements increased, the ratings at the
point of minimum perceived segregation increased. Second, some effects of changing the fundamen
tal frequency of the textures were not predicted by the model. These discrepancies may be ex
plained by a more complex model in which a rectification or similar nonlinearity occurs between
two stages of orientation- and spatial-frequency-selective linear filters.

Models of texture segregation fall into three classes.
In one class of models, texture segregation is based on
the geometric features of a texture pattern. Beck (1972,
1982) and Marr (1976) proposed that texture segregation
is based on differences in first-order statistics of simple
features of a texture pattern, such as the slopes and sizes
of texture elements or of their component parts. Julesz
(1981) has labeled such features textons and proposed that
there are three kinds: elongated blobs (e.g., line seg
ments), terminators (e.g., line terminations), and inter
sections (e.g., crossings of line segments). In a second
class of models, the primitives for texture segregation are
not geometric features but the outputs of receptive-field
like operators. In many of the models in this class, tex
ture segregation is based on differences in image statis
tics following the convolution of a texture with local,
linear filters that have weighting functions like the recep
tive fields of simple cells. A number of investigators have
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proposed that texture segregation is, at least sometimes,
directly based on differences in the outputs of spatial
frequency channels (e.g., Beck, Sutter, & Ivry, 1987; Ber
gen, in press; Bergen & Adelson, 1988; Bovik, Clark,
& Geisler, 1987; Caelli, 1985; Clark, Bovik, & Geisler,
1987; Daugman, 1987, 1988; Ginsburg, 1984; Graham,
1981; Grossberg & Mingolla, 1985; Turner, 1986).
Spatial-frequency channels are quasi-independent, parallel
channels composed of local receptive fields that are dis
tributed throughout the visual field and are alike in their
sensitivity to spatial frequency and orientation. The evi
dence that the visual system contains a set of spatial
frequency channels, and their usefulness in visual model
ing, has been reviewed elsewhere (e.g., Graham, 1980,
1981, 1985).

In a third class of models, texture segregation is based
on differences in second-order statistics of the luminances
at different points in the texture. The second-order statis
tics of a region are based on the joint probability distri
bution that a pair of points separated by a given distance
and orientation have particular gray levels. Julesz's (1975)
original conjecture considered two gray levels, and the
extension of this conjecture to patterns containing many
gray levels must be done carefully (Klein & Tyler, 1986).
Julesz (1975) conjectured that textures with the same
global second-order statistics do not segregate, but
counterexamples to Julesz's conjecture have been found
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(Julesz, Gilbert, & Victor, 1978; Victor & Brodie, 1978).
Gagalowicz (1981) pointed out that the counterexamples
involve patterns in which local second-order statistics are
not the same throughout the pattern and differ from the
global second-order statistics. He hypothesized that tex
tures that have the same local second-order statistics
throughout will fail to segregate. It should be noted that
if texture segregation is a function of only the amplitudes,
and not the phases, of the spatial frequencies, then the
spatial-frequency channel approach is closely related to
models based on second-order statistics. Therefore, many
of the counterexamples to Julesz's conjecture are also in
dications that a simple spatial-frequency channels expla
nation of texture segregation may fail (see Beck, 1983;
Julesz & Caelli, 1979).

Beck et al. (1987) reported results suggesting that per
ceived texture segregation in certain patterns is determined
by differences in the response of spatial-frequency chan-~

nels to the different texture regions of the pattern. The
patterns they employed were members of a class of pat
terns investigated by Beck, Prazdny, and Rosenfeld
(1983). Figure I is an example of this class of patterns.
The pattern is periodic, and the three regions in the pat
tern are composed of approximately equal numbers of two
types of elements (dark and light squares in Figure I).
The textures to be segregated differ in the arrangement
of the two types of element. In the top and bottom regions,
the dark and light squares are arranged in vertical stripes.
In the center region, they are arranged in a checked pat
tern. When viewing the pattern, subjects reported spon-
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Figure 1. An example of the class of patterns investigated by Beck
et aI. (1983). The squares are of equal size and the contrast ratio
between them is 4:1. The patterns and filter outputs pictured in this
article are hardcopies of CRT images. Unfortwlately, reproductions
seldom accurately depict the dynamic range of the monitor, and con
trast effects may therefore be diminished.

taneously segregating it into two textures-stripes in the
top and bottom regions and a checked region in the center.
Beck et al. (1983) hypothesized that segregation occurs
because squares of the same contrast are grouped into ver
tical stripes in the top and bottom regions but not in the
center region. They proposed a model based on (I) feature
detection and (2) the local linking of features to form tex
ture elements through proximity, similarity, and good con
tinuation. Julesz (1986) has also proposed that features
link to form texture elements.

Beck et al. (1987) cast doubt on the explanation that
texture segregation in patterns like those of Figures 1-3
are due to the lengths of the emergent vertical stripes in
the pattern. The left panels of Figures 2 and 3 show pat
terns composed of squares whose areas differ by a ratio
of 4: I. In Figure 2, the large and small squares are of
equal contrast, and in Figure 3, the contrasts of the large
and small squares differ by a ratio of I :4. When they
varied the contrast dij'ferences between the squares un
der two area-ratio conditions (equal-size squares as in
Figure I and unequal-size squares as in Figure 2), Beck
et al. (1987) found that area ratio and contrast' are not
independent attributes of texture segregation, but can can
cel each other. For the patterns composed of equal-size
squares, rated segregation increased as a negatively ac
celerated function of the contrast ratio of the two types
of squares. For the patterns composed of unequal-size
squares, rated segregation was a U-shaped function of the
contrast ratio of the two types of squares, with a mini
mum at approximately the point where the contrast X area'
(areal contrast) of the elements was equal. In particular,
a contrast ratio of I :4, which produced good segregation
when the squares were ofequal size (Figure 1), produced
poor segregation when the squares were of unequal size
with an area ratio of 4: 1 (Figure 3). This finding is puz
zling from the point of view that texture segregation results
from grouping the same-sized squares into vertical stripes
in the top and bottom regions. Introducing a contrast
difference as well as a size difference should facilitate such
grouping and the segregation of the regions should im
prove. The tradeoff between contrast and area suggests
that perceived texture segregation occurs strongly when
the outputs of spatial-frequency channels are very differ
ent in the striped and checked regions of the texture pat
tern. This hypothesis does not involve explicit grouping
processes that require differentiating texture elements
from the background.

The left panel of Figure 2 shows a pattern having
unequal-size squares and equal contrast. The middle panel
shows the output of a simple spatial-frequency filter tuned
to a vertical orientation and approximately to the fun
damental spatial frequency of the textures," and the right
panel shows the output of a higher spatial-frequency filter.
(These filters are described in more detail below and in
the Appendix.) Now consider the middle panel of
Figure 2. When the excitatory region of a receptive field
in that channel is centered over a column of large squares
in the striped region, the receptive field is strongly stimu-
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Figure 2. The left panel shows a texture pattern in whicb the contrast of the squares is equal and the area ratio of the squaresis 4:1.
The center and right panels represent the responses to this pattern of filters tuned to vertical orientations, and 1 and 11.3 cpd, respectively.
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Figure 3. The left panel shows a texture pattern in whicb the contrast ratio of the squares is 1:4 and the area ratio of the squares

is 4:1. The center and right panels represent tbe responses to this pattern of filters tuned to vertical orientations, and 1 and 11.3 cpd,
respectively.
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lated by the large squares and weakly inhibited by the
small squares. When the excitatory region is centered over
a column of small squares, the receptive field is weakly
stimulated by the small squares and strongly inhibited by
the large squares. Thus, there is strong variation in ac
tivity with high outputs at the center of the large-square
columns and low outputs at the center of the small-square
columns. When the excitatory region of a receptive field
is centered over either a large or a small square in the
checked region of the pattern, the amounts of excitation
and inhibition are approximately equal. Thus, the output
at each spatial position is about the same, and there is less
variation in activity (see middle region of output in the
middle panel of Figure 2).

Figure 3 is like Figure 2 except that the contrast of the
small squares in the pattern is now four times that of the
large squares (so the areal contrasts are equal). Now when
the excitatory region of a receptive field from the chal)
nel tuned to the fundamental frequency is centered over
either a large or a small square in either the striped or
the checked regions, the output is about the same, since
the greater contrast has balanced out the smaller size of
the squares .

A SIMPLE SPATIAL-FREQUENCY
CHANNELS MODEL

Beck et aI. (1987) presented evidence that when the out
put of the low spatial-frequency filters is similar in the
top, middle, and bottom regions of patterns like those in
Figure I, texture segregation will not occur. The aim of
this paper is to present a model embodying spatial
frequency channels and to compare its predictions to ex
perimental data.

We conjectured that spontaneous strong texture segre
gation occurs only when there are differences in the mean
or modulated activity of a channel or channels to the
striped and checked regions of the texture pattern. We
have attempted to construct a quantitative model that cap
tures the kind of differences in the output of spatial
frequency filters that are visible in the middle panels of
Figures 2 and 3, and that will predict an observer's rat
ings of perceived segregation. To do so requires consider
ing the responses of all the filters. Figures 4 and 5 show
the outputs of 39 filters to the patterns in Figures 2 and
3, respectively. These outputs are displayed in a summary
form in Figures 4 and 5 by taking a portion from the mid-
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Figure 4. 1be responses of all 39 filters (13 spatial frequellCies x 3 orientations) to the pattern in the left panel of F"JgUJ"e 2. Each patch
in this display shows the respoose of a particular filter to ooe square period taken from either the checked or the striped~n of the
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Figure 5. The responses of all 39 filters (13 spatial frequencies x 3 orientations) to the pattern in the left panel of Figure 3. Each patch
in this display shows the respome of a particular filter to one square period taken from either the checked or the striped region of the
original pattern. The patches from the striped region were centered on a small square and the patches from the checked region were
centered on a large square. The arrow shows the fundamental frequency for a vertically oriented filter. The fundamental frequency for
an obUquely oriented filter is greater by ,J2.

dies of the checked and striped regions of anyone filter' s
output and displaying this pair of portions for each of
many filters, Each portion equals one period of the pat
tern. The 39 filters come from all combinations of 13
different spatial frequencies (from left to right in 13
columns) and three different orientations-vertical, 45°
oblique, and horizontal (from top to bottom in three pairs
of two rows each). Figures for textures composed of
squares of equal size, analogous to Figures 4 and 5, can
be found in Graham (1989).

It can be seen from Figure 4 that the channels that are
particularly well suited to signal differences between the
regions of the pattern are those that are (1) vertically
oriented with a spatial-frequency sensitivity correspond
ing roughly to the fundamental vertical frequency of the
striped region (1 and 1.44 cpd), and (2) diagonally
oriented with a spatial-frequency sensitivity correspond
ing roughly to the fundamental oblique frequency of the
checked region (.../2 times the fundamental vertical
frequency-1.44 and 2 cpd). When the large square is
four times the area of the small square and the contrasts
of the squares are equal, as in Figure 4, these channels

show a large response to one region of the pattern but
not to the other. When the areal contrast of the two squares
is equal (i.e., when the small square is four times the con
trast of the large square, as in Figure 5), these channels
show no such difference in response.

For spatial frequencies lower than the fundamental fre
quency of the pattern, there is little response to either the
checked or the striped regions by either the vertical or
the oblique channels, because the receptive fields are so
large that they average over adjacent rows and columns
of squares. Channels tuned to spatial frequencies higher
than the fundamental frequency respond to the edges of
all the squares in the pattern. Although the pattern of ac
tivity is distributed differently in the striped and checked
regions, the amounts of modulated activity in the striped
and checked regions are similar.

Cbaracteristics of Cbannels
Each channel is assumed to be a linear, translation

invariant filter. We modeled the receptive-field weight
ing functions with two-dimensional Gabor functions (as
used, e.g., by Daugman, 1985; Watson, 1983). The
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Nt NA
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3. The model combines (pools) these within-filter
differences across many spatial frequencies and orienta
tions of filters, weighting the differences according to the
observer's sensitivity to different orientations and spatial
frequencies. In particular, the predicted value equals the
following quantity:

dard deviations of the outputs to the striped and checked
regions in our quantitative model.] The same computa
tion is carried out for the striped region, yielding Ru(st).

The modelcomputes thedifference betweeneach filter's
spatially pooled response to the checked and to the striped
region, yielding a within-filter difference for the ijlh filter
of

where Sobs(j;,Aj ) is the sensitivity of the observer to the
i th frequency andj" orientation, N, is the number of fre
quencies (I3-frequencies from .25 to 16 cpd in steps of
rad2), and NA is the number of orientations (three orien
tations: vertical, 45° oblique, and horizontal).

4. Finally, the model assumes that the observer's rat
ings of perceived segregation are monotonically related
to the predicted value shown above. Thus, the model does
not predict that predicted values versus observer's ratings
should fallon straight lines, but rather that they should
fall on a monotonic function. Observed value (which can
never go below 0 or above 4) will be an S-shaped func
tion of predicted value.

We tried exponents of 1, 3, and 4 in the above equa
tion (both for spatial pooling and for pooling across chan
nels) as well as using the maximum, the minimum, and
the maximum - the minimum of the within-channel
difference. Conclusions using any of these alternate equa
tions were identical to those presented here with an ex
ponent of 2. It should be noted that our approach is very
closely related to two approaches used by others in models
of perceived texture segregation: (1) taking the Euclid
ean sum at each point of the output from two filters in
quadrature phase (e.g., one having even-symmetric
weighting functions and one having odd-symmetric
weighting functions; Adelson & Bergen, 1985; Bovik
et al., 1987; Clark et al., 1987; Turner, 1986) and then
comparing these sums in the two texture regions, or
(2) using only even-symmetric weighting functions but
pooling the rectified outputs over a small area around each
point to produce a local energy measure (Bergen & Adel
son, 1988; Landy & Bergen, 1988) and then comparing
these local energy measures in the two regions. Either
of these latter approaches leads naturally into a plausible
model of how boundaries between the regions are actu
ally found. This is a problem of great interest in its own

(2)Diff., = RAch) - Ru(st).

weighting function in one direction is a Gaussian multi
plied by a sinusoid, and in the perpendicular direction a
Gaussian. The parameters of our model follow Watson's
(1983) in that the half-amplitude, full bandwidth is one
octave on the spatial-frequency dimension and 38° on the
orientation dimension. Our model is less complete than
that of Watson in two respects: the fields have the same
(even) symmetry, and we have not incorporated the
decrease in acuity occurring with retinal eccentricity. In
Figures 4 and 5, the variations in sensitivity with spatial
frequency are not represented, but they are incorporated
into the calculations of the model. Further details of the
filters can be found in the Appendix.

Combining Channel Outputs
We now need to tum the channel outputs into a quan

titative prediction of an observer's ratings of perceived
texture segregation. Our first attempt is a crude measurfl
of the degree to which there are gross differences between
the outputs of one or more filters to the different texture
regions. This simple model is an elaboration of Julesz 's
(1975)original statisticalconjecture and is also in the spirit
of recent attempts by a number of investigators (e.g.,
Caelli, 1982; Daugman, 1987; Turner, 1986) to use
spatial-frequency filters to predict texture segregation. It
differs from this earlier theoretical work in attempting to
generate quantitative predictions of the strength of per
ceived texture segregation (rather than just distinguish
ing textures that would segregate from those that would
not at all) so that these quantitativepredictions can be com
pared to empirical results in a rigorous way.

1. Our simple model first computes the output of chan
nels that are linear, translation-invariant filters tuned to
many different spatial frequencies and orientations as
described above. Let the output at position (x,y) of the
channel tuned to the i th frequency and the j " orientation
be called Oiix,y).

2. The model then computes a spatially pooled response
of each channel to the checked and to the striped region;
in particular, the standard deviation of the outputs at
different spatial positions within each region is computed.
For example, the spatially pooled response of the ijth chan
nel to the checked region is

~ ~ [Oi/(x,y)-E(OU)]2 (1)
Rij(ch) = I.J I.J

x y Nz'Ny

in
checked
region

where N. and N, are the numbers of spatial positions in
the x and y directions in one period of the pattern and the
summing is done over one period in the checked region.
E(OiJ is the average value of Ou over these spatial posi
tions. [Computations indicated, as expected, that E(Oij)
to the striped and checked regions were highly similar.
We therefore incorporated only differences in the stan-



318 SUTTER, BECK, AND GRAHAM

right that has been discussed by a number of people
(Caelli, 1985, 1988; Grossberg, 1987; Grossberg & Min
golla, 1985), although it is not explicitly studied here.

EXPERIMENTS

In four experiments, we investigated the degr.ee to
which texture segregation is predicted by the sunple
model. In Experiment 1, we varied the background lu
minance and the areas of the squares composing the pat
tern. In Experiment 2, we compared line versus square
texture elements. In Experiment 3, we investigated "duty
cycle," or pattern density. In Experiment 4, we inves
tigated how scaling of the texture patterns affects per
ceived segregation. In each experiment, the contrast ra
tios of the elements were varied. We define contrast ratio
as the difference in luminance between the high-contrast
elements and the background, divided by the difference
between the low-contrast elements and the background.

General Method
Stimuli and Apparatus

The stimuli were generated by a Symbolics 3600 Lisp machine
and were presented on a Tektronix 690 SR color monitor. SUbj~ts
viewed the stimuli from a distance of 6 ft. Consequently, one pixel
subtended approximately 1.08 min. The stimuli for all experiments
consisted of variations of one basic pattern (see Figure I). The pat
tern was composed of two types of texture elements (squares or
lines), which could differ in size and/or contrast. Theelements were
arranged in 15 rows and 15 columns. In the top and bottom 5 rows,
the elements were arranged to form alternating columns. In the cen
tral 5 rows, they were arranged in a checked pattern.

In the checked region, there were 37 of one type of element and
38 of the other. In the top and bottom (column) regions, there were
40 and 35 of the two types of elements, respectively. Except when
noted the horizontal and vertical center-to-center spacing of the
elements in every pattern was I:75 times the width of the larger
elements in that pattern.

In all experiments except Experiment I (see below), the patterns
were presented on a gray (16.1 fL) background, and the luminance
of the larger texture elements was held constant at approximately
2 fL above the background (18.1 fL). The luminance of the other
set of texture elements was assigned one of seven values ranging
from 18.1 to 32.2 fL. The seven intensity values were chosen so
that the intensity difference between the background and the sec
ond set of elements was 2-' »: 2.1 fL for n = I to 7. This produced
seven patterns having element-contrast ratios from I to 8 in steps
of .../2.

Experiment I consisted of two separate studies. In one study, the
patterns were presented on a gray background as described above,
except that a second set of patterns composed of squares that were
darker than the background was included in addition to the patterns
composed of squares that were lighter than the background. In the
other study, the patterns were presented on a black background.
The conditions for these studies will be described under Ex
periment I.

Subjects
For each experiment, 10 subjects were chosen from a pool ~f

33. Ten of the subjects participated in two or more of the expen-

ments. Three of the subjects were graduate students in psychology,
and the remaining 30 were undergraduates, psychology department
staff, or people unaffiliated with the university. All but 3 of the
subjects were naive about the purpose of the experiment. The 3
subjects who were not naive had minimal knowledge of the pur
pose of the experiment. All subjects had normal or corrected-to
normal vision, and all were paid for their participation.

Procedure
In each experiment, perceived segregation was evaluated using

a 5-point category-rating scale ranging from 0 to 4. The subjects
were told that a rating of 0 meant that the three regions of the pat
tern were not distinguishable from each other without scrutiny. A
rating of 4 meant that the three regions were very distinct and segre
gation was "immediate." The intermediate ratings signified inter
mediate perceptions of segregation from "barely perceptible" to
"weak" to "moderate."

The subjects were seated in a dark room (ambient illumination
.05 ftc) 6 ft from the screen ofthe color monitor. A pattern represen
tative of the stimuli in the experiment was presented on the screen.
The experimenter described the structure of the pattern to the sub
ject, pointing out that there were two types ofte:cture elements and
three different regions in the stimulus. The subjects were told that
they would be asked to make a rating of the stimulus on the basis
of how distinct the three regions were. Several of the experimental
stimuli were then shown to the subjects to familiarize them with
the range of variation of the patterns. The subjects were encouraged
to base their judgments on their first impressions of the stimuli.
They were instructed to keep their eyes on the center of the pat
tern, to treat each pattern as a whole, and not to scruti~ the pat
terns to find the boundaries between the three texture regions. They
were also told not to base their judgments on how discriminable
the two types of elements were from each other, but to judge only
the distinctness of the three regions. The subjects were then given
10 practice trials, in which they told the experimenter the ratings
of the stimuli.

Every subject participated in one experimental session. Each ex
perimental session consisted of five blocks of trials. The number
of trials per block varied between experiments, but in every ex
periment a block of trials consisted of one presentation of each of
the stimulus patterns in that experiment, in random order. Thus,
individual subject means were based on five ratings of each stimu
lus. At the beginning and end of every block of trials, the word
"STOP" appeared in the center of the screen.

The subjects initiated each experimental trial by pushing a mouse
button situated on a desk in front of them. An experimental trial
consisted of the following sequence. A blue fixation "X" was
presented for I sec in the center of a blank screen. Immediately
after the offset of the fixation "X," the stimulus appeared and re
mained on the screen for I sec, after which it disappeared and the
screen was blank. Throughout an experiment, including intervals
during which the screen was blank:, the background luminance of
the screen remained constant at the value of the background for
the stimuli in that experiment. After the stimulus disappeared from
the screen, the subjects recorded their rating on a rating sheet and
pushed the mouse button to initiate the next trial.

Experiment 1
Squares-Area x Contrast

Experiment 1 consisted of two separate studies designed
to investigatemore thoroughly how segregation of the tex
ture patterns used by Beck et al. (1987) depends on the
interaction of area ratio and contrast of the texture ele-
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ments. In each study, the effects of contrast differences
between the two sets of texture elements were investigated
using four different ratios of the areas of the two elements.

Method
Stimuli. In each of the patterns presented in this experiment, one

set of squares measured 16 pixels (17.28 min) on a side. The other
set of squares in the patterns measured 16, 12, 8, or 4 pixels on
a side (17.28, 12.96,8.64, and 4.32 min, respectively), creating
four element-area ratio conditions (1:1,1.78:1,4:1, and 16:1). The
center-to-center element spacing was 28 pixels (30.24 min), mak
ing the overall size of the pattern approximately 8° in width and
height.

In the first study of Experiment I, the background was set at
16.1 fL. The two sets of squares in each stimulus pattern were both
either lighter or darker than the background. As described in the

General Method section, seven e1ernent-eontrast ratios were em
ployed on either side of the background. When the squares were
lighter than the background, the luminance of the larger texture
elements was held constant at 18. I fL and the other texture ele
ments were assigned one of seven values ranging from 18.1 to
32.2 fL. When the squares were darker than the background, the
luminance of the larger elements was held constant at 14.1 fL and
the other texture elements were assigned one of seven values rang
ing from .03 to 14.1 fL. The 56 stimuli thus represented four
element-area ratios x two sign of contrast x seven contrast ratios.

In the second study, the background was set at .05 fL. The 50
stimuli presented represented the partial combination of the four
element-area ratios x 18contrast ratios. The constant-intensity 16
pixel square was set at .26 fL. Twelve stimulus patterns were
presented with a I: I element-area ratio. The variable-intensity 16
pixel square ranged from .26 to 9.48 fL. Fourteen stimulus pat
terns were presented with a 1.78: I element-area ratio. The variable-
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Figure 7. Predicted segregation values in Experiment 1 produced
by the simple spatial-frequency cbannehi model as a function of the
contrast ratio of the two types of squares. 1be predictions are the
same for all three background conditions (note that not all of the
contrast ratios in tbe black background condition were modeled).

intensity 12-pixelsquare ranged from .16 to 9.48 fL. Twelve stimu
lus patterns were presented with 4: 1 and 16:1 element-area ratios,
respectively. The variable-intensity 8-pixel square ranged from .26
to 9.48 fL and the variable-intensity 4-pixel square ranged from
.87 to 32.2 fL. The range of intensities was covered in increments
of approximately .21 fL x --./'2.

feet, agreement between the observed and predicted
values. For all element-area ratios, both the observed and
the predicted ratings show minimum segregation around
a point at which the areal contrast (area X contrast) of
the two types of square is equal. For an element-area ra
tio of 1, the minimum perceived segregation occurred
when the contrast ratio was 1. For an element-area ratio
of 1.78: 1, the minimum occurred at a constrast ratio be
tween 1 and 2. For 4: 1, the minimum occurred at a con
trast ratio between 2 and 4, and for 16: 1, the minimum
occurred at a contrast ratio of approximately 20: 1.

The effect of background. With a gray background,
when the squares were below the background in lu
minance, perceived segregation was generally better than
when the squares were above the background in lu
minance, particularly at high contrast ratios. The reason
for this interaction is unclear. One possibility is that there
may be an asymmetry in the response of the visual sys
tem to increments and decrements in intensity from the
background (or adaptation) intensity. From what is known
about adaptation, one might expect that as the contrast
of the high-eontrast squares increases (either above or be
low the background), light-adaptation processes would
cause greater increases in contrast ratio to be needed to
produce a change in perceived segregation. It is not clear
whether light-adaptation processes occur at lower con
trasts for stimuli with intensities above the adaptation level
than for stimuli with intensities below the adaptation level,
but it would explain the tendency for patterns with squares
below the intensity of the background to yield greater
segregation than patterns with the same contrast ratios
whose squares were above the background in intensity.

The failure of the texture-segregation ratings to increase
with increasing luminance of the small square on a black
background, which can be seen in the 16: 1 element-area
ratio condition in Figure 6c, also most probably reflects
light-adaptation processes. The simple model's predicted
value is linear with luminance. Experiments on light adap
tation make it clear that the output from early sensory
processes is linear throughout the range of luminances
around the background luminance but compresses for lu
minances far above the background luminance (e.g., see
review in Shapley & Enroth-CugeU, 1985). The input to
the channels should be the output from this nonlinearity,
rather than the luminance of the squares.

A problem with the model. Although the largest ef
fects in the experimental data are in accord with the sim
ple model's predictions and point to the importance of
differences in the outputs of simple, linear spatial
frequency channels to the different regions of the pattern,
there is evidence that some other factor exerts a secon
dary, independent effect on segregation. This can be seen
in Figures 8a-8c, which present the model's predictions
plotted against the observed segregation ratings of our sub
jects. If the simple, linear spatial-frequency model were
completely correct, the curves for the four element-area
ratios would lie on top of one another in each panel. In
other words, the observed segregation value should be
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Results and Discussion
The results of Experiment 1 are shown in Figures 6a,

6b, and 6c. Figure 6a shows the mean segregation rat
ings for the stimuli composed of squares that were above
the gray background in luminance and Figure 6b shows
the mean ratings for the stimuli composed of squares that
were below the gray background in luminance (hereafter,
these two sets of stimuli will be referred to as the gray
background-above and the gray background-below con
ditions). Figure 6c shows the mean segregation ratings
for the stimuli with a black background. The mean segre
gation ratings are plotted against the contrast ratio of the
two types of squares in each pattern. The vertical bars
in the figures represent one standard error above and be
low the mean.

The interaction of element-area ratio and contrast.
Figures 6a-6c show that perceived segregation is, in
general, a U-shaped function with the minimum depend
ing on the relative sizes of the squares, and shifting to
larger contrast ratios as the element-area ratio increases.

Figure 7 presents the predicted segregation values from
the simple linear spatial-frequency model. Only one set
of predictions is shown because they are the same for the
gray background-above, gray background-below, and
black background conditions, except for a multiplicative
constant. A comparison of Figure 7 with Figures 6a (gray
background-above), 6b (gray background-below), and 6c
(black background) shows that there is good, but not per-

I
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F"1gUI'e 8. Mean observed segregation ratings in Experiment 1 plotted against predicted segregation values for <a) patterns presented
on a gray background in which the squares were above the background in luminance, (b) patterns presented on a gray background
in which the squares were below the background in luminance, and <c) patterns presented on a black background.

a monotonic transformation of the predicted value, and
any given predicted segregation value should be associated
with only one observed rating value. The fact that ob
served segregation ratings generally increase with
element-area ratio as the two texture elements become
more discrepant in size indicates that the model is insuffi
cient to fully predict observed segregation. Some other
factor influences perceived segregation, and this factor
may involve information about the size differences be
tween the elements, information that is carried by the
channels sensitive to spatial frequencies higher than the
fundamental frequency of the pattern. This possibility will
be considered further in the General Discussion.

Experiment 2
Lines-Area x Contrast

For patterns composed of lines rather than squares,
Beck et al, (1983) proposed that segregation is determined
by the strength of linking of collinear line segments into
long chains in the top and bottom regions of the pattern.
In Experiment 2, we investigated whether perceived
segregation in patterns composed of line elements could
be explained by a spatial-frequency model without pos
tulating linking processes. The effects of contrast differ
ences between texture elements were investigated using
two types of texture element (squares and lines), and four
element-area ratios.
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Method
Stimuli. The 56 stimuli employed in this experiment represent

a combination of two element shapes (squares and lines), four
element-area ratios (which were different for squares and lines),
and seven contrast ratios. When the elements were squares, the
larger element was always 16 pixels (17.28 min) on a side; the sec
ond element in the pattern was a square, 16 pixels, II pixels
(11.88 min), 8 pixels (8.64 min), or 4 pixels (4.32 min) on a side.
The resultant element-area ratios were 1:1,2:1,4:1, and 16:1,
respectively. When the elements were lines, the larger element was
always 16 pixels long and 2 pixels (2.16 min) wide; the second ele
ment was 16, 11,8, or 4 pixels long, and 2 pixels wide. The resul
tant area ratios were 1:1, 1.45:1,2:1, and 4:1, respectively. The
center-to-center element spacing was held constant at 28 pixels.

Results and Discussion
The results of Experiment 2 are shown in Figures 9a

and 9b, for patterns composed of squares and lines,
respectively.
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Figure 9. Mean observed segregation ratings in Experiment 2 as
a function of the contrast ratio of the two types of elements for
(a) patterns composed of squares and (b) patterns composed of lines.
The vertical bars represent one standard error above and below the
mean.
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Figure 10. Predicted segregation values in Experiment 2 produced
by the simple spatial-frequency channels model as a function of the
contrast ratio of the two types of elements for (a) patterns composed
of squares and (b) patterns composed of lines.

The interaction of element-area ratio and contrast.
As in Experiment I, perceived segregation depended on
differences in areal contrast (contrast X area) between
the texture elements, with minimal segregation occurring
at the point where the areal contrasts of the two types of
elements were approximately the same, as predicted by
the simple spatial-frequencymodel (Figures lOa and lOb).
The interaction ofelement area and contrast supports the
argument that the segregation of patterns composed of
different arrangements of lines was not attributable to
"emergent" features of the elements. If segregation of
the line patterns had depended on the linking of the longer
(16-pixel) lines into emergent, even longer lines, segre
gation should have been an increasing function of the con
trast ratio between the two elements, regardless of their
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and predicted segregation values for lines than for squares.
For the textures composed of squares, the size differences
between the squares affected perceived segregation. This
can be seen in Figure 9a, which shows that the minimum
segregation ratings increased with the size differences be
tween the squares in the pattern. This result can not be
explained by the simple model. Figure lOa shows that the
perceived segregation of the patterns should be minimal
and approximately equal when the areal contrasts have
been equated. For the textures composed of lines,
however, the size differences between the lines did not
yield different minimum segregation ratings (Figure 9b).
As shown in Figure lOb, this is in accord with the sim
ple model. We will propose a possible reason for this
difference in results in the General Discussion.

Figure 11. Mean observed segregation ratings in Experiment 2
plotted against predicted segregation values for (a) patterns com
posed of squares and (b) patterns composed of lines.

area ratio, since greater differences in contrast should have
increased the linking of lines on the basis of similarity
of contrast.

The effect of element shape. Patterns composed of
squares tended to produce better segregation than did pat
terns composed of lines. This result was also found by
Beck et al. (1983) and is predicted by the simple spatial
frequency model. This result could be caused by the fact
that the lines occupied a smaller area than their square
counterparts, and activation of spatial-frequency channels
was thus "diluted" with the background.

Figures lla and l lb present the predicted segregation
values plotted against observed segregation ratings. As
in Experiment 1, the agreement between predicted and
observed segregation is good but not perfect. There is
much better agreement, however, between the observed
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Experiment 3
Density (Duty Cycle)

Beck et al. (1987) found that perceived segregation im
proved with increasing pattern density. Experiment 3 was
conducted to determine whether the effects of pattern den
sity (or duty cycle) on perceived segregation can be ex
plained by the simple model. The center-to-center spac
ing of the elements was held constant at 14 pixels as the
sizes of the squares in the patterns were varied, thus
producing differences in the duty cycle of the patterns.
The effects of contrast differences between two types of
squares were investigated using two element-area ratios
(1: 1 and 4: 1) and five sizes of large square (12, 10, 8,
6, and 4 pixels).

Results and Discussion
The results of Experiment 3 are shown in Figures 12a

and 12b. Figure 12a shows the mean segregation ratings
for the 1:1 element-area ratio condition, and Figure 12b
shows the mean ratings for the 4: 1 element-area ratio con
dition. As in Experiments 1 and 2, perceived segregation
was minimal at or around the point at which the areal con
trasts (area X contrast) of the two types of texture ele
ments were equal.

As large-square size (and therefore pattern density and
duty cycle) decreased, there was a corresponding decrelse
in perceived segregation for both element-area ratios. The
same trend is visible in Figures 13a and 13b, the predicted
segregation values from the simple model. As element size

Method
Stimuli. Seventy patterns were constructed through the combi

nation of two element-area ratios (1: 1 and 4: I), five large-square
sizes (12-, 10-,8-,6-, and 4-pixel squares), and seven contrast ra
tios. Thus, for the 1:1 element-area ratio condition, the patterns
were composed of two sets of equal-size squares of 12, 10, 8, 6,
or 4 pixels on a side (12.96, 10.80, 8.64, 6.48, and 4.32 min,
respectively). In the 4: 1 element-area ratio condition, the patterns
were composed of 12-and 6-pixel squares, 10- and 5-pixel squares,
8- and 4-pixel squares, 6- and 3-pixel squares, or 4- and 2-pixel
squares. The center-to-center element spacing was held constant
at 14 pixels (15.12 min), thus creating patterns that were approxi
mately 4 0 in width and height.
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was reduced, the density of texture elements decreased
and the amountof empty background space increased, thus
diluting the effects of contrast differences between the
squares, and reducing the activity of the channels. This
reduction in the activity of the channels would have the
effect of reducing differences in the modulated activity
of the channels to the different regions of the pattern, caus
ing a corresponding decrease in perceived segregation.
(This is similar to the result obtained in Experiment 2.
The patterns composed of squares, which had a higher
density thanthepatterns composed of lines,yieldedstronger
segregation.) Remembering that the observed rating is
only expected to be some monotonic transformation of
the predicted values, it can be seen that the predicted
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Figure 12. Mean observed segregation ratings in Experiment 3 as
a function of the oontrast ratio of the two types of squares for (a) pat
terns composed of squares with an area ratio of 1:1 and (b) pat
terns composed of squares with an area ratio of 4:1. The vertical
bars represent one standard error above and below the mean.

Clnler-Ia-Clnler .'Im.nl .pacing = 1'1 pixels

4:1 Area RatiO

segregation curves agree quite well with the observed
segregation curves, as is clear in Figures 14a and 14b.

As in Experiment I, however, the outputs of the sim
ple, linear spatial-frequency model do not fully predict
observed segregation (see Figures 14a and 14b). If the
simple, linear spatial-frequency model were completely
correct, any given predicted segregation value would be
associated with only one, or a close range of, observed
segregation values. For the 1:1 element-area ratio condi
tion (Figure 14a), the model does a very good job of
predicting observed segregation with decreasing density
of the pattern elements. The curves lie approximately on
top of one another. The superposition is not as good in
the 4: I element-area ratio condition (Figure 14b). In ad-

Figure 13. Predicted segregation values in Experiment 3 produced
by the simple spatial-frequency cbannels model as a function of the
contrast ratio of the two types of squares for (a) patterns composed
of squares with an area ratio of 1:1 and (b) patterns composed of
squares with an area ratio of 4:1.
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Exp.3 - Predicted vs. Observed
1:1 Area Ratio

Figure 14. Mean observed segregation ratings in Experiment 3
plotted against predicted segregation values for (a) patterns com
posed of squares with an area ratio of 1:1 and (b) patterns com
posed of squares with an area ratio of 4:1.

Method
Stimuli. Seventy-seven stimuli were constructed throughthe par

tial combination of three element-area ratios (1:1, 4:1, 16:1), four
fundamental frequencies (I, 2, 4, and 8 cpd), and seven contrast
ratios. The three element-area ratio conditions were equal-size
squares (1: 1 element-area ratio), unequal-size squares with a ratio
of areas of 4: I, and unequal-size squares with a ratio of areas of
16:1. The four fundamental frequencies were 1, 2, 4, and 8 cpd,
which corresponded to center-to-center element separations (one
half periods) of 28 pixels (30.24 min), 14 pixels (15.12 min), 7
pixels (7.56 min), and 4 pixels (4.32 min), respectively. The ce!ller
to-eenter element separation was held constant at 1.75 times the
width of the larger square in the pattern.? The four large-square
sizes were 16, 8,4, and 2 pixels on a side (17.28,8.64,4.32, and
2.16 min, respectively). The effect of reducing the element size

long as the relative element sizes and separations remain
constant, the absolute size of the pattern does not affect
texture discrimination. In contrast, Beck et al. (1983)
found that patterns like Figure 1 fail to scale. When the
sizes and separations of the squares were reduced by one
half, perceived segregation increased. This indicates that
segregation depends on the absolute sizes of the elements
and their separations.

This observation is consistent with the view that per
ceived segregation is mediated by the outputs of spatial
frequency channels. Contrast sensitivity is generally
highest at spatial frequencies ranging from 2-8 cpd, de
pending on experimental conditions (Graham, in press).
The patterns presented in Experiments 1 and 2 had a
period of 56 pixels (the distance between the centers of
two columns of the same type of square), which trans
lates to approximately 1 cpd. Figures 4 and 5 show that
the spatial-frequency channel that gives the best informa
tion for segregation i~ one that matches the period of the
pattern. For the patterns presented in Experiments I and
2, this channel would have peak output at a spatial fre
quency of around 1 cpd. By either increasing the view
ing distance or proportionately decreasing the sizes of the
elements and their separations, the period of the pattern
can be decreased, thus increasing the spatial frequency
that carries the most information about differences be
tween the striped and checked regions of the pattern.
Reducing the period of the pattern should increase per
ceived segregation, up to the point where the fundamen
tal frequency component of the pattern has a spatial fre
quency at the peak of the contrast-sensitivity function.
Further reduction of the period of the pattern should lead
to a decrease in perceived segregation because the funda
mental frequency component of the pattern will be of a
spatial frequency that is higher thanthat at the peak, thus
entering a range where contrast sensitivity decreases.

In Experiment 4, we tested thisprediction of the spatial
frequency model. The period of the pattern was reduced
by decreasing the sizes and separation of the squares mak
ing up the pattern. The effects of contrast differences be
tween the two types of squares were investigated under
three element-area ratios (1:1, 4:1, and 16:1) and four
fundamental frequency conditions (1, 2, 4, and 8 cpd).
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dition, a comparison of Figures 14a and 14b shows the
same predictive failure that occurred in Experiment I. For
most predicted segregation values, the observed ratings
in the 4: I element-area ratio condition are considerably
higher than the corresponding ratings in the I: I element
area ratio condition.

Experiment 4
Pattern Scaling

In Experiment 4, we examined a property of our pat
terns that is not generally shared by patterns usually used
to investigate grouping processes. Wertheimer (1923) ob
served that the grouping of a set of elements does not
change with viewing distance or the magnification of the
pattern. Green, Wolf, and White (1959) found that, as
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Figure IS. Mean observed segregation ratings in Experiment 4 as a function of the contrast ratio of the two types of squares for (a) pat
terns composed of squares with an area ratio of 1:1, (b) patterns composed of squares with an area ratio of 4:1, and (c) patterns com
posed of squares with an area ratio of 16:1. The vertical bars represent one standard error above and below the mean.

and separation was to decrease the size of the whole pattern, as
well as its period. The patterns with a fundamental frequency of
I cpd measured 7.56° in height and width. The patterns with fun
damental frequencies of 2, 4, and 8 cpd measured 3.78°, 1.89°,
and 1.08°, respectively, in height and width.

Results and Discussion
The results of Experiment 4 are presented in Fig

ures 15a-15c for the 1:1,4:1, and 16:1 element-area ra
tios, respectively.

The interaction of element-area ratio and contrast.
As in the previous experiments, perceived segregation is
a U-shaped function of contrast ratio, with a minimum
around the point at which the area x contrast of the two
texture elements is equal. Figures 16a-l6c show the
predicted segregation values produced by the simple

spatial-frequency model. A comparison of the predicted
and observed segregation curves shows that the general
shapes of the observed segregation curves for each
element-area ratio are fairly well predicted by the model,
as are the contrast ratios at the points of minimum segre
gation for the three element-area ratios.

The effect of fundamental frequency. Figures
15a-15c show that perceived segregation of our patterns
varied with their period. Some aspects of this variation
in perceived segregation are predicted by the simple
spatial-frequency model (Figures 16a-16c). According to
the model, the pattern that should be most easily
segregated, at a given contrast ratio, is that whose fun
damental spatial frequency is approximately 4 cpd. Pat
terns with higher or lower fundamental frequencies should
be more difficult to segregate. This prediction is consis-
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Figure 16. Predicted segregation values in Experiment 4 produced by the simple spatial-frequelK:Y channels model as a function of
the contrast ratio of the two types of squares for (a) patterns composed of squares with an area ratio of 1:1, (b) patterns composed of
squares with an area ratio of 4:1, and (c) patterns composed of squares with an area ratio of 16:1.

tent with many of the observed segregation ratings, with
a few striking exceptions in the 4: I and 16:I element-area
ratio conditions. The contrast ratio at which minimum ob
served segregation occurs in these conditions is well
predicted by the model, but note that the observed segre
gation curves cross over dramatically, whereas the
predicted curves just move up or down, for the most part,
depending on fundamental frequency. For very low con
trast ratios, the ordering of curves is roughly from the
most visible on top to the least visible fundamental fre
quencies (as was built into the model by weighting the
predictions by a particular sensitivity function)." In the
trough, however, ordering is different; patterns having
low fundamental frequencies still segregate quite well
(contradicting the model), whereas patterns with high fun-

damental frequenciesdo not segregate at all (agreeing with
the model). The failure of the model to predict this cross
over can also be seen in Figures 17b and 17c, where there
is a wide range ofobserved segregation values associated
with any particular predicted value. The model predicts
that there should be only one observed value for each
predicted value because the observed values are hypothe
sized to be only a monotonic transformation of the
predicted values. Figure 17a shows that for the I: I
element-area ratio, there is good agreement between the
predicted and observed segregation values. The effects
of changing the fundamental frequency discussed above
were also obtained by Sutter (1987) with patterns of con
stant size. Instead of reducing the overall size of the pat
terns, Sutter maintained the overall size of the patterns
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by increasing the number of rows and columns of
elements.

GENERAL DISCUSSION

Two principal results of the experiments reported here
are predictable from our simple model: texture segrega
tion tended to be a U-shaped function of the contrast ra
tio, and it was minimal when the area x contrast of the
large and small elements making up a pattern were ap
proximately equated.

Two aspects of the results are, however, quite differ
ent from those predicted from a simple linear pooling
of within-filter differences weighted by the contrast
sensitivity function (Equation 3). First, the minimum

segregation rating was a function of the size difference
between the large and small squares making up a pattern.
Figures 6a-6c and 9a show that in Experiments 1 and 2,
the minimum segregation ratings increased as the size
differences, or equivalently the area ratios, between the
large and small squares in a pattern became larger. Ifareal
contrast were the only factor affecting segregation, the
segregation ratings should have been the same when the
area x contrast between the large and small squares com
posing a pattern were equated. The predicted minima for
different area ratios in Figures 7 and lOa are approxi
mately equal (except for the 1:1 element-area ratio con
dition). Size differences between the large and small
squares also affected the observers' ratings in Experi
ment 4, in which ratings at equal areal contrasts (a 1:4
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sensitive to higher spatial frequencies than the second
stage filters. Whether other relationships are also neces
sary and/or permissible is not clear. We call these chan
nels "complex" to distinguish them from the earlier sim
ple channels, because this kind of channel is similar to
current models of complex cells (e.g., Hochstein & Spit
zer, 1985; Spitzer & Hochstein, 1985a, 1985b). Measures
of pooled second-stage filter activity (analogous to that
in the simple model) are taken to be the predictor of per
ceived texture segregation.

Using complex channels to overcome prediction failures
of linear, simple channels was suggest by Robson (1980).
Others have been exploring similar ideas (Chubb & Sper
ling, 1988; Grossberg & Mingolla, 1985). Grossberg and
Mingolla have proposed a model containing the three
stages of the complex model plus additional processes,
and have suggested that their model accounts for perceived
segregation in patterns such as ours. Their demonstrations,
however, involve only ftlterings sensitive to the higher
harmonics of the pattern (small receptive fields relative
to the pattern periodicity). On the basis of our findings,
we believe that it is unlikely that higher harmonic infor
mation is the major determinant of perceived segregation.
The tradeoff between area and contrast suggests that~the

low frequencies matching the period of the pattern are
important in texture segregation.

The discrepancies discussed above between the simple
model predictions and our experimental results seem to
be explainable by the complex channels model. Let us ex-

Figure 18. One channel of the complex model.

A Complex Channel

First Stage

Second Stage

Third stage

A linear filter,
e.g. vertical and of

low spatial frequency

A point·by-point
nonlinearity,

dramatic near zero,
e.g. a rectification

A linear filter,
e.g. horizontal and of
high spatial frequency

First-stage output al
position (x,y)

"~
o

Second
stage
output at
position
(x,y)

contrast ratio and 4: 1 element-area ratio) varied with the
scaling of the pattern. Figure l5b shows that the dip in
the U'-shaped function becomes less pronounced as the
difference between the edge lengths of the large and small
squares increases, or equivalently, as the fundamental fre
quency of the pattern decreases. Second, Figure l6b
shows that the pattern having a fundamental frequency
of 4 cpd should be easiest to segregate, and the patterns
having lower and higher fundamental frequencies should
be more difficult to segregate. Figure l5b shows,
however, that the functions describing the subjects' segre
gation ratings cross.

These discrepancies suggest that the simple model does
not make sufficient use of information in the channels sen
sitive to the higher harmonics of the pattern. The chan
nel corresponding to the fundamental frequency of the pat
tern is unable to separate contrast information from size
information and is, therefore, unable to yield any inforr
mation about size differences between the elements. The
channels tuned to frequencies higher than the fundamen
tal frequency are increasingly able to transmit informa
tion about the sizes of the elements; the highest frequency
channels only respond at the edges of the elements and
thus could signal size very accurately. It is possible that
the outputs of channels tuned to frequencies much higher
than the fundamental frequency provide information that
is used by the segregation process, in the form of size
differences (differences in the lengths of edges) between
the elements. The detection of size diferences per se be
tween the elements is, however, not sufficient informa
tion for segregation because size differences occur in all
of the regions of the pattern. What is important for segre
gation is the arrangement of the different-sized elements,
and this information is not captured by the simple model.

If information in the higher harmonics is used by the
segregation process, it must be used in a way that is differ
ent from the way information is captured by our simple
model. One possibility is that grouping processes, such
as those proposed by Beck et al. (1983), operate on fea
ture differences (such as edge length) that are apparent
in the outputs of the high spatial-frequency channels.
These processes must use explicit coding of the positions
and arrangements of these features, linking them into long
lines in the top and bottom regions of the texture pattern.
The long lines are emergent features that segregate the
center regions from the top and bottom regions.

Complex Cbannels Model

Another way in which the information in the higher har
monics may be used involves a more complicated spatial
frequency channel. As illustrated in Figure 18, each such
channel contains three stages: linear filtering, followed
by a nonlinear function such as a rectification, followed
by a second linear filter. The filters in both stages are
selective for spatial frequency and orientation. A large
number of such channels tuned to various spatial frequen
cies and orientations may exist. The qualitative arguments
below require channels in which the first-stage filters are
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amine in some detail how this complex channels model
might explain the finding that the greater the size differ
ence between squares, the greater the minimal segrega
tion rating (the shallower the U-shaped functions of
Figures 6a-6c and 9a). Consider a complex channel in
which the first filtering is sensitive to a very high spatial
frequency and the second filtering (after the nonlinear
ity) is sensitive to a spatial frequency near the fundamen
tal frequency of the pattern. Such a complex channel can
respond to what might be called "low spatial-frequency
patterns of high spatial-frequency elements." For our ex
ample, we will consider the channel in which both stages
are sensitive to vertical orientations. The first high
frequency filtering extracts the edges of the squares as
illustrated by the narrow dark and light bands in the right
panels of Figures 2 and 3. The nonlinearity then changes
below-zero first-stage outputs (dark bands in Figures 2
and 3) either to zero outputs (if half-wave rectification
or something similar is assumed) or to above-zero out
puts (if full-wave rectification or something similar is as
sumed). Since the large squares have longer edges than
the small squares, the second-stage filter (which is sensi
tive to the fundamental frequency of the pattern and to
vertical orientations) will have greater outputs in which
there are columns of large squares than in which there
are columns of small squares, when the contrasts of the
squares are equal. Remember that the area of squares in
creases quadratically with edge length. Therefore, at the
contrast ratios at which area x contrast of the large and
small squares are equated, the edge length x contrast of
the small square will actually be greater than that of the
large square. The amount by which it is greater will be
larger for the 16- and 8-pixel case, for example, thanfor
the 16- and 12-pixel case. In general, when both edge
lengths and areas count, as it} the complex channelsmodel,
the edges should attenuate the dip in the U-shaped func
tion more for larger size discrepancies between squares
(as long as lower sensitivity to smaller size does not can
cel out the greater size difference). This prediction is con
sistent with the data in Figures 6a-6c and 9a.

In contrast, when the texture elements were lines (see
Figure 9b), the minimumtexture-segregation ratings were
approximately equal and were little affected by the size
difference between large and small elements. This also
is what would be expected from the complex channels
model. When lines (very thin rectangles that always had
the same width) are the texture elements, the area in
creases linearly with edge length. Thus, when the area
x contrast of the large and small rectangles are equated
(and the first-stage filterings sensitive to the fundamental
frequency show little modulated activity), the edge length
x contrast is also equated, so the complex channel dis
cussed above also shows little modulated activity. That
this difference between the edge and square elements is
consistent with expectations from the complex channels
model is further reason for thinking that segregation is

not due to explicit coding and linking of edges to form
emergent features.

The crossover of the functions for different fundamen
tal frequencies in Experiment 4 (Figures 15b and 15c)
may also be explained by the complex channels model.
Consider the 1- and 4-cpd fundamental frequencies. Be
cause the higher harmonics of the 4-epd patterns fall in
a range of low contrast sensitivity, the perceived segre
gation of these patterns is primarily determined by initial
filtering at the fundamental frequency. Thus, when the
area x contrast of the large and small squares is equated,
the rated segregation in Figure 1Sb is close to zero. For
the l-cpd patterns, however, the higher harmonics are in
a more sensitive range of the contrast-sensitivity function
and can contribute to perceived segregation. According
to the complex channels model, the influence of the
squares' edges (picked up by the initial filtering at the
higher harmonic frequencies followed by rectification and
refiltering at the fundamental frequency) will attenuate the
dip in the U-shaped function. As one moves away from
the point of equal areal contrasts, the differences in the
outputs of the initial filtering increase more rapidly for
the patterns that have a fundamental frequency of 4 cpd
than they do for those with a fundamental frequency of
1 cpd because 4 cpd is closer to the optimum of the
contrast-sensitivity function. Thus, the curves should
cross.

It is interesting to note that a condition in which the
area ratio of large and small squares was 4: 1 while the
sizes of the squares varied appears both in the density ex
periment (Figure 12b) and in the scaling experiment
(Figure 1Sb). In the density experiment, however, the
period of the pattern was kept constant, whereas in the
scaling experiment, the period increased proportionately
to the sizes of the squares. In both cases, the minimum
ratings increased as the sizes of the squares (and thus the
difference between the sizes) increased. However, the
crossovers occurred only when the fundamental frequency
changed. This suggests that it is the changing contribu
tion of edges due to their weighting by contrast sensitiv
ity, rather than the smaller size differences between the
squares, that produces the crossovers in Figures 15b and
15c.

Summary

A simple spatial-frequency channels model accounts
well for many of the effects of changing contrast and spa
tial variables on perceived texture segregation. There are
systematic discrepancies, however, between the quantita
tive predictions of this model and observers' ratings of
perceived texture segregation. A somewhat more com
plicated spatial-frequency channels model, in which the
individual channels contain two stages of linear filtering
with a rectificationor similar nonlinearityin between, may
well account for all the discrepancies. The specific proper
ties of the complex spatial-frequency channels model
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(e.g., the spatial frequency and orientation selectivity at
each stage of filtering) remain to be determined by fur
ther experimentation and calculation.
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NOTES

1. Contrast has been defined in a number of ways. Becket al. (1987)
defmed contrast as the difference between the luminance of a square
and the averageluminance of a pattern,dividedby theaverageluminance.
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The contrast ratioof twosquareswasdefinedas the contrastof the high
contrast squares, as defined above, divided by the contrast of the low
contrast squares. It shouldbe noted that the effectsinvolvingthe inter
action of area ratio and contrast in the Beck et al. (1987)experiments
are unaffectedby whetherthe average luminanceor the backgroundlu
minance is used to calculatethe contrast ratio. We use the background
luminance in our contrast calculations.

2. Fundamental frequency of the pattern is definedas the reciprocal
of the period of the checked region. We have taken the period to be
equal to the numberof pixelscontained in two rows (or two columns)
of elements,plustwo interrow spaces.The patterns presented in Figures
1-3 had a periodof 56 pixels, whichtranslatesto approximately I cpd.

3. Note that the 4-pixelseparationis aetua1ly two, rather 1.75 times,
the widthof the 2-pixel square. The4-pixelsquarein thiscondition was,
conservatively, the nearestwhole number of pixels to the (impossible)
3.5-pixel separation that would have yielded the 1.75 ratio.

4. The orderingof the predictioncurves in Figure 16is a directresult
of our choice of contrast-sensitivity function Sob.if,.Aj ) , which peaks
at 5.6 cpd (and which indeed determined that choice). To a very good
approximation, changing the contrast-sensitivity function would only
changethe relative vertical positions of the curvesfor different fundamen
tal frequencies in Figure 16. It would not change their shapes (except
in very minor ways) and, therefore, would not improve the model by
allowing it to predict the crossover in the observed curves in Figures
15b and 15c.

APPENDIX
The Two-Dimensional Gabor Filter

The two-dimensional Gabor Function used in the spatial
filtering model is given by the equation

w(x,y) = m . e-1n2[(x - Xo)fw.1
2

. cos[211'fiX-xo)+/J]

e -1n2[(Y-Yo>fw,12,

where (xo,yo) is the center of the weighting function (receptive
field);fis the spatial frequency expressed in cycles/degree of
the weighting function (i.e., the reciprocal of the width of an
excitatory region plus an inhibitory region); w. and W y give the
full bandwidth at half-peak amplitude of the Gaussian envelopes
of the Gabor functions perpendicular and parallel to the orien
tation of the field; /J gives thesymmetry of the field (0 giving
even symmetry); and m gives the height, or peak amplitude,

of the weighting function. Although not explicitly represented
in the above equation, the orientation ofthe filter can be changed
by rotating the x and y coordinates.

The calculations were done using Gabor functions with
parameters modeled after those of Watson (1983), although Wat
son's model is more complete in two respects. We used fields
with only even symmetry and did not incorporate the decrease
in acuity occurring with retinal eccentricity. w. and W y (the width
of the field in both directions) were set equal, producing an orien
tation half-amplitude full bandwidth of 38° of rotation. The width
of the field perpendicular to the orientation direction was chosen
so that the spatial-frequency half-amplitude full bandwidth was
one octave (w, = W y = 2/3f).

To filter the stimulus patterns used in Experiments 1, 2, and
4, those patterns were reduced in size by one half, and two
dimensional fast Fourier transforms were done over 256 x 256
pixels instead of 512 x 512. The Fourier transforms of Gabor
functions are just Gaussians centered at the appropriate (two
dimensional) spatial frequency (the spatial frequency and orien
tation of the weighting function) and these were multiplied by
the Fourier transform of the stimuli before doing the inverse
Fourier transform to give O,Ax,y).

The contrast-sensitivity function used to weight the filter's out
puts for the predictions shown here was given by the equation

SObsU;,Aj ) = K(fry' . e-fr ,

where K = 2.58, r = 0.125, p = 0.7, andfis in cycles/degree.
This contrast-sensitivity function was the same for all three orien
tations except that for spatial frequencies below 1 cpd; the out
put of the horizontally oriented filters was suppressed because
they produced artifactual differences due to pattern edges.

The displays in Figures 2-5 were normalized so that within
any particular figure, the smallest output produced the lowest,
and the largest output produced the highest, possible output on
the display screen. An output of zero produced a gray in Figures
4 and 5 that is the same as the borders around the patches.

(Manuscript received August 26, 1988;
revision accepted for publication March 23, 1989.)


