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Further tests of an exemplar-similarity approach 
to relating identification and categorization 

ROBERT M. NOSOFSKY 
Indiana University, Bloomington, Indiana 

Further tests were provided of an exemplar-similarity model for relating the identification and 
categorization of separable-dimension stimuli (Nosofsky, 1986). On the basis of confusion errors 
in an identification paradigm, a multidimensional scaling (MDS) solution was derived for a set 
of 16 separable-dimension stimuli. This MDS solution was then used in conjunction with the 
exemplar-similarity model to accurately predict performance in four separate categorization 
paradigms with the same stimuli. A key to achieving the accurate quantitative fits was the as-
sumption that a selective attention process systematically modifies similarities among exemplars 
across different category structures. The tests reported go well beyond earlier ones (Nosofsky, 
1986) in demonstrating the generalizability and utility of the theoretical approach. Implications 
of the results for alternative quantitative models of classification performance, including Ashby 
and Perrin's (1988) general recognition theory, were also considered. 

This article is concerned with the relation between the 
identification and categorization of multidimensional per-
ceptual stimuli. Identification refers to a choice experi-
ment in which there are n stimuli, with each stimulus as-
signed a unique response; whereas in categorization, the 
n stimuli are partitioned into m < n groups, with each 
group assigned a unique response. 

Nosofsky (1986, 1987) proposed a unified quantitative 
approach to modeling identification and categorization, 
which integrated and extended classic theories in the areas 
of choice and similarity (Carroll & Wish, 1974; Luce, 
1963; Medin & Schaffer, 1978; Shepard, 1957, 1958, 
1987; Shepard & Chang, 1963; Shepard, Hovland, & 
Jenkins, 1961). The approach is based on the idea that 
people represent categories by storing individual exem-
plars in memory, and classify items according to their 
similarity to these stored exemplars. 

On the basis of confusion errors in an identification 
paradigm, a multidimensional scaling (MDS) solution for 
the exemplars is derived. This MDS solution is the one 
that yields a maximum-likelihood fit to the identification 
data within the framework of the similarity choice model 
(Luce, 1963; Nosofsky, 1985b; Shepard, 1958; Smith, 
1980; Townsend & Landon, 1982). The framework then 
allows for the prediction of confusion errors in any given 
categorization paradigm involving the same stimuli. 
Similarities between exemplars are computed from the 
derived MDS solution, with the assumption that a selec-
tive attention process may systematically modify distances 
in the psychological space (Carroll & Wish, 1974). This 
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notion of selective attention intervening between identifi-
cation and categorization appears critical for the connec-
tion of performance in the two paradigms (Medin & 
Schaffer, 1978; Nosofsky, 1986, 1987; Shepard et aI., 
1961). 

The present study is concerned with the identification 
and categorization of highly analyzable stimuli varying 
along separable dimensions, for which selective attention 
processes are known to playa critical role (Garner, 1974; 
Shepard, 1964). Nosofsky (1985b, 1986) reported 
preliminary tests in which the exemplar-similarity model 
was used to account for the categorization of separable-
dimension stimuli, but they were limited in important 
respects. First, the identification and categorization per-
formance of only two subjects was tested: each subject 
received extensive experience with the entire ensemble 
of exemplars (over 12,000 presentation trials). One pur-
pose of the present study was to test the generalizability 
of the approach by running large groups of subjects, with 
each subject receiving relatively little training. 

More critically, the previous design required Nosofsky 
(1986) to posit that a "memory-augmentation" process 
had taken place, in which people added inferred exem-
plars to their category representations. Specifically, the 
category structures that were tested included transfer 
stimuli, which had no experimentally defined correct an-
swers associated with them. The transfer stimuli were in-
cluded in order to discover how people would generalize 
from the original training exemplars. Because only two 
subjects were tested, however, it was necessary to present 
the transfer stimuli repeatedly during the course of the 
experiment (in order to obtain a large enough sample size 
to secure reliable probability estimates). It is reasonable 
to posit that the subjects' initial decisions about category 
membership for the transfer stimuli may have influenced 
subsequent ones. Indeed, Nosofsky's (1986) theoretical 
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analyses suggested that the subjects augmented their 
category representations with these repeated transfer 
stimuli, and based classification decisions on the similar-
ity of probes to the transfer stimuli as well as to the origi-
nal training exemplars. 

Although the memory-augmentation process was 
viewed as a natural consequence of Nosofsky's (1986) ex-
perimental conditions, the need to incorporate it reduced 
dramatically the power of the theoretical approach. The 
present design obviates the positing of the memory-
augmentation process, because subjects are given only two 
presentations of each transfer stimulus near the end of the 
experiment. Thus, the design allows for a more rigorous 
test of this theory proposed for relating identification and 
categorization. 

EXPERIMENT 

In this experiment, the subjects identified or categorized 
a set of perceptually confusable semicircles varying in size 
and angle of orientation of a radial line. Previous research 
indicates that these dimensions are separable (Gamer & 
Felfoldy, 1970; Shepard, 1964). There were four levels 
of size and four levels of angle, combined orthogonally 
to yield a 16-member stimulus set. In the identification 
condition, the subjects simply identified the level of size 
and level of angle of each stimulus. Four categorization 
conditions were tested, which are illustrated in Figure 1. 
In these grids, the columns represent levels of angle and 
the rows represent levels of size. Cells with a 1 or a 2 
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Figure 1. Schematic illustration of the four category structures. 
In each grid, the rows correspond to levels of size and the columns 
correspond to levels of angle. The cells with a 1 or 2 represent 
Category 1 or 2 training exemplars. The empty cells represent trans-
fer stimuli. 

represent stimuli assigned to Category 1 or 2, whereas 
empty cells represent unassigned transfer stimuli. Each 
category structure can be described in terms of a simple 
rule. In the size categorization, small (or large) stimuli 
are assigned to Category 1 (or 2). Likewise, in the angle 
categorization, stimuli with low (or high) angles are as-
signed to Category 1 (or 2). The crisscross categoriza-
tion is a biconditional structure: small stimuli with high 
angles and large stimuli with low angles are assigned to 
Category 1, and the reverse for Category 2. The fourth 
condition is called the diagonal categorization because the 
categories can be partitioned by drawing a diagonal line 
through the stimulus space. Another way of describing 
the diagonal categorization is to say that it is a "rule-plus-
exception" structure. For example, stimuli with high (or 
low) angles are assigned to Category 1 (or 2), with one 
exception in each category. The theoretical goal is to 
predict quantitatively the confusion data observed in the 
identification condition and all four categorization con-
ditions, using the exemplar-similarity model. 

The asymmetric structures associated with the size and 
angle categorizations (see Figure 1) were used to provide 
clear evidence of the need to incorporate selective atten-
tion components within the framework of the exemplar-
similarity modeL Consider, for example, the angle 
categorization. Stimulus 14 is highly similar to a Cate-
gory 2 training exemplar, namely, Stimulus 15. Thus, an 
"overall-similarity" exemplar model predicts that Trans-
fer Stimulus 14 will be classified in Category 2. However, 
angle is the relevant dimension in the angle categoriza-
tion, and it is expected that subjects will attend selectively 
to the relevant dimension. Selective attention is rep-
resented in the present exemplar model in terms of 
"stretching" of distances along the attended dimensions, 
and "shrinking" of distances along the unattended dimen-
sions. To the extent that subjects attend selectively to the 
relevant angle dimension, Transfer Stimulus 14 will be-
come more similar to the Category 1 training exemplars, 
and subjects will tend to classify it in Category 1. An 
analogous situation arises for Transfer Stimulus 9 in the 
size categorization. 

Method 
Subjects. The subjects were 308 undergraduates at Indiana 

University, who participated as part of an introductory psychol-
ogy course requirement. They were tested individually or in pairs. 

To allow for a precise quantitative account of the identification 
and categorization confusions, only subjects who performed rela-
tively well were included in the theoretical analyses. A number of 
unwanted noise factors could contribute to poor performance-
including failure to understand instructions, lack of motivation, and 
equipment malfunctions. These factors would make it difficult for 
any model to account accurately for the subjects' classification be-
havior. The performance criteria that were used are explained in 
the sections on the identification and categorization conditions below. 

Apparatus. The stimuli were 16 semicircles varying orthogonally 
in size (four levels) and angle of orientation of a radial line (four 
levels). The four sizes (in terms of the length of the radial line) 
were 4.51,4.80,5.08, and 5.36 mm; the four angles were 50°, 
54°,58°, and 62°. The stimulus set is illustrated in Figure 2. All 
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Figure 2. The stimulus set used in this experiment. 

the stimuli were equal in luminance (2.73 fl.); they appeared as 
continuous green figures on a black background. 

Two VR14 scopes, interfaced with a PDP-11/34 computer, were 
used to present the stimuli. The subjects sat approximately 2 ft from 
the scopes in a normally lit room. Thus, the visual angle subtended 
by the stimuli ranged from approximately .85 0 to 1.01 0 at their 
widest point. The subjects entered their responses by means of 
response boxes interfaced with the computer. 

Identification condition. The identification condition consisted 
of two phases. In Phase 1, the stimuli were presented with unlimited 
exposure durations, whereas in Phase 2, short exposure durations 
(150 msec) were used. The unlimited exposure phase was conducted 
to facilitate identification training. Phases 1 and 2 included 200 trials 
each. 

On any given trial, a randomly selected stimulus was presented, 
and the subject identified its size and angle. The size and angle 
dimension values were each given a label on a scale from 1 (smallest 
size, lowest angle) through 4 (largest size, highest angle). The sub-
jects entered their responses by pressing one of four consecutively 
labeled buttons arranged in a row. To enter size i and angle j, the 
subject first pressed button i and then pressed buttonj. Following 
the responses, feedback was provided with lights located directly 
over the buttons. 

Each experimental session lasted approximately 45 min. Of the 
57 subjects tested, 37 met a performance criterion of 20 % correct 
overall identification responses during Trials 50-200 of the short 
exposure phase. (A response was scored as correct only if both size 
and angle were identified correctly. Chance performance was 6.25% 
correct.) The identification data analyzed in this article are those 
obtained during Trials 50-200 ofthe short exposure phase for the 
subjects who met the criterion. 

Categorization conditions. Four categorization conditions were 
tested (see Figure 1). Each subject participated in only one condi-
tion. None of the subjects who participated in the identification con-
dition participated in the categorization conditions. Each categori-
zation condition consisted of an unlimited exposure duration training 
phase, a short exposure (l50-msec) training phase, and a short ex-
posure (l50-msec) transfer phase. 

During the training phases, only assigned category exemplars were 
presented. The subjects classified each stimulus into Category 1 
or 2 by pressing one of two labeled response buttons. Following 
each response, feedback was provided. The unlimited exposure du-
ration training phase was organized into blocks of 150 trials. A single 
block of unlimited exposure training was used in the size and angle 
categorizations, whereas three blocks were used in the crisscross 
and diagonal categorizations. The short exposure duration training 
phase consisted of a single block of 175 trials in all conditions. 

The transfer phase consisted of 65 trials occurring immediately 
after the short exposure training phase, with no break between 
phases. During these 65 trials, each unassigned (transfer) stimulus 
was presented twice. Assigned (training) exemplars were presented 
on the remaining trials of the transfer phase. Presentations of as-

IDENTIFICATION AND CATEGORIZATION 281 

signed exemplars and transfer stimuli were random within the con-
straints stated above. Corrective feedback continued to be provided 
on trials in which assigned training exemplars were presented. Feed-
back was withheld on trials in which unassigned transfer stimuli 
were presented, because there were no correct answers on these 
trials. The subjects were not informed that they would be classify-
ing unassigned stimuli, but they were informed that feedback might 
be withheld on some trials. 

Average percentage correct scores were obtained for each sub-
ject during Trials 50-175 of the short exposure duration training 
phase. The distributions were inspected by eye, and performance 
criteria for each condition were established. The criteria were 80%, 
80%,60%, and 70% in the size, angle, crisscross, and diagonal 
conditions, respectively: 37 of 44, 41 of 83, 37 of 63, and 41 of 
62 subjects met these criteria in each respective condition. Anal-
ysis of the categorization transfer data includes only those subjects 
who met the criteria. I 

Theoretical Analysis 
Because the theoretical framework has been presented 

in previous articles (Nosofsky, 1985b, 1986), it will only 
briefly be reviewed here. According to the exemplai-
similarity model of categorization, the "strength" ofmak-
ing a Category J response (RJ) given presentation of 
Stimulus i (Sj) is found by summing the similarity of 
Stimulus i to the complete set of presented exemplars 
of Category J (CJ), and then multiplying by the response 
bias for Category J. This strength is then divided by the 
sum of strengths for all categories to determine the 
categorization probability. Thus, in the present two-
category experiments, the probability of classifying Stimu-
lus i into Category 1 is given by: 

blEjEC,Sij 
__ ~ __ --''---O._~ ___ , (1) 

b 1 L.tjEC,Sij + (l-b1)L.tkEC, Sik 
P{R1 JSi) 

where b1 (0 ::s; b1 ::s; 1) is the Category 1 response bias, 
and Sij denotes the similarity between Exemplars i andj. 
In the special case in which each stimulus dermes its own 
category, the exemplar model reduces to the classic 
similarity-choice model {Luce, 1963; Shepard, 1957} for 
predicting identification confusion data. The probability 
of identifying Stimulus i as Stimulus j is given by: 

P(RjJ Si} = bjSij (2) 

The relation between Equations 1 and 2 is one of the 
keys to predicting categorization from identification. A 
critical problem, however, is that because of selective at-
tention strategies, the Sjj similarity parameters in Equa-
tions 1 and 2 may not be invariant across identification 
and categorization situations {Medin & Schaffer, 1978; 
Nosofsky, 1986, 1987; Shepard et al., 1961}. To charac-
terize attention-based changes in similarities, a theory of 
similarity is needed. For the continuous-dimension stimuli 
used in these experiments, it is natural to use the MDS 
approach. Each exemplar is represented as a point in a 
two-dimensional psychological space, with the similar-
ity between exemplars being a decreasing function of their 
distance in the space. 
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The distance between Exemplars i and j is given by 

dij = [ E Wm IXim -Xjm I r]l/r (3) 
m=l 

where Xim is the psychological value of Exemplar i on 
Dimension m, and Wm (0 :5 Wm :5 1, EWm = 1) is the 
attention weight given to Dimension m. The value of 
r in Equation 3 that provides the best description of 
psychological distance appears to depend on various 
experimental factors. In general, the Euclidean met-
ric (r = 2 in Equation 3) appears to be appropriate 
for stimuli varying along relatively unanalyzable, in-
tegral dimensions, such as Munsell colors varying in 
brightness and saturation; whereas something more along 
the lines of the city-block metric (r = 1) is appropriate 
for highly analyzable, separable-dimension stimuli, such 
as the present semicircles (Gamer, 1974; Shepard, 1964). 
However, Nosofsky (1985b) found that the Euclidean met-
ric may be appropriate even for separable dimensions 
when people identify highly confusable stimuli. 

The distance dij is converted to a similarity measure us-
ing the transformation 

Sij = exp( -c . dfj) (4) 

where c (0 :5 c < 00) is a sensitivity parameter reflect-
ing discriminability in the psychological space. An ex-
ponential decay function (p = 1 in Equation 4) appears 
to describe accurately the relation between similarity and 
psychological distance in classification learning experi-
ments using readily discriminable stimuli, whereas a 
Gaussian function (p = 2) appears to operate in percep-
tual discrimination experiments involving highly confus-
able stimuli (Nosofsky, 1985a, 1985b; Shepard, 1986, 
1987; see Ennis, 1988, and Ennis, Palen, & Mullen, in 
press, for a theoretical explanation of the changing similar-
ity gradient). 

The approach to predicting and relating the present iden-
tification and categorization data can now be outlined. The 
identification confusion data are fitted by means of the 
similarity choice model (Equation 2), with the assump-
tion that the similarity parameters are functionally related 
to distances in a multidimensional psychological space 
(Equations 3 and 4). By fitting this "MDS-choice" model 
to the identification data, an MDS solution is derived for 
the stimuli. This MDS solution is then used in conjunc-
tion with the exemplar-similarity model (Equations 1,3, 
and 4) to predict performance in each of the four categori-
zation conditions. Because the MDS solution (the Xim coor-
dinates in Equation 3) will be derived from the identifi-
cation confusion data, one needs to estimate only the 
sensitivity parameter c, attention weight WI, and response 
bias parameter b l in going on to predict categorization 
performance. 

Identification condition. The identification confusion 
data are reported in Table 1. The MDS-choice model 
(Equations 1, 3, and 4) was fitted to the data using a 
maximum-likelihood criterion.2 The sensitivity and atten-
tion weight parameters are nonidentifiable with respect 
to the stimulus coordinates in the identification condition, 
and so they were set at default values (WI = .50, c = 2.00). 

Exploratory analyses were first conducted to discover 
the form of the distance metric and similarity gradient (the 
values of rand p in Equations 3 and 4). In these explora-
tory analyses, a constrained two-dimensional space was 
assumed in fitting the MDS-choice model to the identifi-
cation confusion data (Nosofsky, 1985b). In the con-
strained two-dimensional space, all stimuli sharing a com-
mon physical value of angle are constrained to have the 
same psychological value on Dimension 1, Xii, whereas 
all stimuli sharing a common physical value of size are 
constrained to have the same psychological value on 
Dimension 2, Xi2. The assumption of a constrained space . 
greatly reduces the number of freely varying coordinate 

Table 1 
Identification Confusion Data 

Response 
Stimulus 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

I 116 46 30 II 52 37 10 16 9 10 2 0 I 0 0 0 
2 44 59 68 26 21 29 43 17 6 8 3 I 0 0 0 0 
3 24 34 87 69 10 27 52 49 I 7 8 7 0 0 I 0 
4 6 12 43 121 6 9 21 80 I 3 5 10 I 0 0 2 
5 35 15 7 3 89 60 13 9 68 23 5 2 3 4 3 0 
6 15 15 15 5 44 58 67 22 30 37 27 10 I 2 0 I 
7 4 II 22 12 18 45 78 41 11 28 39 23 0 0 3 I 
8 I 6 17 22 12 22 43 99 3 12 41 50 0 0 I 3 
9 3 2 0 0 22 17 11 5 101 60 31 5 45 23 9 4 

10 I 0 3 0 15 16 24 5 43 73 69 15 10 25 12 8 
II 0 I I 3 7 II 25 28 19 36 86 65 II 17 24 21 
12 I 0 3 2 0 7 17 32 8 13 56 116 3 5 19 45 
13 I 0 0 0 7 3 2 2 68 30 14 4 135 59 19 5 
14 0 0 I 0 0 3 6 I 32 38 36 10 38 71 61 8 
15 0 0 0 I 0 3 2 4 17 25 41 30 9 55 88 60 
16 0 0 I 0 0 2 3 4 9 15 39 64 5 26 66 121 

Note-Dimension levels that correspond to each stimulus number are shown in Figure I. 
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Table 2 
Summary Fits for MDS-Choice Models 

Distance Metric Similarity Function SSE %Var -lnL 

Constrained Models 
City-Block (r = I) Exponential (p = I) 16,278 91.2 751.5 
City-Block (r = 1) Gaussian (p = 2) 21,921 88.1 795.8 
Euclidean (r = 2) Exponential (p = I) 21,949 88.1 745.8 
Euclidean (r = 2) Gaussian (p = 2) 7,458 96.0 587.2 

Unconstrained Model 
Euclidean (r = 2) Gaussian (p = 2) 5,511 97.0 557.9 

Note-SSE = sum of squared deviations between predicted and observed identification confusion frequen-
cies; % Var = percentage of variance accounted for; InL = log-likelihood (optimization criterion was maximum-
likelihood). 

parameters that need to be estimated, and it reduces the 
possibility of hitting local minima in searching for the op-
timal MDS solution. Four versions of the constrained 
model were fitted to the data, each involving a different 
combination of distance metric (either city-block or Eu-
clidean) and similarity function (either exponential or 
Gaussian). The summary fits for each version of the model 
are reported in Table 2. Among the alternatives consid-
ered in the table, the Gaussian/Euclidean model is clearly 
favored. This result replicates earlier ones reported by 
Nosofsky (1985a, 1985b) in experiments in which sub-
jects identified highly confusable stimuli. 

Having found evidence favoring the Gaussian/Euclid-
ean model, a computer search was conducted to find the 
unconstrained two-dimensional solution that yielded a best 
fit to the confusion data (that is, all coordinate param-
eters were allowed to vary freely). The summary fits for 
this unconstrained model are provided in Table 2. The 
maximum-likelihood MDS coordinate parameters and 
response bias parameters are reported in Table 3, with 
the MDS solution illustrated in Figure 3. The MDS so-
lution has been rotated so that the psychological dimen-
sions correspond to the physical dimensions of size and 
angle. 

Note that no constraints were imposed on the computer 
search with respect to the underlying psychological dimen-
sions. So, for example, had the subjects' identification 
confusions been based primarily on the X,Y coordinate of 
the terminal point of the radial line, the search routine 
was free to converge to such a solution. As is clear from 
inspection of Figure 3, however, the psychological dimen-
sions are readily interpretable in terms of the size of cir-
cle and angle of line. 

A scatterplot of observed against predicted confusion 
probabilities for the MDS-choice model is presented in 
Figure 4. Although the overall fit of the Gaussian/Euclid-
ean model is fairly good, with 97.0% of the variance ac-
counted for, it should be noted that the model systemati-
cally underpredicts correct identification probabilities (see 
Figure 4). Additional analyses revealed that a value of 
p in Equation 4 slightly less than two (p = 1.8) provided 
an even better overall fit to the data (-In L = 535.1), 
and removed the systematic discrepancies seen in 
Figure 4. 

Ennis (1988; Ennis et al., in press) has proposed that 
the similarity gradient may be reflecting two components: 
Gaussian distributed perceptual dispersions associated 
with the presentation of a stimulus, and a "cognitive" 
similarity judgment function, posited by Shepard (1987) 
to be exponential decay in form. The "intermediate" gra-
dient observed under the present experimental conditions 
may reflect significant contributions from both compo-
nents. By contrast, in experiments in which there is 
presumably relatively little perceptual noise associated 
with stimulus presentations, evidence tends to favor an 
exponential similarity gradient (Nosofsky, 1987; Shepard, 
1958, 1987). 

Categorization conditions. The data obtained in the 
four categorization conditions are reported in Table 4. 
Given the MDS solution derived from the identification 
confusions, the exemplar model (Equations 1, 3, and 4) 
can be used to predict these categorization data. In each 
condition, three parameters (c, w" and b l ) are estimated 
to predict 16 freely varying data points. 

To aid in interpretability, the observed and predicted 
Category 1 response probabilities for each stimulus in 
each condition are shown in spatial format in Figure 5. 

Table 3 
Maximum-Likelihood MDS-Choice Model Parameters 

MDS Coordinates Bias 
Si Xii Xi2 bi 
1 .312 -.241 .426 
2 .918 -.264 .278 
3 1.405 -.187 .416 
4 2.062 -.227 .549 
5 .228 .640 .522 
6 .844 .662 .466 
7 1.324 .687 .569 
8 1.885 .623 .706 
9 .374 1.555 .784 

10 .916 1.501 .650 
11 1.473 1.544 .817 
12 2.128 1.520 .929 
13 .135 2.352 .655 
14 .889 2.412 .561 
15 1.451 2.493 .630 
16 2.061 2.382 .687 

Note-Xii = psychological value of Stimulus i (Si) on Dimension I (an-
gie); Xi2 = psychological value of Stimulus i on Dimension 2 (size). 
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Figure 3. Multidimensional scaling solution derived by fitting the 
Gaussian/Euclidean MDS-<hoice model to the identification confu-
sion data. 
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Figure 4. Scatterplot of predicted against observed identification 
confusion probabilities (MDS-<hoice model). The solid square in 
lower left comer of the scatterplot represents the large number of 
observed and predicted confusion probabilities less than .02. 

The maximum-likelihood exemplar model parameters and 
summary fits are reported in Table 5. The model accounts 
for 99.4%,99.6%,95.2%, and 98.4% of the variance 
in the size, angle, crisscross, and diagonal categorizations, 
respectively. A scatterplot of observed against predicted 
Category 1 response probabilities is presented in Figure 6 . 
The quantitative predictions are accurate across the en-
tire range of the probability space. Likelihood-ratio tests 
of overall goodness of fit (see Wickens, 1982, chapter 6) 
do not lead to the rejection of the model in any of the con-
ditions [average X2(13) = 18.0, P > .05]. 

The parameter of greatest interest in this study is the 
attention weight w, (weight given to angle-see Table 5). 
As expected, the subjects attended selectively to the size 
dimension (w, = .10) in the size categorization, and at-
tended selectively to angle (w, = .98) in the angle 
categorization. Although the result was not anticipated, 
the subjects also gave greater weight to the angle dimen-
sion in the crisscross and diagonal categorizations 
(w, = .80 and w, = .81, respectively) than they did in 
the identification condition (w, = .50). 

Note that the estimated attention weights should be in-
terpreted in only a relative sense. In the identification con-
dition, the weights were set at w, = W2 = .50, because 
they were nonidentifiable with respect to the stimulus 
coordinates. Conceivably, however, the subjects could 
have weighted size more than angle in the identification 
condition. Thus, the value w, = .80 in the crisscross 
categorization indicates simply that the subjects gave 
greater weight to angle in the crisscross categorization 
than in the identification condition. One possible expla-
nation of this finding is that in the identification condi-
tion, the subjects reported their size judgment first, fol-
lowed by their angle judgment. This fixed order of report 
may have biased the subjects to focus more on the size 
dimension than on the angle dimension. Such biasing was 

Table 4 
Observed Frequencies with which Stimuli were Classified in Category 1 or 2 in each Condition 

Size Angle Crisscross Diagonal 

Stimulus C, Cz C, Cz C, Cz C, C, 
I 72 2 79 3 48 168 40 46 
2 255 4 155 116 94 138 200 58 
3 72 2 48 258 45 29 242 25 
4 73 1 2 80 162 49 83 3 
5 234 35 81 1 34 40 65 228 
6 66 8 190 97 34 40 49 37 
7 208 39 60 202 138 102 180 77 
8 226 39 2 80 47 27 70 16 
9 23 51 262 25 53 21 8 78 

10 18 56 47 35 120 103 57 211 
11 55 170 11 71 33 41 42 44 
12 58 179 4 259 24 50 199 67 
13 2 72 76 6 180 52 3 83 
14 8 229 47 35 44 30 27 242 
15 3 71 24 227 63 160 58 171 
16 3 71 2 80 41 195 55 31 



S lIE ANGl E 

03 0302 0301 0402 04 98 9358 57 13 1001 02 

2 2 
13 , ,. 13 1 ,. 

31 31 33 2428 2428 25 92 91 55 5714 1301 02 

2 2 1 2 
• ' . " , • ' . " 1 

86 87 84 8981 8483 II! 96 99 82 88 23 2303 02 

1 1 1 1 2 , • , • 
99 9799 9099 9799 9 94 98 58 5719 1601 02 

1 i 1 2 
1 2 3 • 1 2 3 • 

CRISS-CROSS DIAGONAL 

81 7856 80 33 2819 17 04 '" 10 1021 2558 84 

1 2 2 2 2 
13 , .. 13 ,. 1 .. 

84 72 57 54 48 45 311 32 13 O! 29 2147 4' 78 75 

1 2 1 
• '. " • ' . " 1 

40 48 49 4 58 5861 84 22 2: 51 5769 70 85 81 

1 2 1 , • , • 
22 2237 41 55 61 78 n 43 4778 78 89 9198 97 

2 2 1 1 1 
1 2 3 • 1 2 3 • 

4 

Figure 5. Predicted and observed Category 1 response probabil-
ities for each stimulus in each condition. The top left value in each 
cell = predicted probability; the top right value in each cell = ob-
served probability. 

not inherent in the categorization conditions, where the 
processing of dimensions was more at the subjects' option. 

To illustrate the important role of the attention weight 
parameter, a restricted version of the exemplar model was 
fitted to the data in which the attention weight was set 
at WI = .50 (that is, a constant distribution of attention 
across identification and categorization). The maximum-
likelihood parameters and summary fits for this restricted 
model are presented along with those of the full model 
in Table 5. In all cases, the fits of this restricted model 
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are dramatically worse than those of the full model. 
Likelihood-ratio tests (Wickens, 1982) indicate that the 
weight parameters are significantly different (p < .001) 
from .50 in all conditions [X2(l) = 62.4, 240.0, 33.8. 
and 122.2, in the size, angle, crisscross, and diagonal 
categorizations, respectively]. J 

Two stimuli that are useful for bringing out the impor-
tance of the attention weight parameter are Stimulus 14 
in the angle categorization and Stimulus 9 in the size 
categorization (see Figure 5). In the angle categorization, 
the restricted model with WI = .50 predicts that Stimu-
lus 14 will be classified in Category 1 with probability 
.18. By contrast, with selective attention incorporated, 
the predicted value is .56, essentially identical to the ob-
served value of .57. With nondifferential selective atten-
tion, Stimulus 14 is more similar overall to the Category 2 
exemplars than to the Category 1 exemplars. With selec-
tive attention to angle, however, the psychological space 
is "stretched" along the horizontal dimension and 
"shrunk" along the vertical dimension, making Stimu-
lus 14 more similar to the exemplars of Category 1. An 
analogous situation arises for Stimulus 9 in the size 
categorization [restricted model: P(R I I S9) = .48; full 
model: p(RIISg) = .31; observed: p(RIISg) = .31]. 

A restricted version of the exemplar model was also 
tested in which the bias parameter was set at hi = .50 
(nondifferential response bias). As indicated in Table 5, 
the bias parameter did not contribute to the quantitative 
fits in nearly as dramatic a fashion as did the attention 
weight parameter. Indeed, likelihood-ratio tests revealed 
that the bias parameter did not differ significantly from 
.50 in the size or diagonal categorizations [average X2(l) 
= 0.80, p > .05], although it did in the crisscross and 
angle categorizations [average X2(1) = 21.5, p < .01]. 
Presumably, the bias parameter would playa more criti-
cal role in conditions in which differential payoffs for al-
ternative categorization responses were used, category fre-
quencies were manipulated, and so forth. 

Table 5 
Maximwn-Likelihood Parameters and Summary Fits for Full and Restricted Versions 

of the Exemplar-Similarity Categorization Model 
Parameters Fits 

Condition Model c W, h, SSE %Var -lnL 

Size Unconstrained 1.60 .10 .50 .015 99.4 40.8 
Equal attention 2.38 (.50) .49 .077 97.0 72.0 
Equal bias 1.60 .10 (.50) .015 99.4 40.8 

Angle Unconstrained 3.20 .98 .43 .010 99.6 44.3 
Equal attention 3.57 (.50) .45 .305 86.4 164.3 
Equal bias 3.09 1.00 (.50) .029 98.7 56.8 

Crisscross Unconstrained 1.62 .80 .45 .025 95.2 47.7 
Equal attention 1.23 (.50) .45 .087 83.1 64.6 
Equal bias 3.00 .93 (.50) .046 91.1 56.7 

Diagonal Unconstrained 2.42 .81 .49 .023 98.4 48.3 
Equal attention 1.81 (.50) .48 .217 85.0 109.4 
Equal bias 2.42 .81 (.50) .021 98.6 49.1 

Note-Values in parentheses were constrained a priori. The parameter w, gives the attention weight for an-
gie, and I-w, the attention weight for size. SSE = sum of squared deviations between predicted and ob-
served Category I probabilities; % Var = percentage of variance accounted for; InL = log likelihood. 
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Figure 6. Scatterplot of predicted against observed Category 1 
response probabilities for each stimulus in each condition. 

GENERAL DISCUSSION 

The main contribution of this research involved the 
demonstration that precise quantitative accounts of both 
identification and categorization confusion data could be 
achieved within the framework of the proposed exemplar-
similarity model. On the basis of identification confusions, 
an MDS solution for the exemplars was derived. This 
MDS solution was then used to predict performance in 
four separate categorization conditions with the same set 
of stimuli. A key to achieving the accurate quantitative 
predictions was the use of selective attention weights that 
systematically modified similarities between exemplars 
across the different categorization conditions. Whether the 
weights are reflecting changes in "perceptual" similar-
ity or some form of "cognitive" or "judgmental" similar-
ity is an important but as yet unexplored question. 

The present tests of the exemplar-similarity model go 
beyond earlier ones reported by Nosofsky (1986) in 
several respects. Whereas Nosofsky (1986) tested only 
two subjects, each of whom received extensive discrimi-
nation training on the entire ensemble of exemplars, the 
present tests involved large numbers of subjects, each of 
whom received relatively little training. Also, whereas 
Nosofsky's (1986) design required him to posit that sub-
jects had augmented their memory representations with 
"inferred" category exemplars, the present tests did not 
require recourse to this memory-augmentation process. 
Thus, the present research represents a substantial advance 
in demonstrating the generalizability and utility of the pro-
posed theoretical approach to relating identification and 
categorization. 

In the present study, a "similarity-based" model was 
used to accurately predict classification performance, 
despite the fact that separable-dimension stimuli were in-

volved. Although there is widespread support for the idea 
that similarity in psychological space predicts classifica-
tion performance for integral-dimension stimuli (e.g., 
Monahan & Lockhead, 1977; Nosofsky, 1987; Shepard, 
1958; Shepard & Chang, 1963), the role of similarity in 
determining the classification of separable-dimension 
stimuli has been called into question (e.g., by Gamer, 
1974; Shepard et al., 1961). The present research sug-
gests that if assumptions are made concerning the role of 
selective attention in influencing similarity, then a 
similarity-based approach to predicting classification per-
formance using separable-dimension stimuli may be ten-
able. L. B. Smith (in press) has recently extended the 
present modeling approach to characterize developmen-
tal changes in the free classification of separable-
dimension stimuli. 

Consideration of Alternative Models 
Although the exemplar-similarity model provided an ac-

curate quantitative account of the present identification 
and categorization data, its predictions have not been con-
trasted with those of alternative classification models. Un-
fortunately, many extant competing models have simply 
not been developed to the point at which they can directly 
be applied to predict categorization performance for the 
present continuous-dimension stimuli. For example, 
Gluck and Bower (1988a, 1988b) proposed and tested an 
adaptive network model of classification learning that has 
been applied in paradigms involving stimuli varying along 
discrete, binary-valued dimensions (see also Estes, Camp-
bell, Hatsopoulos, & Hurwitz, in press). The nodes in 
the network correspond to the individual dimension values 
and, in an extended version of the model, to combina-
tions of these values. Activation of the nodes is unam-
biguous and all-or-none. For example, presentation of a 
large red stimulus would lead to activation of the large, 
red, and large-red nodes. There are several problems 
regarding application of this adaptive network model to 
the present categorization data. First, it is unclear how 
to represent continuous-dimension stimuli in terms of the 
node-network architecture. Furthermore, it seems likely 
that additional assumptions would be necessary regard-
ing node activation. For example, presentation of a stimu-
lus with Size 3 (S3) and Angle 2 (A2) would presumably 
lead to activation of an S3-A2 node, but might also lead 
to activation of nodes that represent similar values (e.g., 
S4-A2 and S3-A3 nodes, etc.). The details of such 
similarity-related node-activation functions would need to 
be worked out. This problem of how to precisely represent 
similarity relations among confusable, continuous-
dimension stimuli currently exists for a variety of con-
nectionist, distributed-memory, and even some alterna-
tive exemplar models of classification (e.g., Carpenter 
& Grossberg, 1987; Hintzman, 1986; Knapp & Ander-
son, 1984; McClelland & Rumelhart, 1985; Metcalfe-
Eich, 1982; Murdock, 1982). 

One theoretical approach which in its present form is 
applicable to continuous-dimension stimuli is the general 
recognition theory (GRT) currently being developed by 



Ashby and his associates (Ashby & Gott, 1988; Ashby 
& Perrin, 1988; Ashby & Townsend, 1986). The GRT 
is a multidimensional generalization of Thurstonian 
models of classification. Presentation of a stimulus is as-
sumed to give rise to a "perceptual effect" in a multi-
dimensional psychological space. Because of noise in the 
system, the same perceptual effect will not be yielded on 
each trial; rather, there is assumed to be a distribution 
of perceptual effebts associated with each stimulus. The 
subject is assumed to establish decision boundaries that 
partition the multidimensional space into response regions. 
Any perceptual effect falling into Region A would result 
in a Category A response. 

To use the GRT to make quantitative predictions of clas-
sification performance, assumptions need to be made 
regarding the form of the distributions of perceptual ef-
fects as well as the types of decision boundaries that are 
adopted. Most applications of the GRT have assumed 
multivariate Gaussian distributions. A variety of decision 
bounds have been investigated, including independent-
decision bounds, general linear bounds, and likelihood-
ratio bounds (Ashby & Gott, 1988). 

The procedure for using the GRT to predict the present 
identification and categorization data would be analogous 
to the one used for fitting the exemplar-similarity model. 
On the basis of the identification confusion data, the 
parameters of the underlying distributions of perceptual 
effects would be estimated (e.g., see Ashby & Perrin, 
1988). Then, for a given choice of decision boundary, 
predictions would be made regarding performance in each 
categorization condition. The probability of a Category 1 
response, given presentation of Stimulus i, would be 
found by integrating over the portion of the Stimulus i 
distribution that falls in the Category 1 response region. 
In general, this would involve multiple integration of 
Gaussian distributions over what might be fairly complex 
spatial regions. Such computations go beyond the scope 
of the present research. 

Although quantitative tests of the GRT are not made 
in this article, the observed patterns of identification and 
categorization confusions can be shown to have impor-
tant implications regarding its use. In the following dis-
cussion, I assume decision boundaries that are based on 
likelihood-ratio. Likelihood-ratio boundaries deserve spe-
cial consideration for two reasons. First, optimal classifi-
cation strategies can essentially always be couched in 
terms of likelihood-ratio (Green & Swets, 1966, chap-
ter 1). Also, Ashby and Perrin (1988) assumed likelihood-
ratio boundaries in applying the GRT to the modeling of 
similarity judgments. 

According to an unbiased likelihood-ratio decision rule, 
in a two-category experiment a perceptual effect t will 
be classified into Category 1 whenever 

L(C, I t) > L(C2 1 t), (5) 
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where L(e I t) denotes the likelihood of Category I given 
perceptual effect t. Using Bayes' Theorem, Inequality 5 
is satisfied whenever 

L(t I C,) . L(C,) > L(t I C2) • L(C 2 ). (6) 

Inequality 6 can be expanded in terms of the individual 
stimulus distributions that compose the overall category 
distributions of perceptual effects. In particular, a 
Category 1 response is made if 

E L(t I Sj) . L(Sj) > E L(t I Sk) . L(Sk), (7) 
j.c, k.C2 

where L(t I Sj) denotes the likelihood of perceptual effect 
t, given presentation of Stimulus j. When the individual 
stimuli have equal presentation rates, as in the present ex-
periments, the decision rule is simply to respond 
"Category 1" if 

E L(tISj) > E L(tISk). (8) 
j.c, k.C2 

Assume that the distributions of perceptual effects as-
sociated with the stimuli Sj are bivariate Gaussian, with 
mean on dimension m, /Ljm, variance on dimension m, CJ!., 
and covariance zero. (Note that we assume that variabil-
ity along each dimension is constant across stimuli, 
although the variance along Dimension 1 is not necessariIy 
the same as the variance along Dimension 2). Then the 
likelihood of perceptual effect t = (t" t2 ), given presen-
tation of Stimulus j, is 

L(tl Sj) 

Substituting into Inequality 8 and dividing all terms by 
the factor 1I(21rCJ,CJ2), the decision rule is to respond 
"Category 1" if 

E exp{ -[(t. - /Ljl)2I2CJ: + (12 - /Lj2)2/2CJn} 
j.c. 

As noted by Nosofsky (1988), this likelihood-based 
decision rule is formally identical to one produced by sum-
ming similarities to individual exemplars (using a Gaus-
sian similarity function and a Euclidean distance metric). 
In particular, suppose that the decision rule is to respond 
"Category 1" if the summed similarity of t to all exem-
plars of Category 1 is greater than the summed similar-
ity of t to all exemplars of Category 2: 

E s(t,Sj) > E S(t,Sk). (11) 
j.c, k.C2 

In the Gaussian/Euclidean exemplar model, the similar-
ity of t to Stimulus j is given by 
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s(t,Sj) = exp( -c • d~) 

= exp{ -c V~W-t-(t-t ---X-jl-)Z-+-w-z-(t-z---X-j2-)Z Z} 

= exp{-[CWt(tt-Xjl)Z + cwZ(tZ-Xj2)Z]}, (12) 

and so the decision rule is to respond Category 1 if 

E exp{-[cwt(tt-Xjl)Z + cwZ(tZ-Xj2)Z]} 
j.et 

> E exp{-[cwt(tt-Xkl)Z + CWz(tz-Xk2)Z]}, (13) 
kECz 

Letting the coordinates for Stimulus j in the exemplar 
model correspond to the mean of the distribution of per-
ceptual effects associated with Stimulus j in the GRT, 
Xjm = JLjm, and letting the product of the sensitivity and 
weight parameters in the exemplar model be inversely 
related to the variance parameters in the GRT, 
c· Wm = 1I2a;', it can be seen that the decision bound-
aries defined by these versions of the exemplar model and 
the GRT are formally identical (i.e., compare Inequali-
ties 10 and 13). 

Now in the exemplar-similarity model tested in this ar-
ticle, classification predictions were made using a 
response-ratio rule (Equation 1), whereas the GRT makes 
classification predictions by integrating over distributions 
of perceptual effects that fall in particular response 
regions. However, given the preceding theoretical de-
velopment, it is clear that the models will often make simi-
lar qualitative predictions. As an illustration, Figure 7 
shows an approximate representation of the structure of 
the present stimulus set in terms of the GRT. (The pre-
cise structure would be found by fitting the GRT to the 
identification confusion data.) In the figure, the stimulus 
distributions are represented by ellipses, with the width 
of the major and minor axes of the ellipses representing 
variability along each dimension. In Panel A of Figure 7, 
variability along each dimension is presumed to be equal, 
so the distributions of perceptual effects are represented 
by circles. This equal variability assumption parallels the 
equal weighting assumption that was made earlier when 
fitting the exemplar model to the identification confusion 
data. 

Panel A of Figure 7 also illustrates the angle categori-
zation embedded in the stimulus structure, and shows the 
boundary of equal likelihood for Categories 1 and 2. This 
boundary was computed by solving for individual (t., tz) 
pairs for which EjECtL(t I Sj) = EkfczL(t I Sk) for the 
stimulus-distribution parameters that are assumed in the 
figure. According to the GRT, any perceptual effect fall-
ing to the upper right of this decision boundary would 
result in a Category 2 response. It is clear from inspec-
tion that the bulk of the distribution for Transfer Stimu-
lus 14 falls in the Category 2 response region, and so the 
likelihood-based GRT would incorrectly predict classifi-
cation for this critical transfer stimulus, just as did the 
overall-similarity exemplar model. 

Panel B of Figure 7 illustrates a modified representa-
tion of the structure of the stimulus space for the angle 
categorization. Here it is assumed that the subjects have 

attended selectively to the relevant angle dimension. This 
selective attention strategy is represented in terms of 
reduced variability of perceptual effects along the angle 
dimension, and increased variability along the size dimen-
sion. A new boundary of equal likelihood has been com-
puted, and it is clear that the GRT would now make more 
accurate predictions of classification for Transfer Stim-
ulus 14. 

In summary, there is a close formal relation between 
the sensitivity and attention weight parameters in the 
exemplar model and the variance parameters in the 
likelihood-based GRT. Furthermore, the selective atten-
tion assumption that was needed for connecting the iden-
tification and categorization data in terms of the exemplar-
similarity model also seems necessary for the likelihood-
based GRT. Of course, an alternative approach to predict-
ing the categorization data in terms of the GRT would 
involve the assumption that the distributions of percep-
tual effects are invariant across identification and categori-
zation, but that different decision rules are used. For ex-
ample, independent-decision boundaries may be used for 
some category structures, and likelihood-ratio boundaries 
for others. It is unclear at present which approach is 
preferable. 

The preceding discussion has been intended to illustrate 
implications of the present results for one particular al-
ternative classification model. More generally, it can be 
stated that the present research has furnished a rich set 
of identification and categorization confusion data that 
should provide a fertile testing ground for a wide variety 
of quantitative models of classification performance. 
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Figure 7. Schematic illustration of the structure of the angle 
categorization in terms of the general recognition theory. For sim-
plicity, a constrained two-dimensional space is assumed: on Dimen-
sion 1 (angle) the stimulus means are located at 0, .5, 1, and 1.5, 
whereas on Dimension 2 (size) the means are located at 0, .75, 1.5, 
and 2.25. 10 Panel A, there is equal attention to the size and angle 
dimensions, with oo~ = oo~ = .50. (These variances correspond to 
c = 2.0 and w, = .5 in the exemplar-similarity model.) 10 Panel B, 
there is selective attention to the angle dimension, represented by 
reduced variability along Dimension 1 (oot = .28) and increased 
variability along Dimension 2 (oo~ = 2.50). (These variances cor-
respond to c = 2.0 and w, = .95 in the exemplar-similarity model.) 
The length of the radius along the major and minor axes of the el-
lipses is approximately 1/4 of a standard deviation (00). Boundaries 
of equal likelihood for Categories 1 and 2 are also drawn. Note the 
contrasting predictions of cIassi6cation for Transfer Stimulus 14 (S'4) 
across Panels A and B. 
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NOTES 

I. Perfonnance criteria vary across conditions because some categories 
were harder to discriminate than others. The approach to establishing 
criteria was to inspect the percentage correct distributions by eye to look 
for natural breakpoints. The criteria were established prior to the model 
analyses. Note that severe subject selection took place in the angle 
categorization, where only the top 50% of the subjects were included 
in the analyses. This occurred because the subjects in the angle condi-
tion received only one block of training, whereas the subjects in the 
crisscross and diagonal conditions received three blocks of training. One 
block of training was sufficient in the size categorization, because size 
turned out to be more highly discriminable than angle for the dimen-
sion levels tested in this experiment (see Figure 3). 

2. A computer search was used to find the parameter values that max-
imized the log-likelihood function 

InL = ElnNi! - EEln./ii! + EEfij . Inpij 
i i j i j 

where Ni is the frequency with which Stimulus i was presented, fij is 
the observed frequency with which Stimulus i was identified as Stimu-
lus j, and Pij is the predicted probability with which Stimulus i is iden-
tified as Stimulus j. (Note that only the final term in the log-likelihood 
function changes with variations in the model parameters.) This likeli-
hood function assumes that the responses for each stimulus are multi-
nomially distributed, and that the distributions for each stimulus are in-
dependent. The same likelihood function is used for fitting the exemplar 
model to the categorization matrices, except that here fij (or Pij) cor-
responds to the observed frequency (or the predicted probability) with 
which Stimulus i is classified in Category j. 

3. A restricted version of a model arises whenever some of the 
parameters in the model are constrained on a priori grounds. Let L be 
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the likelihood of a data set given the maximum-likelihood parameters 
in the full model, and let L* be the corresponding likelihood for a res-
tricted version of the model. Assuming that the full model is correct, 
then for large sample size, the statistic - 2(1 n L - In L*) is distributed 
approximately as a chi-square random variable with degrees of free-
dom equal to the number of parameters that were constrained. Thus, 
this likelihood-ratio statistic can be used to test whether the fit of the 

restricted model is significantly worse than that of the full model. Tests 
of overall goodness of fit of a model are special cases of likelihood-
ratio testing. One compares the fit of the model to that of a fully satu-
rated model that fits the data perfectly. 

(Manuscript received June I, 1988; 
revision accepted for publication October 12, 1988.) 


