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Separate-activation models with variable
base times: Testability and checking

of cross-channel dependency
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Ifa subject is required to respond to either of two different target signals, reaction times (RTs)
are especially fast when both target signals are presented. Separate-activation models can ac­
count for this finding. This model class assumes that each target signal is detected in a different
channel and that the detection time of each channel is a random variable. If two different target
signals are presented, RT is simply the lesser of the two detection times. Cumulative distribu­
tion functions of RTs are commonly used to test channel independence or, if channel indepen­
dence is rejected, to evaluate the detection-time correlation. The present paper shows that it is
important to consider the variability of the base time for all processes after the response has
been decided on but before it has actually been carried out. It is shown that this variability in­
fluences the determination of the detection-time correlation. In addition, it is shown that Miller's
(1982) test of separate-activation models versus coactivation models can also be applied to models
with variable base times.

In many tasks, human observers monitor two distin­
guishable sources for a signal requiring a quick response.
For example, in a bimodal detection task, the observer
must respond as soon as a signal is presented on either
of two modalities, say, vision and audition. On signal
trials, only one signal (e.g., a tone or a flash) is presented,
whereas on redundant-signal trials, both signals are
presented simultaneously. Performance is studied in such
a task by measuring the time (RT) between stimulation
onset and response. The common finding is that RT is
shorter for redundant-signal trials. This phenomenon has
been called the "redundant signal effect" (Kinchla, 1974).

Miller (1982) has recently distinguished two model
classes to explain the redundant-signal effect: the separate­
activation and the coactivation models. Separate-activation
models assume that the two signals are processed simul­
taneously within different channels and that each chan­
nel produces a separate activation (cf. Meijers & Eijk­
man, 1977; Raab, 1962). The response is initiated as soon
as an activation level is exceeded in either channel. In con­
trast to separate-activation models, coactivation models
assume that the signals on the different channels produce
a combined activation, and that the response is initiated
as soon as this combined activation exceeds a criterion
level.

Miller (1982) proposed a general test for the class of
separate-activation models. In short, he has shown that
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the inequality Gx(t) +Gy(t) ~ Gn{t)-where G(t) is the
probability that a response has been made by time t, and
X, Y, and XY refer to conditions with a single-target sig­
nal on channel Cs, a single-target signal on channel Cy,
and signals on both channels Cx and Cy-must be satis­
fied for all values of t if separate-activation models hold.
A violation of this inequality supports coactivation models
and rejects separate-activation models.

If the data satisfy the above inequality, and hence are
consistent with the prediction of the separate-activation
model, it is worthwhile investigating what type of
separate-activation model might be consistent with the
results obtained. In particular, recent papers have been
concerned with the question of whether the detection times
of the two channels are independent (Miller, 1982;
Meijers & Eijkrnan, 1977), and, if independency is re­
jected, whether they are positively or negatively correlated
(Grice, Canham, & Boroughs, 1984; van der Heijden,
Schreuder, Maris, & Neerincx, 1984). The baseline for
this test rests on the following equality:

m(t) = Gx(t)+Gy(t) - Gx(t)*Gy(t) , (1)

where m(t) denotes the predicted cumulative distribution
functions (CDF) for redundant trials if the detection times
are independent. Hence, if m(t) and the observed CDF
Gn{t) coincide, then it is concluded that the detection
times are independent (Grice, Canham, & Boroughs,
1984; Meijers & Eijkrnan, 1977; Miller, 1982; van der
Heiden et al., 1984). Grice, Canham, & Boroughs (1984)
have even suggested a method to estimate the correlation
of the detection times. In essence, this method yields a
negative correlation if Gn{t) > m(t) and a positive corre­
lation if Gn{t) < m(t).

The present work extends the test of Miller (1982). We
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proceed from the additional assumption of a variable base
time for all processes after the response has been decided
on but before it has actually been carried out (e.g., mo­
tor response times). It will be demonstrated that the varia­
bility of the base time influences the outcome of tests us­
ing Equality 1.

In addition it is shown that Miller's inequality can also
beapplied to separate-activation models with variable base
times. We also provide a lower bound for G;o{t). If G;o{t)
falls short of this lower bound, then the whole class of
separate-activation models has to be rejected.

SEPARATE-ACTIVATION MODELS
WITH VARIABLE BASE TIMES

Figure I shows the basic structure of the generalized
separate-activation model. The model assumes two chan­
nels, Cx and Cy , operating in parallel. Each channel is
linked with one and only one source (e.g., visual or au­
ditory mo~ali~ies). Each channel detects the relevant sig­
nal occurnng In the corresponding source. The two chan­
nels, C» and Cy , run into a final one, called the common
channel. The common channel summarizes all the stages
that follow stimulus detection. As soon as processing of
the common channel ends, the subject's response occurs.

Let X (Y) denote the detection time of target stimulus
Sx (Sy) in channel C« (Cy). X and Yare assumed to be
random variables which might be negatively or positively
correlated, or be independent. The random variable B
denotes the processing time (base time) of the common
channel. According to the assumptions outlined, the RT
for sing~e signal trials is given by RTx=X+B if only sig­
nal SX IS presented, and by RTy= Y+B if only S« is
presented. RTxy denotes the reaction time when both sig­
nals ar~ presented, and is given by RTxy=min(X,y)+B.
The minimum of X and Y is denoted by min(X, Y), which,
stated in other terms, is the interim between onset of sig­
nals and initiation of the common channel. Note that
min(X, Y) is again a random variable. Since the mean of
min(X, Y) must be smaller than or equal to either mean
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of X and Y, the separate-activation model predicts faster
RTs, on average, for redundant signal trials than for each
type of single-target trials.

Theorem 1: Let Gxy(t), Gx(t) , and Gy(t) be the (ob­
servable) CDFs of Rxy, s.. and e; respectively. If the
separate-activation model outlined above is true, then the
f~llowing inequality must hold for all values oft irrespec­
tive ofwhether or not the detection times X and Yare cor­
related (positively or negatively);

Gx(t)+Gy(t) ~ Gxy(t) ~ max[Gx(t),Gy(t)]. (2)

(The proof ofInequality 2 is contained in Appendix A. I)

Inequality 2 defines an upper and a lower bound for
Gxy(t), and max[Gx(t),GY(t)] is the maximum value of
the two CDFs Gx(t) and Gy(t) at time t. If the observed
G0t) .is less than this maximum value, then all separate­
activation models have to be rejected. This lower bound
has already been utilized by Grice, Canham, and Gwynne
(1984, pp. 568-569) in order to evaluate distraction ef­
~ects in redundant target trials. The left side of Inequal­
tty 2 puts an upper bound for Gxy(t). If Gxy(t) is greater
tha~ t~e sum of Gx(t) and Gy(t) , then all separate­
acuvanon models can be ruled out. It should be stressed
that this test must hold (1) whether or not X and Yare
dependent, (2) whether or not the base-time variance is
large, and (3) whether or not the detection times are cor­
related with the base-time B; for example, there is some
eVidenc~ that .detectionand motor times are positively cor­
related In a simple RT task (Ulrich & Stapf, 1984). The
left s~de of ~nequality 2 agrees with Miller's (1982) in­
equality. ThIS makes it certain that Miller's inequality can
also be applied to separate-activation models with vari­
able base times.

What can besaid about G;o{t) if the two detection times
X. and Yare independent? The following corollary pro­
vides an answer.

Corollary: If the processing times X, Y, and Bare
stochastically independent variables, then for all values
t, the inequality
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Figure 1. The separate-activation model with a final common stage.
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Gx(t)+Gy(t)-Gx(t) * Gy(t) 2= Gxit) (3)

must hold. (The proof is contained in Appendix B.)
Inequality 3 puts an upper limit on the observed Gxit)

in the case of independent detection times. If the observed
CDFs Gx(t), Gy(t), and Gxy(t) violate Inequality 3, then
all independent-channels-separate-activation models can
be rejected.

Figure 2 summarizes the above testable predictions for
fictitious data. This figure shows two hatched regions,
L (lower region) and U (upper region). U is bounded
above by Gx(t) +Gy(t) and bounded below by
Gx(t)+Gy(t) -Gx(t) * Gy(t), whereas L is bounded above
by Gx(t)+GY(t)-Gx(t) * Gy(t) and bounded below by
max [Gx(t),Gy(t»). For all separate-activation models, the
observed Gxit) must be placed anywhere within U and/or
L. If the processing times are assumed to be independent,
then Gxit) must be placed anywhere within region L.

ILLUSTRATING THE TESTS BY
MONTE-CARLO SIMULATIONS

We conducted extensive simulationsdesigned to demon­
strate the effects of the base-time variance on the empiri­
cal determination of the detection-time correlation. In this
simulation, it is assumed that X, Y, and B are normally
distributed random variables. Approximate normally dis­
tributed random numbers can be generated by using the
method proposed by Box and Muller (1958), as shown
by Equation 4:

Z = [-2 * log(U1)l5 * cos(2 * 1f * U2 ) , (4)

where Z is a normally distributed random deviate with
zero mean and unit variance, and U1 and U2 are indepen­
dent random variables between 0 and I from a rectangu­
lar distribution.

Let ZI and Z2 be a pair of normal deviates generated
by using Equation 4. Then the two random numbers
D 1 =ZI and D 2 = corr *ZI + (l r-corr")" * Z2 represent
a pair of deviates from a bivariate normal distribution with
zero means, unit variances, and correlation coefficient
corr (cf, Abramowitz & Stegun, 1972, p. 953). Each devi­
ate D, ofthe pair (D1>D2 ) can be linearly transformed by
using T, = SDi * Di +M, to obtain a normal distributed
random number To with mean M i and standard deviation
SDi , i = 1,2. The correlation coefficient between T1 and
T2 equals corr, since any linear transformation of random
variables does not change their correlation.

Ten thousand trials were used to simulate the CDF of
RTxy• In each trial, the following steps were performed:
(I) A pair of correlated detection times X and Y were
generated, as outlined above, with means M» and Myand
standard deviations SDx and SDy , respectively. (2) The
smaller value of X and Y was determined; let S denote
this minimum. (3) A normal distributed base-time B with
mean MB and standard deviation SDB was generated. (4) S
and B were added to produce RTxy•

The CDFs of RTx and RTy were obtained in a similar
fashion. For example, to simulate RTx one has to gener­
ate X and B in each trial and add these two random num­
bers. Ten thousand trials were used to simulate Gx(t), and
a further 10,000 trials were used for Gy(t).

Table I summarizes the results for several simulations
with different model parameters. A small base-time vari­
ance was used for all simulations in Part 1 of Table 1,
whereas a large base-time variance was used for simula­
tions in Part 2. The same means, Mx, My, and MB , were
used for all simulations in Table 1. However, one set of
standard deviations (SDx, SDy, SDB ) was used for Part 1,
and a different set was used for Part 2. The standard devi­
ations in each part were adjusted in such a way that, for
ease of comparison and tabular presentation, the result-
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Figure 2. Illustration of the tests for the separate-activation model. Hatched regions (L and U) indicate
permissible values of G;rr(t). These regions can be constructed using Gx(t) and G,{t). See text for a more
detailed explanation.
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Selected Time Points t (msec)

.05 .Il .20 .33 .47 .68 .91 -t

.05 .Il .19 .30 .42 .57 .71 .82 .90 .96 .98

.03 .06 .Il .18 .27 .38 .51 .64 .74 .84 .89

Table 1
Monte Carlo Studies of the Separate-Activation Model

With Correlated Detection Times X and Y

Functions 80 90 100 IlO 120 130 140 150 160 170 180 M SD

Part 1: Small Base-Time Variance

Gx(t) .03 .05 .09 .14 .21 .30 .40 .51 .62 .73 .80 150 36
G,.(t) .03 .06 .Il .18 .27 .38 .51 .64 .74 .84 .89 140 32

The obtained pattern of simulated RTs agrees fairly well
with the pattern of results in a real experimental condi­
tion. "Statistical facilitation" (Rabb, 1962) is also ob­
tained for this generalized version of the separate­
activation model: both means RTx and RTyare always
greater than the corresponding mean of RTxy• One can
observe less "statistical facilitation" in the case oflarge
base-time variance.

Detection-time correlation had a profound effect on
Gxy(t). In both parts of Table 1, Gxy(t) decreased with
increasing corr(X, Y). For example, we obtained
Gn-(140) = 0.90 for corr(X, Y) = -1 in Part 1. As
corr(X, Y) increases, Gn-(140) decreases to 0.53 for
corr(X, Y) = 1. Increasing corr(X, Y) also increases the
mean and the standard deviation of RTxy•

Consider now the two bounds u(t) and l(t). According
to Theorem 1, all Gn-{t)s must be bounded above by u(t)
and below by l(t). As one can see, the resulting regions
in Parts 1 and 2 are quite narrow, suggesting a powerful
test of the separate-activation model. Table 1 shows that
all Gn-{t)s fall within this specified region. This test does
not depend on the magnitude of the base-time variance.

The variance of the base time poses problems for a re­
cent suggestion and application of a method to estimate
the detection-time correlation (Grice, Canham, &
Boroughs, 1984, p. 452; van der Heijden et al., 1984).
Grice, Canham, & Boroughs suggested constructing a
fourfold table from which a phi coefficient or tetrachoric
correlation might be computed using the CDFs of RTx,

RTy, and RTxy. The proportions of responding and not
responding to the two types of signals on single signal
trials provide estimates for the marginals of the table. The
proportion of not responding when both stimuli are present
determines one cell of the table. Since the table has only
one degree of freedom, the remaining three cells can be
filled.

We will illustrate this method using the data of Table 1.
For example, consider the time point t = 150 msec in
Part 1. A value of 0.94 is obtained for Gn-(150) and
corr(X, Y) = -0.75. The corresponding values for
Gx(l50) and Gy(150) are 0.51 and 0.64, respectively.
Now one should use Gn-{t) to compute the desired propor­
tion P(RTx ~ 150 and RT y ~ 150) = 1-Gn-(150) =
1-0.94 = 0.04 of not responding at time t = 150 msec
when both stimuli are presented. This proportion is suffi­
cient to complete the table for estimating the detection­
time correlation. For the numerical example, one com­
putes a phi coefficient of -0.49 and a tetrachoric corre­
lation coefficient of -0.73. As one can see, the direc­
tion and the magnitudeof the correlation coefficientsagree
fairly well with the corresponding correlation coefficient
used to generate the CDF.

Let us now repeat the whole procedure for Part 2. A
value of 0.79 was obtained for GxrtI50) at corr(X,Y) =
-0.75. The corresponding values for Gx(l50) and
Gy(150) are 0.51 and 0.63, respectively. The same com­
putation as before yields a tetrachoric correlation of 0.19
and a phi coefficient of 0.12. This time the estimated
coefficients agree neither in direction nor in magnitude

.30 .48 .68 .90 1.0 1.0 1.0 1.0 1I8 20

.30 .47 .67 .82 .94 .99 1.0 1.0 120 22

.30 .46 .64 .77 .90 .96 .99 1.0 121 24

.30 .45 .61 .74 .86 .94 .97 .99 123 26

.29 .42 .58 .71 .82 .91 .96 .98 125 27

.27 .41 .55 .68 .79 .88 .93 .97 127 29

.25 .37 .51 .64 .76 .84 .91 .96 130 30

.22 .34 .47 .59 .71 .81 .88 .93 133 31

.17 .27 .40 .53 .65 .76 .84 .91 139 32

Bounds*
u(t)
m(t)
l(t)

Gx,.(t)
corr(X,y)

-1.00 .05.10 .19
-0.75 .06.10 .19
-0.50 .06 .11 .20
-0.25 .05.Il .20

0.00 .00.Il .18
0.25 .00.Il .18
0.50 .06.10 .17
0.75 .05.09 .15
1.00 .03.06 .Il

Part 2: Large Base-Time Variance

Gx(t) .02 .04 .08 .Il .18 .27 .38 .51 .63 .75 .83 150 33
G,.(t) .03 .06 .12 .19 .28 .39 .51 .63 .74 .82 .89 140 32
Bounds*

u(t) .05 .10 .20 .30 .46 .66 .90 -t
m(t) .05 .10 .19 .29 .41 .56 .70 .82 .90 .96 .98
l(t) .03 .06 .12 .19 .28 .39 .51 .63 .74 .82 .89

Gx,.(t)
corr(X,y)

-1.00 .05 .10 .17 .27 .40 .55 .68 .80 .88 .94 .98 127 28
-0.75 .05 .09 .16 .26 .39 .54 .66 .79 .87 .93 .97 128 28
-0.50 .05 .09 .16 .26 .38 .53 .66 .77 .86 .93 .96 129 29
-0.25 .05 .09 .16 .26 .37 .51 .64 .75 .84 .91 .96 130 30

0.00 .05 .09 .15 .24 .35 .50 .62 .74 .82 .90 .95 132 30
0.25 .05 .09 .15 .23 .34 .48 .61 .72 .81 .88 .93 133 31
0.50 .04 .08 .14 .23 .33 .45 .58 .70 .80 .87 .92 135 31
0.75 .04 .07 .13 .21 .31 .43 .55 .67 .77 .85 .91 137 32
1.00 .04 .06 .Il .18 .27 .40 .52 .64 .74 .83 .90 140 32

Note-Parameters used in Part 1: Mx = 90 msec, My = 80 msec, Ms
= 60 msec, SDx = 36 msec, SDy = 31 msec, SDs = 2 msec.
Parameters used in Part 2: Mx = 90 msec, My = 80 msec, Ms =
60 msec, SDx = 25 rnsec, SDy = 20 msec, SDs = 20 msec. *The
bounds are u(t) = Gx(t) +G,.(t) , m(t) = Gx(t)+G,.(t)-G.(t) * G,.(t),
and l(t) = max[Gx(t),G,.(t)l. tValues larger than 1.00 are omitted.

ing CDFs of both parts had about equal spread and lo­
cation.

Consider the different aspects within each of the two
parts. The first two rows show the CDFs for RTx and
RTr- These CDFs were used to calculate the three differ­
ent bounds for Gn-{t) according to Theorem 1 and the cor­
rollary. These bounds appear beneath the CDFs of RTx
and RTy. Then the subsequent rows show eight various
CDFs of RT,rr, differing with regard to correlation
corr(X,Y), beginning with corr(X,Y) = -1, and increas­
ing by 0.25 until corr(X,Y) = 1. Finally, it should be men­
tioned that the last two columns contain means and stan­
dard deviations of the corresponding RTs. After
describing the various entries of Table 1, we will discuss
the main results of the simulations.
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with the true detection-time correlation of -0.75. These
computations show that the proposed method of Grice,
Canham, and Boroughs (1984) for estimating the
detection-time correlation works well if the base-time var­
iance is very small; however, it leads to wrong estimates
if the base-time variance is relatively large. The simula­
tions with a high base-time variance reveal a systematic
overestimation of the detection-time correlation coefficient
actually used in the simulation. A mathematical explana­
tion of this systematic bias is given in Appendix C.

This consideration may also help to clarify some
difficulties concerning the explanation of recent results
obtained in a simple letter-detection paradigm (van der
Heijden et al., 1984). Subjects were required to perform
a speeded response if a target letter was presented at either
of two different locations. On single-target trials, only one
letter was presented at either of two different locations,
whereas in redundant target trials, two target letters were
presented at both locations. Their results showed a clear
redundant-signal effect, and the authors favored a
separate-activation explanation after applying Miller's
(1982) test. In a further analysis, the authors investigated
the direction of the detection-time correlation with the
method outlined above. The analysis revealed a "rather
unexpected pattern" (van der Heijden et al., 1984,
p. 582): The observed Gn{t) for redundant signal trials
exceeds the base-line m(t) for small values of t but falls
short of this base line for intermediate and larger values
of t. Hence, negative correlation coefficients were esti­
mated for small values of t and positive ones were esti­
mated for larger values of t. Given our analysis, their
results are consistent with negatively correlated detection
times for all values of t, since Gn{t) may fall short of
m(t) if the detection times are negatively correlated, as
Part 2 of Table 1 shows. That is, if Gn{t) falls short of
m(t), one cannot reject a negative detection-time corre­
lation. Clearly, this interpretation requires that the base­
time variance be relatively large compared with the vari­
ance of the detection-times. However, this requirement
is not well supported empirically (Ulrich & Stapf, 1984;
Wing & Kristofferson, 1973).

CONCLUSION

The present paper considered separate-activation models
with variable base times. It was shown that Miller's (1982)
upper bound Gn{t) ~ Gx(t) +Gy(t) could also be applied
to check this more general model class against coactiva­
tion models. In addition, we provided a lower bound
which may be used, for example, to reveal inhibitory ef­
fects upon RT in redundant signal trials (cf. Ueno, 1977).
The variability of the base time does not influence the out­
come of these two tests.

However, this variability influences the outcome of
more specific questions regarding the dependence of the
detection times: (1) It was shown that the base line,
Gx(t)+Gy(t)-GY(t) * Gx(t), usually used to check in­
dependence of the detection times, can be applied only

if one proceeds from a zero base-time variability.
(2) Estimates of the detection-time correlation are in­
fluenced by the magnitude of the base-time variability.
In general, the detection-time correlation will be over­
estimated if one applies the method suggested by Grice,
Canham, and Boroughs (1984). The degree of overesti­
mation depends largely on the magnitude of the base-time
variability. Accurate estimates result with a zero base­
time variability.
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NOTE
1. The reader should note that the left-hand side of Inequality 2 is

the identical inequality already proved by Miller (1982, p. 253).
However, Miller (1982) did not explicitly state whether or not this ine­
quality was also valid for separate-activation models with a variable base
time. Hence, we tried to make certain that his inequality could also be
applied to models with a variable base time.

APPENDIX A

Proof of the Left-Hand Side of Inequality 2
Since the equation min(X,Y)+B = min(X+B,Y+B) must

hold, we can write

RTxy = min(X,y) + B

= min(X+B,Y+B)

= min(RTx,RTy),



Gx,.(t)

= P(RTx ::S t)+P(RT y ::S t)-P(RTx ::S t and RTy ::S t).

Now we use Miller's (1982, p. 253) argumentation, P(RTx
::S t and RT y ::S t) ~ 0, which yields the prediction

Gx,.(t) ::S P(RTx ::S t) + P(RTy ::S t)

::S Gx(t) + G,.(t).

The proof of the left-hand side of Inequality 2 is complete.

Proof of the Right-Hand Side of Inequality 2
If Gx,.(t) ~ Gx(t) and Gxy(t) ~ G,.(t) is true, then Gx,.(t) ~

max[Gx(t),G,.(t)] must also be true. Hence, we have to prove
each of the two inequalities Gx,.(t) ~ Gx(t) and Gx,.(t) ~ G,.(t)
separately. Take, for example, Gx,.(t) ~ Gx(t):

Above we showed

Gx,.(t) = Gx(t)+G,.(t)-P(RTx ::S t and RTy ::S t), (AI)

which can be rewritten, using conditional probability P(A and
B) = P(A IB)P(B), as

Gx,-(t) = Gx(t)+G,.(t)-P(RTx ::S t I RTy ::S t)G,.(t)

= Gx(t)+G,.(t)[l-P(RTx::S tlRTy::S t)].

Since P(RTx ::S t I RTy ::S t) can maximally be equal to one,
it follows that Gx,-(t) ~ Gx(t) must be true.

In an analogous manner, one can prove that Gx,.(t) ~ G,.(t)
if one substitutes P(RT y ::S t I RTx ::S t)Gx(t) for P(RTx ::S t
and RTy ::S t) in Equation A1. The proof is complete.

APPENDIX B

To simplify matters, we write S for min(X,Y). Thus, RTxy
equals the sum S+B; then the CDF of RTxy is given by

Gxy(t) = P(S+B::St)

= II !s(x)!B(y)dxdy
x+ys/

(BI)

where Fs(t) and !B(t) are the CDF and the density function of
Sand B, respectively. Since S is the minimum of X and Y,

Fs(t) = P(X::s t) + P(Y::s t) - P(X::s t and Y::s r).

It is assumed that X and Yare stochastically independent vari­
ables; hence,

Fs(t) = Fx(t) + F,.(t) - Fx(t)F,.(t) , (B2)

where Fx(t) and F,.(t) are the CDFs of X and Y, respectively.
Inserting Equation B2 into Equation BI yields

I~Fx(t-Y)!h)dY + I~ F,.(t-y)!h)dy

- (Fx(t-Y)F,.(t- y)!8(Y)dy.
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The first two terms on the right side of the last expression are
the convolution integrals (cf. Townsend & Ashby, 1983, pp. 30)
of the sums X+Band Y+B, respectively. Therefore, we can
rewrite the last expression

Gx,.(t) = Gx(t)+G,.(t)-I~Fx(t-Y)F,.(t-Y)!h)dY. (B3)

The corollary states that the following inequality should hold
if X and Yare independent:

Gx(t) +G,.(t) - Gx(t)G,.(t) ~ Gx,.(t).

Inserting Equation B3 in the right-hand side, simplifying, and
rewriting yields

I:Fx(t-Y)F,.(t-Y)!8(Y)dY-Gx(t)G,.(t) ~ 0

I~Fx(t-Y)F,.(t-Y)!h)dY

- [(FX(t-Y)!B(Y)dY] . [!~F,.(t-Y)!B(y)dY] ~ O. (B4)

This inequality is easily shown to be true. To this end, we de­
fine two functions, hx(y) and h,.(y):

[

Fx(t-y) for y «:t, [ F,.(t-y) for y<t,
hh)= h,.(y)=

o otherwise 0 otherwise.

We rewrite Equation B4, using the definitions hh) and h,.(y):

!;hx(y)h,.(y)!h)dy

- [Chh)!h)dY] . [Ch,.(y)!B(Y)dY] ~ O.

Note that the integrals are expectations of the random variables
hx(B) *h,.(B), hx(B), and h,.(B), respectively. (One should note
that any function of B must be again a random variable.) Tak­
ing this consideration into account yields

E[hx(B)h,.(B)] - E[hx(B)] . E[h,.(B)] ~ 0

cov[hx(B),h,.(B)] ~ 0,

where the last expression is the covariance of hx(B) and h,.(B).
Since both hx(y) and h,.(y) decrease with Y, it must always be
true that the covariance of hx(B) and h,.(B) is equal to or greater
than zero. The proof is complete.

APPENDIX C

One outstanding result of the simulations is that the estimates
of the detection-time correlations show a positive bias, that is,
the estimates are always larger than the corresponding correla­
tion coefficients used in the simulations. This effect is especially
salient in the case of high base-time variance. This may be a
little surprising, since, intuitively,one might expect that an added
random variable simply attenuateswhatever detection-timecorre­
lation coefficient was used in the simulation. Since this effect
turns out to be systematic, a mathematical explanation of it may
be helpful to correct one's intuition.

For a simple explanation, the reader should first notice that
the relation RTxy = min(X,y)+B = min(X+B,Y+B) =
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min(RTx,RT -) must hold, irrespective of whether or not X and
Yare correlated and whether or not the variance of B is large.
This relation shows that RTxy can actually be conceived as the
minimum of RTx and RTy • Next, since the estimation proce­
dure of Grice, Canham, and Boroughs (1984) utilizes RTs, the
obtained estimates evaluate the correlation of RTx and RT y in
redundant signal trials instead of the desired correlation of X
and Y. It is obvious, then, that corr(RTx,RTy) > corr(X, Y) if
var(B) > 0, as the following mathematical analysis shows:

To keep the analysis simple, we assume equal variances of
X and Y, that is, var(X) = var( Y). Now the correlation of RTx
and RT y is given by

cov(RTx, RTy)

SD(RTx ) SD(RT y ) .

Since RTx = X+B, RT y = Y+B, and var(X) = var(y), we have

cov(X+B,Y+B)
corr(RTx,RTy ) = var(X+B) .

The numerator of the last expression can be rewritten by using
the distributive property of covariances (see Ulrich & Stapf,
1984, p. 557) as cov(X+B,Y+B) = cov(X,y) + cov(X,B) +
cov(B,y) + var(B). Since the base time, B, was uncorrelated
with either detection time in the above simulations, we have
cov(X+B,Y+B) = cov(X,y) + var(B) and var(X+B) = var(X)
+ var(B). Substituting these results into the last expression
yields:

cov(X,Y) + var(B)
corr(RTx,RTy) = (X) (B)'var +var

Since var(X) > 0, we can divide the numerator and the denomi­
nator of the above fraction by var(X), yielding

corr(X, Y) + var(B)/var(X)
corr(RTx,RTy

) = I+var(B)/var(X) . (Cl)

It can beeasily shown, using Equation Cl , that corr(RTx,RT-)
increases with var(B) if all other things are kept equal, and hence
no attenuation of corr(X, Y) will result if the base-time variance
increases.

Next we will show that corr(RTx,RT-) > corr(X, Y) if
var(B) > 0:

corr(RTx, RTy ) > corr(X,Y).

Inserting Equation Cl for corr(RTx,RTy ) yields

corr(X, Y) + var(B)/var(X)
1+ var(B)/var(X) > corr(X, Y).

After rearrangement and cancellation, we arrive at
corr(X, Y) < 1, showing that the assumed direction of the in­
equality sign must hold.

In sum, the mathematical analysis shows that (1) corr(X,y)
is overestimated if one utilizes RTs for its estimation and (2) that
the degree of this bias depends on the relative magnitude of the
base-time variance (cf. Equation Cl).

(Manuscript received June 18, 1985;
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