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Multimodal signal detection: Independent
decisions vs. integration

ROBERT M. MULLIGAN and MARILYN L. SHAW
Rutgers-The State University, New Brunswick, New Jersey 08903

The pooling of information from simultaneous, spatially congruent auditory and visual
stimuli is examined in a signal detection task. The paradigm used permits discrimination
among a number of models of the decision mechanisms involved in processing multiple com­
ponent stimuli. Parameter-free predictions are presented for the weighted integration model
and for three versions of the independent decisions model. The data support an independent
decisions model of the bimodal detection process in which attention is shared equally between
modalities.

The manner in which observers combine informa­
tion from multiple sources has been a traditional
topic of information processing research. Green and
Swets (1966), for example, have discussed results of a
number of experiments investigating the pooling of
information from multiple observations, including
those using multiple component signals, those em­
ploying multiple observer teams, and those using re­
peated stimulus presentations. The present paper ex­
amines this problem in a signal detection experiment
using simultaneous inputs to two sensory modalities
as the multiple sources of information.

Several formal models have been developed in an
attempt to describe the decision processes involved in
pooling information from several sources. Two
major classes of models have emerged, independent
decisions and integration. According to the inde­
pendent decisions model, a separate detection decision
is made about each source of information and the
results of these decisions are then combined to make
a judgment. For example, in a signal detection para­
digm, subjects report the presence of a signal when­
ever there are a sufficient number of positive detec­
tion decisions.

In the integration model, the observer sums the
sensory input values at a predecisional stage of pro­
cessing and then reports the presence of a signal if
this aggregate value exceeds its criterion. Thus, the
final decision is based on the sum of the multiple ob­
servations rather than on an evaluation of several
independent decisions.

A good deal of data has been reported, from both
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visual and auditory information processing experi­
ments, in support of each of these two models. How­
ever, much of these data are from studies that have
considered only one of the alternative models; for ex­
ample, Burns (1979), Gardner (1973), Rumelhart
(1970), Shaw and Shaw (1977), and Shiffrin and
Geisler (1973) fit their data to an independent model,
while Kinchla (1977) and Kinchla and Collyer (1974)
found evidence for an integration model. From the
relatively few studies in which data have been compared
with both models (e.g., Green, McKey, & Licklider,
1959; Green & Swets, 1966; Wickelgren, 1967), some
evidence has been generated for each. Shaw (Note l)
has recently reported strong evidence in favor of inde­
pendent decisions based on experiments in which the
multiple-component stimuli consisted of letters pre­
sented at two locations. In two experiments, she tested
predictions of an integration model and three versions
of the independent decisions model. The results sup­
ported independent decisions, with some subjects per­
forming according to a version in which attention is
shared equally between locations on each trial and
others according to a version in which, on a given trial,
attention is devoted exclusively to one of the loca­
tions. All of the models described by Shaw, and their
predictions, are presented in greater detail below.

Relatively few experiments have examined the
pooling of information across sensory modalities.
The design used in these studies is fairly consistent.
Signals are presented in three types of trials: unimodal
auditory, unimodal visual, and bimodal trials on
which auditory and visual signals of comparable
detectability are presented simultaneously.

Although the designs are similar and all the studies
have shown a gain in detectability of bimodal relative
to unimodal signals, the models to which the data
have been fit and the conclusions drawn show little
agreement. Eijkman and Vendrik (1965) and Fidell
(1970) fit their data to integration models in which
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In Pa + In P, =In Pn + In Pb. (3)

Furthermore, after logarithmic transformation, the
following equality can be derived:

Two predictive equations can be derived from the
model. First, it can be shown that (Shaw, Note 1):

(2)

unimodal visual trial. For each random variable there
are two probability distributions, one for signal plus
noise trials and one for noise-onlytrials. In the models
described below, the only assumptions made regard­
ing these four distributions is that they have finite
means and variances.

The mixture models. The second version of the in­
dependent decisions model holds that processing is
characterized by a mixture of separate rules for al­
locating attention to each modality. On a given trial,
the subject attends primarily to one modality or the
other in a probabilistic fashion. The criteria are as­
sumed to differ as a function of which modality is
given primary attention. The parameters of Xaj and
Xvj may be the same or different. Overall perfor­
mance is a weighted mixture of that which would be
expected if each separate rule was used exclusively.
Two types of mixture model will be considered below.

The Independent Decisions Model
In a multimodal detection task, this model states

that an independent decision is made for each modality
about the presence of a signal. In each case, the
decision will be positive if the value of the random
variable, Xij, exceeds the decision criterion, Pi, for
that modality. The overall decision rule is inclusive­
disjunctive; that is, if either decision is positive, the
subject responds "yes" and if both are negative, the
response is "no."

Three different versions of the independent decisions
model have been developed (Shaw, Note 1): the sharing
model, the Type 1 mixture model, and the Type 2
mixture model. Each of these three versions generates
a set of testable predictions.

The sharing model. In this version of the inde­
pendent decisions model, the subject is seen as dividing
or sharing attention between modalities on each trial.
The proportion of attention assigned to each modality
and the decision criteria, Pa and Pv, are assumed to
remain constant across trials. Thus, Pi, the condi­
tional probability of a "no" response given Si, is
simply the product of the probabilities that each of
the random variables will not exceed its corresponding
criterion:

In the continuous view of the detection process,
each stimulus presentation is assumed to evoke a sen­
sory response that can be represented by a random
variable. In the present context, two random variables,
Xaj and Xvj, which refer to the internal representation
of auditory and visual modalities, respectively,
will be designated. The second subscript, j, can take
on a value of "0," indicating a noise-only trial, or
"1, " indicating a signal plus noise trial. For example,
the pair Xao and Xvi represent the valuesof the random
variables for the auditory and visual modalities on a

THE FORMAL MODELS

processing on auditory and visual channels is inde­
pendent. Brown and Hopkins (1967) reported data
from a bimodal detection task which supported a
type of independent decisions model, although, as
Morton (1967) has pointed out, the model they derived
lacks generality. Finally, Craig, Colquhoun, and
Corcoran (1976) obtained results supporting neither
an integration model nor either of two threshold­
independent decisions models. Their use of a vigilance­
type task (a priori signal probability was only .05)
and the averaging of data over 18 subjects, however,
make Craig et al. 's results difficult to evaluate and
compare with those of other investigations.

To summarize, although there is agreement that
auditory and visual processing is not correlated in
a bimodal detection task, these few studies have not
been in agreement as to which model best describes
the decision processes involved in combining infor­
mation from the two modalities. None of these
previous studies has compared continuous versions
of the independent decisions and integration models
in the same experiment. Using the paradigm described
below, these models will be tested in the present study.

Before formally stating the independent decisions
and integration models to be tested here, it will be
useful to outline briefly the paradigm to be used.
The task employed is a variant of a general paradigm
described by Shaw (Note 1). All signals are presented
against a background of independent auditory and
visual noise. On each trial, the stimulus, Si, consists
of either a signal-plus-noise pattern of noise only.
These two possibilities, combined with the two
modalities, provide for four different stimulus pat­
terns. Accordingly, the subscript "i" can take on the
value "a," "v," "b," or "n" for unimodal auditory,
unimodal visual, bimodal, and noise-only trials,
respectively.

The dependent variable, Pi, represents the con­
ditional probability of a "no" response given the
stimulus pattern Si. Thus, P, is the probability of a
"no" response given that a visual signal has been
presented. The probability of a "no" response is
used in order to simplify the expression of predictions.
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The Type 1 mixture model. In this model (hereafter
called mixture 1), information on each trial is ob­
tained from only one modality. If the probability
that attention is directed to the auditory modality
equals a, and the corresponding probability for visual
modality equals (1- a), then Pi for this model is:

If the subjects are instructed to attend to only one
modality, all three models make the same predictions.

The three independent decisions models and their
predictions in terms of Pi are summarized in Table 1.
The characteristics and predictions of the weighted
integration model, to be discussed next, are also given.

The internal representations in each modality are as­
signed weights, "w" and "1 - w" in the two modality
cases. The subject is assumed to respond "no" when­
ever Y falls below some criterion value, so that:

If the probability distributions of the internal
random variables are assumed to be Gaussian, as
they have been by Kinchla (1977; Kinchla & Collyer,
1974), then the weighted integration model predicts
additivity of the transformed response probabilities.
The transformation called for by this assumption is
the inverseGaussian, commonly known as the z score.
Thus, the integration model makes the following
prediction regarding response probabilities:

(9)

(8)

Pi =P(Yi < fJ).

The Weighted Integration Model
This version of the integration model, introduced

by Kinchla and Collyer (1974), allows for the pos­
sibility that information from separate sources might
be differentially weighted in the integration process.
Translated into the multimodal detection situation,
the model holds that the detection decision is not
based directly on the values of the internal random
variables generated in each modality. Rather, these
values are summed to produce the decision random
variable, Vi:

(5)

where fJi is the criterion for a modality when attention
is directed primarily to that modality and fJ{ is the
criterion when attention is directed primarily to the
other modality.

The inequality in Equation 2 also holds for the
Type 2 mixture model. This model differs from the
sharing model, however, in that the logarithms of the
response probabilities do not sum as in Equation 2;
that is, for the Type 2 mixture model:

Pi =aP(Xaj < fJa)p(Xyj < fJ~)

+ (1- a)P(Xaj < fJ~)P(XYj < fJy), (6)

Pi =aP(Xaj < fJa) + (1- a)p(Xyj < fJy). (4)

The Type 2 mixture model. This model differs
from the Type 1 mixture model in that some infor­
mation from the unattended modality is used in the
detection decision. Attention is directed primarily to
one modality with probability a and to the other
modality with probability 1- a, such that the con­
ditional probability of a "no" response is now:

In this model, the unattended modality has no influ­
ence on the response probabilities.

From Equation 4, it can be shown that:

As has been noted previously (Shaw, Note 1), the
predictions of all three independent decisions models
are free of any effects of attention on the parameters
of Xaj and Xvj or on their corresponding decision cri­
teria. Also, these predictions hold only when subjects
are required to report signals from both modalities.

(10)

where z is the inverse Gaussian or z transformation
of the probability of a "no" response, Pi. It should
be noted that Equation 10 holds only when the
variances of the signal and noise distributions are
equal.

Table 1
Contrasting Predictions for Probability of a "No" Response

Prediction

Model Equation 2 3 4

Sharing Model Pi =P(Xai < l3a)p (x Yi < l3y) N y y N
Type 1 Mixture Model Pi =aP(Xai < l3a) + (l - a)P(XYi < l3y) y N N N
Type 2 Mixture Model Pi =aP(Xai < l3a)P(X yi < l3'y)+ (1 ~ a)P(Xai < l3'a)P(Xyi < l3y) N N y N
Weighted Integration Pi =P(wXai + (l ~ w)XYi < 13) N N N Y

Note-N =no; Y =yes. Prediction 1: Pa + Pu =Pn + Pb· Prediction 2: lnPa + lnPv = InPn + InPb· Prediction 3: Pa + Pv < Pn + Pb.
Prediction 4: za + Zv = zn + Zb.
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TESTING MODEL PREDICTIONS

Predictions of the four models are summarized in
Table 1. Three of the models predict additivity of
response probabilities, each under a different trans­
formation: logarithmic for the sharing model, identity
(no transformation) for the Type 1 mixture model,
and the inverse Gaussian for the weighted integration
model. These predictions are graphically illustrated
in Figure 1.

The Type 2 mixture model is different from the
others in that it does not predict additivity under
any transformation. This model will be supported if,
in the obtained data, the sums of the logarithms are
not equal and if P, +P, < Pn +Pb.

By generating predictions of the models at a num­
ber of accuracy levels, Shaw (Note 1) has shown that
the models are most readily discriminated at high
accuracy levels, that is, when Pn is high (.85 to .95)
and Pj, is low (.05 to .15). Accuracy levels within

EXPERIMENT

This experiment was designed to test the model
predictions described above in a multimodal detec­
tion situation. In selecting the type of stimuli to be
used, consideration was given to creating a bimodal
signal condition in which optimal combinations of
auditory and visual information could be realized.
One potentially important factor, not considered in
previous studies of bimodal effects, is the spatial
relationship of the component stimuli. Previous studies
of this sort have presented the auditory signal over
earphones so that this signal's spatial location was
not typical. This is in contrast to the visual signal
which has been presented under more typical con­
ditions, that is, at a specific spatial locus at some
distance from the observer. In the present study,
auditory signals were presented via a loudspeaker
placed adjacent to the visual stimulus so that the two
shared roughly the same spatial locus. An auditory
frequency of 500 Hz was chosen to facilitate localiza­
tion .

In addition, these spatially congruent stimuli were
peripherally (40 deg azimuth) rather than centrally
located. The rationale for this decision involved the
fact that, for the visual system at least, the sensory
mechanisms that respond maximally to peripherally
located stimuli are specialized for detection, as con­
trasted with those sensitive to centrally located (foveal)
stimuli, which are specialized for pattern recognition
(e.g., see Schneider, 1969; Weiskrantz, Warrington,
Sanders, & Marshall, 1974). Since this peripherally
sensitive system is maximally sensitive to changes in
stimulus energy, an intermittent stimulus, consisting
of a string of four 125-msec bursts, was used rather
than a single burst of constant intensity.

In terms of the models in question, it might be
argued that these spatially coincident bimodal stimuli
would favor integration of information or facilitate
correlated processing of auditory signals. This type
argument, however, depends upon having fairly
specific knowledge of the neural mechanisms involved
in combining sensory information. Although there is
some evidence from sensory physiology for the exis­
tence of bimodal neural mechanisms at the single-cell
level (e.g., Gordon, 1972), the relative contribution
of these cells to stimulus detection is undetermined.
We can say, at least, that these spatially specific stim­
uli are more typical of those that might be encountered
routinely than are the stimuli that have been used in
other studies.

this range were achieved in the present experiment by
adjusting stimulus intensity.
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Figure 1. Additivity of transformed response probabilities
predicted by three models.

Method
Subjects. Two male and two female Rutgers University under-



MULTIMODAL SIGNAL DETECTION 475

.·i/Zurl' 2. Temporal seqaence of trial events: (I) warnin/Z/fixation
interval. (2) si/Znal interval. (3) response/feedback interval.

SIGNAL -llJUlIlL.....- _
2

consisted of four 125-msec pulses of the 5OQ-Hz sinusoid embedded
in a white noise background; a visual trial (Sn) that consisted of
four 125-msec pulses of a lamp (driven by one channel of the
tachistoscope) and a constant background light (provided by a
lamp driven by the second channel); and a bimodal trial (~), in
which both the light and the sound signals were presented
simultaneously.

The auditory and visual noise sources were on continuously
throughout each block of trials. The audio white noise was
maintained for all subjects at 58 dBA measured at the position
of the observer's head (Briiel & Kjaer, Type 2203 sound-level
meter). The background luminance level of the 10-cm' trans­
illuminated surface was approximately 1.2 log fL for all observers
(Salford Electrical Instruments exposure photometer). Measured
intensity of the signal plus noise for the four observers was
58-59 dBA for the audio stimulus and 1.2-1.3 log fL for the light
stimulus. Because our primary concern was with having observers
achieve a desired level of performance rather than with determining
sensitivity in any absolute sense, precise measurement of stimulus
energy levels was not crucial. The chosen stimulus intensities were
periodically monitored, however, to assure their reliability.

Each 6O-90-min session contained three to five blocks of 100
trials. Except for the first three practice blocks, trials were always
presented heteromodally; that is, the three trial types were randomly
mixed within the block. The probability of signal occurrence was
.6, with Sa' Sy, and Sb trials being equiprobable. Noise-only trials
(Sn)occurred with a probability of .4.

Observers were informed of the a priori stimulus probability
schedule. Each observer was seated in a chair directly facing the
red warning-fixation light and was instructed to orient his or her
head toward and fix his or her gaze upon this light while
focusing attention on the stimulus array in the periphery. The
importance of maintaining head orientation and eye fixation was
stressed repeatedly and was visually monitored by the experimenter.
On each trial, the observer was required to report whether or not
a signal had occurred and whether it was a light, a tone, or both.

After screening for normal vision and hearing, each observer
served in four practice sessions (at least 1,200 trials) before the
experimental data were collected. During the first three practice
sessions, signal energy in each modality was gradually decreased
until performance approached the desired level. When necessary,
bonus money was allocated according to a payoff matrix in order
to shift the observer's criterion.

Data was collected in two subsequent sessions, each consisting
of three blocks of 100 trials for each of the three observers (600
total trials), and four blocks of 100 trials for the fourth (800
total trials). Each session began with 50 warm-up trials of gradually
increasing signal intensity and included an additional 20 warm­
up trials at the beginning of the second and third (and fourth)
blocks.

Statistical aDalysis.The response probability data were analyzed
using statistics, described by Shaw (Note I), which test the predic­
tions of the models described earlier. In the case of the Type I
mixture model, which predicts additivity of response probabilities
under the identity transformation, the appropriate test of the null
hypothesis is:

(II)

3l'---__~ _

Pn+f\-Pa-Py
Z=

WARNINGgraduates served as subjects. All had normal or near-normal
acuity in each eye. Their auditory thresholds for .125-8.0 kHz
were within 10 dB of audiometric zero in each ear (International
Standards Organization, 1964). Also, none of the subjects had
any apparent visual or auditory deficit or asymmetry which might
impair perception of stimuli presented in the spatial periphery.
Each was paid $2.50/h plus a variable. small incentive bonus for
correct responses.

Apparatus. Pure tone signals, generated by an audio oscillator
(Hewlett-Packard, 200AB), were shaped by an electronic switch
(Grason-Stadler, 8290) and interval timer to provide a "signal"
that consisted of four 125-msecbursts of a 500-Hz tone (250-msec
repetition period, 500,70 duty cycle, IO-msec rise-decay time). The
pulsed signals were then directed through an amplifier (Advent,
301), attenuator (Hewlett-Packard, 3500), transformer, and a
mixing network in which they were added to a 20-kHz low­
pass noise (Grason-Stadler, 455C) before being delivered through
a KLH Model 12.5 loudspeaker.

The audio signal was split at the amplifier and directed to
a voice-operated relay. Relay closure triggered the lamp timer
and driver unit of a Scientific Prototype Model 800F two-channel
tachistoscope, permitting simultaneous onset of light and sound
signals. The tachistoscope was programmed so that one channel
remained on continuously (providing "visual noise") and the
second channel was driven remotely by the audio signals. The
timer of this later channel was set at 125 msec so that the
light and tone pulses would be equal in duration. Separate
switches in the audio and lamp circuits permitted the experi­
menter to arrange unimodal or bimodal signal presentation before
each trial.

With the exception of the transducers, all of these components
were contained in a soundproof control room. The lamps and
loudspeakers-the bimodal stimulus array-were placed in the ob­
server's room, an adjacent 2.5 x2.1 m soundproof chamber
(Industrial Acoustics Corporation). The lamps were mounted in
a 26 x 26 x 20 cm box with a 10x 8 ern opening at the front.
A piece of white Plexiglas covered the opening, creating an area
of uniform luminance which subtended a visual angle of 2.8 deg
at the position of the observer, 2 m away.

The loudspeaker was mounted behind a 1O.2-cm-diam hole in
a 15x 15x 15 em enclosure as described by Gardner (1968). The
lightbox was placed on top of the speaker, which was mounted
on a shelf projecting from a corner of the observer's room.
Adjustable shelf brackets allowed the bimodal stimulus array to
be adjusted vertically to approximate ear-eye level for each ob­
server. A 28 x 34 cm piece of black plastic foam speaker grill
(2.5 em thick) covered the front surface of the speaker and light­
box, giving the illuminated area a grainy, textured appearance.

A small red warning-fixation light was mounted on the wall
of the booth directly opposite the observer's chair. With the ob­
server orienting toward and fixating on this light, the stimulus
array was located at 40 deg azimuth. Timing of the fixation
light and other events in the trial sequence was controlled by
a series of internal timers (Hunter, IIIC).

Procedure. The sequence of trial events is illustrated in Figure 2.
Each trial began with the onset of the warning-fixation light
located at 0 deg azimuth. One second later, the l-sec observation
period began. On signal trials, the observation period contained
a string of four 125-msec signal bursts. Offset of the warning
light signaled the beginning of a 5-sec period during which ob­
servers made their verbal responses and, on practice trials, received
feedback.

The observer's task was to indicate, by responding verbally,
the presence or absence of a signal during the observation period.
The observer's responses were transmitted by an intercom and
recorded by the experimenter. During the practice sessions and
warm-up trials, partial feedback ("correct" or "incorrect") was
provided via the intercom after each trial. For all sessions. feed­
back, in the form of summary statistics, was available at the
end of each block of 100 trials.

Three types of signals were presented: an auditory trial (Sa) that
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DISCUSSION

Table 2
Summary Statistics for Three Models

For a detailed discussion of the derivation of these statistics see
Shaw (Note I).

The conclusions of Eijkman and Vendrik (1965)
and Fidell (1970), that performance in a bimodal
detection task is best described by an integration
model, are not supported by our data. When accuracy
levels are sufficiently high, as they were in the pres­
ent study, to allow a comparison of the independent
decisions and integration models, the independent
decisions model is shown to be a better predictor of
performance. The generality of this result is, of course,
limited somewhat by the rather specific stimulus con­
ditions of the present experiment. Although we have
no evidence suggesting that the results are specific
to these particular conditions (in fact, a similar ex­
periment using a single l00-msec stimulus rather than
a string of four pulses yielded the same results),
replication with stimuli at 0 deg azimuth or at dif­
ferent spatial loci would be a worthwhile endeavor.

The results complement those from Shaw's two vi­
sual search experiments related earlier (Shaw, Note 1),
suggesting that similar decision processes are used to
combine information from the component stimuli in
these two situations. Shaw's results indicated that
some observers performed according to the predictions
of the sharing model and others performed according
to those of the Type 1 mixture model. The fact that
all observers in the present study performed in ac­
cordance with the same model may indicate that
attention and decision processes are more uniform
with these particular stimuli than in the multiple
location task. Data from several additional subjects
would be needed to verify this. In any case, the
results do demonstrate that the paradigm and theo­
retical framework presented by Shaw provide a useful
means of investigating other situations involving
multiple sources of information.

Evidence favoring the independent decisions model
of pooling information from multiple sources has
emerged from other paradigms as well. One example
comes from the spatial frequency view of visual pat­
tern perception (e.g., Blakemore & Campbell, 1969),
in which the various spatial frequency channels can
be viewed as a set of independent information sources.
The manner in which information from component
spatial frequencies is combined in a detection task
has been examined by Graham (1977) and by Sachs,
Nachmias, and Robson (1971). The independent
decisions model, referred to as the probability
summation model in the spatial frequency literature
(Graham, 1977), has generally provided a better ac­
count of two-interval forced-choice data than has the
integration model.

Other evidence for independent decisions as a
strategy for combining multiple sources of informa­
tion comes from a decision-making study employing
more complex stimuli (Shaw & Cantor, Note 2).
Subjects were asked to decide on the basis of the
values of two sources of information-a weather

(J 2)
Stotal

In 1\ + In 1\ -In Pa-In Pv
Z =

Probability of a z Score

Sub-
"No" Response

Shar- Mix- Inte-
ject Ph Pa Pv Pn ing ture 1 gration

1 .08 .38 .37 .90 1.90* -3.29t 1.98**
2 .08 .26 .35 .90 .58 -5.04tt 3.14t
3 .06 .30 .22 .91 .56 -7.03tt 4.0ott
4 .15 .42 .34 .92 .17 -5.04tt 4.46tt

The results strongly favor the independent decisions
sharing model as a description of how information
from simultaneous auditory and visual inputs is com­
bined in a detection task. Data from three of four
subjects soundly rejected the other three models con­
sidered. The fourth subject's data, although some­
what less incisive, also supported the sharing model.

Note-A significant z score for a given model is evidence against
that model. Rejection of all three models tested above would
indicate possible support of the Mixture 2 model. For probabili­
ties, b = signal in both, a = auditory signal, v = visual signal, and
n = no signal. *p < .10. **p < .05. i p < .01. tt» < .001.

where Stotal is the standard deviation of the numerator of the
right side of Equation 12.

The weightedintegration model predicts additivity of the response
probabilities under the z (inverse Gaussian) transformation. The
appropriate statistic in this case is:

Results
The data and summary statistics for the four ob­

servers are presented in Table 2. A z score whose
absolute value exceeds 1.96 indicates rejection of the
model in question at p < .05.

Data from Observers 2, 3, and 4 firmly support
the sharing version of the independent decisions model.
Subject 1's data also rejected the null hypothesis for
the sharing model (p < .05) but did not distinguish
between the sharing model and the integration model.

where Pi is the sample estimate of the true value of Pi and Stotal
is the estimated standard deviation of the numerator of the right
side of Equation 11.

For the sharing model, which predicts additivity under the
logarithmic transformation. the appropriate statistic is:



prediction and a prediction of hotel availability­
whether or not to visit a particular city. In a rough
parallel to a signal detection paradigm, the authors
found that subjects combined information from the
two sources according to the independent decisions
model. One goal of our subsequent research will be
to investigate, by examining other situations in which
information from several sources is pooled, the ap­
parent pervasiveness of the independent decisions
strategy.

Our discussion of the various decision models
presented in this paper has assumed that the probability
distributions of the internal random variables are in­
dependent. It is also conceivable that the random
variables generated by each modality are correlated.
The effects of this possibility on predictions made by
the weighted integration model and the sharing model
have been considered previously (Shaw, Note 1). It
can easily be shown that the predictions made by the
weighted integration model are unchanged by the
degree of correlation between auditory and visual
signals, assuming that the signal and noise distribu­
tions have equal variances. If these variances are
unequal, the predictions of additivity of the trans­
formed response probabilities will not hold.

Correlation between the internal random variables
does change the additivity predictions of the inde­
pendent decisions sharing model. If it is assumed that
the joint distribution of the random variables Xaj
and Xvj is bivariate normal, then, with nonzero cor­
relation between the variables, it can be shown that
the response probabilities are additive under the
identity transformation. The results, in this case,
would be the same as those predicted by the Type 1
mixture model.

The effect of correlated signals on the predictions
of the mixture models is more intuitive. With the
Type 1 mixture model, because one modality is being
completely ignored, a correlation between modalities
will have no effect on the response probabilities. For
the Type 2 mixture model, the effect of noninde­
pendence will be a function of how much informa­
tion from the "unattended" modality is utilized.
The predictions will tend to resemble those of the
Type 1 mixture model, however, since, as attention
to the secondary modality increases, the Type 2
mixture model increasingly resembles the sharing
model, which, with correlated signals, yields predic­
tions identical to those of Type 1 mixture model.

Data from the present experiment resembles neither
that predicted by the weighted integration model nor
that predicted by the Type 1 mixture model. The
possibility that the random variables for the auditory
and visual signals are correlated, therefore, is unlikely.
Although there is substantial evidence that visual and
auditory sensory inputs are combined at several points
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in the nervous system, the present data indicate that,
in a bimodal detection experiment, these two modalities
act as independent sources of information. This re­
sult was obtained in the present experiment in spite
of the spatial coincidence of the component stimuli.

REFERENCE NOTES

I. Shaw, M. L. Attending to multiple sources of information.
Manuscript accepted pending revision.

2. Shaw, M. L., & Cantor, N. Personal communication, 1980.
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