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Loudness and loudness discrimination
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A model is developed which holds that pure-tone intensity discrimination and suprathreshold
loudness judgments are based on the same sensory representation. In this model, loudness
is a power function of sound intensity. When two tones are presented sequentially, each gives
rise to a loudness value along the sensory continuum. In intensity-discrimination experiments,
threshold is reached when the loudness difference between the tones exceeds a criterial value.
For suprathreshold presentations of tone pairs, judgments of loudness differences are based
on the loudness difference between the two tones. The model is shown to accord well with

data from both classes of experiments.

Fechner proposed, in 1860, that the increment in
sensation corresponding to a just noticeable difference
(jnd) could be used as a unit of sensation. Therefore,
if one were to start at threshold and mark off suc-
cessive jnds, each jnd would increment the sensation
value (S) by the same amount. According to this for-
mulation, then, the sensation value of a stimulus is
directly proportional to the cumulative jnd value;
that is, if stimulus X is n jnds above threshold, its
sensation value is

S = ¢n, 0}

where c is a scale constant corresponding to the choice
of unit sensation. To relate sensation to intensity,
Fechner seized upon Weber’s law (Al =kI, where I is
the intensity of the standard stimulus, k is a constant
of proportionality, and Al is the increment in inten-
sity necessary to evoke a jnd in sensation). Using
Weber’s law, it can be shown (e.g., Falmagne, 1974)
that the number of jnds above threshold is

n = alog(I)+b. (2)

By simple substitution, then, we arrive at Fechner’s
law, namely,

S = a’ log(I)+b’, %)

wherea’ =acand b’ =bc.
The results of a large number of studies using
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direct scaling methods (see Marks, 1974, or Stevens,
1975, for a review) have yielded power functions re-
lating magnitude estimates to physical intensity, sug-
gesting that a power law,

S =c'Im, @

might be a more appropriate choice to describe the
relationship between sensation magnitude and inten-
sity (¢’ and m are constants). The power-law formu-
lation for loudness has also been found to hold for
category estimation (Marks, 1968), judgments of
loudness differences and similarities (Parker &
Schneider, 1974), and paired comparisons of loud-
ness differences (Schneider, Parker, & Stein, 1974).
Thus, the result of Fechnerian integration (using
Weber’s law to describe the discrimination function)
differs markedly from the results obtained using the
scaling techniques mentioned above. This has led
many investigators to abandon Fechner’s law.

If Fechner’s law is incorrect, it implies that either
his assumption (jnds are units of sensation) is incor-
rect or Weber’s law is wrong. Stevens (1962), for one,
has contended that Fechner’s assumption is incor-
rect. He argues that a just noticeable increase in stim-
ulus intensity induces not a constant increment but,
rather, a constant proportional increase in sensation.
This latter assumption, combined with Weber’s law,
will yield a power function representation for sensa-
tion. However, the results of a number of modern
psychophysical studies (cited below) have shown that
Weber’s law is in error. Therefore, it is still possible,
as Falmagne (1974) has pointed out, that Fechner’s
assumption is consistent with a power-function rep-
resentation of loudness. Below we outline and test
three models that potentially can resolve the conflict
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between Fechner’s idea and Stevens’ power law.
These three models were originally formalized by
Falmagne (1974).

POWER FUNCTION
DISCRIMINATION MODELS

In the usual Fechnerian model, the sensory repre-
sentation is obtained from the discrimination data.
For the three models considered here, we will reverse
that order; that is, we will try to predict the discrim-
ination data assuming that a power function governs
loudness—L = (I/1,)™, where I is sound intensity, I,
is the reference sound intensity (10'* W/cm?), and
m is a constant.'

Model 1. Loudness Difference

If two sound intensities are presented in a discrimina-
tion paradigm (such as a two-alternative forced-choice
procedure), we assume that the probability of a correct
response, p(C), is a function of the extent to which the
tones differ in loudness, that is, p(C) = f(L; — L;), where
f is a monotone increasing function for .5 < p(C) < 1.
If loudness is a power function of intensity, a simple
substitution yields

p(C) = fI(1/1)™ = (§;/1,)™]. &)

In defining threshold, a constant response criterion is
usually employed; that is, threshold is reached when
p(C) =p;, where p; is some criterial probability value.
Since f is monotone increasing, we can solve Equa-
tion 5 for the value of (Ii/1o)™—(I;/Io)™ such that
fI(Li/Io)™ - (I;/15)™] = p. Let that value of (Ii/Io)™
—(I;/15)™ be called the threshold loudness difference
(AL;). The model states that threshold is reached when
some criterial loudness difference, AL, occurs.

Model 2. Loudness Ratio with Additive Constant

Rather than assuming that discrimination is based on
loudness differences, we could equally well assume that
it is based on loudness ratios, that is,

PO = e{l(1i/1)™ +KI/[(1;/1)™ + K]}
= h{log[(1;/1,)™ + k] - log[(1;/1,)™ +KI}.  (6)

The constant, k, is included to give greater generality
to the model and to permit estimation of the exponent,
m. In this model, threshold is reached when p(C)=p;,
our criterial probability value. Again, h is monotone
increasing. Let AR, be the value of {log[(Ii/I;)™+k]
~log[(I;/1,)™ +k]} for which h{log[(l;/1o)™ +k] -
log[(Ij/15)™ +k]} = p,. This model states that thresh-
old is reached when some criterial loudness ratio, AR,,
OcCcurs.
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Model 3. Loudness Ratio

Model 3 is the same as Model 2 without the additive
constant, k. Hence,

p(C) = h(log(I;/1,)™ — log(1;/1,)™] M

and AR =log I" - log I{". This model states that
threshold is reached when p;=h(AR;). Note that in
this model it is not possible to estimate the exponent
since AR is constant if and only if I;/I; is constant.
However, since this model is, as Stevens (1962) pointed
out, equivalent to Weber’s law, we can still make
some testable predictions.

In the remainder of the paper we will evaluate
which of the three models best accounts for the results
on studies on loudness discrimination of 1,000-Hz or
near 1,000-Hz tone bursts presented monaurally. The
parameters of these studies are given in Table 1. In
each of the studies reviewed below, the sound inten-
sity of the standard stimulus, I, was varied over a
fairly wide range using a two-interval or a two-alter-
native forced-choice procedure. In most cases, we
read values of Al from the published graphs. Only
cases in which the standard or comparison stimulus
equaled or exceeded 30 dB SPL are reported here.
The reason for this decision is that many studies indi-
cate a change in the power function representation
for loudness at intensity values (I < 30 dB) close to
absolute threshold (e.g., Scharf & Stevens, 1961). We
felt that including these near-threshold values might
distort the representation for loudness for intensity
values above 30 dB. Consequently, they are not re-
ported here.

In the experiments reviewed here, for each I  the
intensity of the comparison stimulus, I., which was
necessary to reach the difference threshold, was
determined.? This difference threshold is called Al =
I. — I;. Following one of the conventions of the audi-
tion literature, Al in decibels is defined as 10 log
(1+Al/I5) = 10 log(1./1y).

PARAMETER ESTIMATION

Model 1. Loudness Difference
According to the loudness difference model, AL =
(Ic/1g)M - (Is/16)™ is constant for the value of m
which characterizes the growth of loudness as a func-
tion of intensity. For each of the studies here, we
have the paired values of I and I.. Hence, we need
to determine the value of m which most nearly satis-
fies the condition that
AL, = AL, =AL,... =AL;=...=AL,, 8
where AL; refers to the ith threshold’s loudness differ-
ence in a particular study. Note that this condition is
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Table 1
Threshold Criterion Intensity Range Number of Stimuli Tone Duration
(Percent Correct) (in Decibels) >30dB (in Milliseconds)
Campbell and Lasky (1967) 75 10-90 7 20, 1000
Jesteadt, Wier, & Green (1977) 71 5-80 2 500
McGill and Goldberg (1968a) 75 0-80 5 150
McGill and Goldberg (1968b) 75 4-70 5 20
Penner et al. (1974)* 75 30-75 6 100
Schacknow and Raab (1973) 75 30-75 3 250
Viemeister (1972)** 76 30-85 3 160
*Binaural presentation.  **Tone-burst frequency was 950 Hz.

satisfied when the variance of the ALs is zero. There-
fore, it seems reasonable to determine the value of m
that minimizes that variance. The variance of AL is
at a minimum when

ZAL?>—(ZALY/n )]

is at a minimum. Since the absolute size of this quan-
tity will vary with m, Expression 9 was first nor-
malized by dividing through by ZAL? to yield

1 - (ZAL)*/nZAL2, (10)
Note that (ZAL)*/nZAL? is the proportion of the total
sum of squares (ZAL?) due to the mean (ZAL/n)
(see Graybill, 1961); hence, when all ALs are equal
to their mean, (XAL)?/nXAL*=1 and Expression 10
equals zero.? In the present analysis, an iterative pro-
cedure was used to determine the value of m that
minimized the value of Expression 10. The values of
m determined for each of the studies reviewed are
shown in column 1 of Table 2. Note that m varies
from .07 to .15, with a mean value across studies of
A1,

The value of the exponent, m, and the values of
I; and I can be used to generate estimates of the
values of AL,. Column 2 of Table 2 gives the mean
estimate of AL, for each of these experiments.* The
value of the threshold loudness difference varies

Table 2
m ALt \'%

McGill and Goldberg (1968a) 13 17 9601
McGill and Goldberg (1968b) .15 .35 9836
Campbell and Lasky (1967)

20-Msec Duration .07 13 9964

1,000-Msec Duration .08 .06 9958
Viemeister (1972) 11 .08 9995
Schacknow and Raab (1973)

Subject 1 .13 .10 9741

Subject 2 .08 .04 9596
Penner et al. (1974) 15 27 9798
Jesteadt et al. (1977) .09 .05 1.0000

Note—V = variance due to mean. AL is given in arbitrary unilts.

from a low of .04 to a high of .35. Column 3 gives
the proportion of total sum of squares due to the
mean. Recall that a value of 1.00 indicates that
the variance is zero. Thus, in each of these experi-
ments, it was possible to select a value of m which
yielded ALs that were nearly equal.

Model 2. Loudness Ratio with Additive Constant

In this model, we also expect that Equation 8
(substituting AR for AL) will hold when AR =
log[(I./T)™ + k] —log[(Is/1,)™ + k]. Again, Equation 8
will be best satisfied if we minimize Equation 10.
Accordingly, values of m and k were found using an
iterative process that minimized Equation 10. These
values are shown in Table 3 along with the average
AR value and the proportion of total sum of squares
due to the mean.® Values of k greater than 10°
were not explored because such large values are un-
likely to be psychologically meaningful.

A comparison of Tables 2 and 3 shows that both
models, with the exception of the McGill and Goldberg
(1968a) study, account for approximately the same
proportion of sum of squares. That is to say, param-
eters that equally well satisfy Condition 8 can be
found for both models. Note that the ratio model
provided a slightly better fit to the McGill and
Goldberg (1968a) study. However, to provide this
better fit, an exponent of .75 was required, an ex-
ponent that is 5 times greater than any of the other
exponents estimated by the two models. A compari-
son of Tables 2 and 3 also shows that, with the
exception of the McGill and Goldberg (1968a) study,
the exponents estimated by the two models are ap-
proximately comparable.® Note, however, the wide
variation in the estimate of the parameter k.

Model 3. Loudness Ratio

This model is identical to Model 2 without the
parameter k. However, without the parameter k,
Equation 10 cannot be used to estimate m, since m
appears as a multiplier in both the numerator and
denominator and hence cancels out. However, Equa-
tion 10 can still be used to estimate the extent to
which all the ARs are equivalent. The proportions
of variance accounted for by the mean are .8072,
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Table 3
m k AR v

McGill and Goldberg (1968a) 5 444 x 10? 7.04 X 1072 9952
McGill and Goldberg (1968b) .18 515X 10 3.92 X 1072 .9839
Campbell and Lasky (1967)

20-Msec Duration .07 423X 10 1.39 x 10~* .9964

1,000-Msec Duration .08 1.93x 10 1.39 x 10—* .9958
Viemeister (1972) 13 3.15x 10 1.52x 1073 1.0000
Schacknow and Raab (1973)

Subject 1 .12 7.15 X 10°® 5.80x 10~ 9741

Subject 2 .08 3.37 x 10° 480x 10° 9596
Penner et al. (1974) 15 1.30 X 107 9.90 x 10~° 9798
Jesteadt et al. (1977) 10 9.30 X 10 243 x 107* 1.0000

Note—V = variance due to mean. AR is given in arbitrary units.

.7959, .9065, .9113, .7803, .8585, .9196, .8234, .8612
for the studies in the order in which they appear in
Table 2. It is apparent that equality of the ARs does
not hold up for the simple ratio model without
the additive constant.

Predicted Thresholds

A further comparison of the three models can be
made in terms of their predicted threshold increments
(AI) at each of the intensity values. Let I. be the pre-
dicted comparison intensity. For Model 1

Bl =1,-1 = LAL+ (/1™ ™ -1 ()
for Model 2
A=1 -1, =1,{108R[(I/1)™+ k] - k}!/™ ~1; (12)
and for Model 3

At=1,-1 = osR/m_pI =kI.  (13)
Note that the prediction for Model 3 is Weber’s law.

Models 1 and 2, if theMcGill and Goldberg (1968a)
study is excluded, make almost identical predictions.’
If, in both models, predicted Als are expressed in
decibels, the correlation coefficient between the two
sets of predictions is .9997. Consequently, the rela-
tionship between the predicted Als and the actual
Als is shown only for Model 1 in Figure 1. Figure 1
shows that the relationship between predicted and
obtained values for the power function discrimina-
tion model is quite good. Figure 2 shows the predic-
tions of Model 3, the power function ratio model
with no additive constant, As Equation 13 shows,
this prediction is equivalent to Weber’s law. To ob-
tain these predictions, the average value of Al/I
was determined in each study. Note that the simple
power function ratio model (Weber’s law) does rather
poorly, as we might expect, since none of the dis-
crimination studies reported here support Weber’s
law.

At this point, it is reasonable to consider the
McGill and Goldberg (1968a, 1968b) ‘‘near miss’’
to Weber’s law. If Weber’s law were correct, then
Al =kI and log(Al) =log(I) + log(k). However, when
these authors plotted log(Al) vs. log(l), they found
that although the function was essentially linear, the
slope was smaller than 1. Thus, they argued that
the relationship between Al and I was

log(Al) = nlog(l) + log(k), (14)
where n # 1. There are several problems with the
McGill and Goldberg formulation. First, this for-
mulation is incompatible with any of the three mod-
els proposed here. For example, in Model 1, we
propose that

p(1+ALI) = fIL(I+AD) - L(D)]; (15)
5 p—
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Figure 1. Threshold difference (Al) in decibels as a function of
the predicted threshold difference (also in decibels) for the power
function discrimination model.
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Figure 2. Threshold difference (Al) in decibels as a function of
the predicted threshold difference based on Weber’s law.

that is, the probability with which I and I+ Al are
discriminated is a function of [L(I+ Al)—-L(I)].
Falmagne (1971) has shown that Equation 15 is valid
only if differential thresholds are permutable. Let n
be p(I +ALI). Then A,I is the amount by which I is
incremented, such that I and I + Ay(I) are discriminated
with probability n. Now, suppose we increment
[+ A (1) by Ay [T+ Ax(I)] so that I+ Ap(l) and I+ A(I)
+ Ay [1+ Ag(I)] are discriminated with probability n’.
Permutability of differential thresholds means that

A’ [An(I) + 1] + An(1) = Ag[Ar- (T} + 1] + A (I); (16)

that is, adding A, [A(I) + I] to A,(1) + 1 is the same as
first determining A, (I)+ I and then adding A,[A, (1)
+1]. Note that n and n’ need not be equal. For
example, suppose that n=.7 and n’ =.85. Equa-
tion 16 says that if we increment I by an amount
A ;(I), such that I and I + A 5(I) are discriminated 70%
of the time, and then increment I + A ,(I) by amount
A gs{I + A ,(I)], the result would be the same as if we
proceeded in the reverse order by finding [+ A g(I)
and then A ,[I+ A g(I)]. It is easy to show that this
property cannot hold if the near miss describes the
discrimination data, for, in that case, Ay(I)=k(m)In,
with k(r) > 0 and k(r) strictly increasing in n, as re-
quired by Equation 15. Substituting into Equation 16
yields

k(n)[k(MI"+ 1" + k(m)I"
= k(mk@EH+ 1" +k@HI". (17

If we assume that this equation holds for all intensities

I, and some n, n’, with  # n’, then it must be that
n=1. Otherwise, the equation does not hold.® Hence,
if Equation 17 is to hold, Weber’s law (n=1) must
apply. If the near miss holds (n # 1), then no loud-
ness discrimination model of the form n=h[u(l;) -
u(I;)] can hold. Note that this excludes Model 2 as
well. However, it can be shown that the near miss to
Weber’s law will closely approximate the predictions
made by Models 1 and 2. The reason for this is that
the near-miss law is a good approximation to the dis-
crimination function we have derived for the loudness
discrimination model. From Equation 11, I, =I,[AL +
(Is/1,)™)/m, Dividing by I, yields I./I;=(ALIRI;™
+1)!/m Approximating the right-hand side of this
equation by the first two terms of its Taylor series
expansion yields I./Ig & 1+ (1/m)ALIPIs™ or I
I+ (1/m)ALIRI} ™ Finally, we obtain I.— I
(1/m)ALIPII-™ which is the near-miss relationship.
Note that the near-miss exponent is 1 minus the power
function exponent in the loudness discrimination
model. Hence, it is not surprising that the near-miss
exponents are usually found to be on the order of .9.
Hence, it seems more appropriate to consider Equa-
tion 11 as the appropriate description of the discrim-
ination function and the near-miss law as an approxi-
mation. In this way, the power law remains compat-
ible with the discrimination data.

R 1R

DISCUSSION

Three power-function models of loudness discrim-
ination were explored. Model 3, the simple loudness
ratio model, where IT'/I{ is constant at threshold,
performs poorly in two areas. First, I./I is not con-
stant at threshold, as indicated by the relatively low
proportion of the sum of squares accounted for by
the mean. Second, as Stevens (1962) pointed out, this
model predicts Weber’s law. And, as Figure 2 shows,
Weber’s law cannot account for the loudness dis-
crimination data.

This leaves two power-function models, Model 1,
which is a loudness discrimination model, and
Model 2, which is a generalized loudness ratio model.
Both do equally well with respect to our two criteria.
First, the extent to which Model 1 maintains a con-
stant loudness difference (AL) is the same as the ex-
tent to which Model 2 maintains a constant loudness
ratio (AR), as indicated by column 3 in Table 2 and
column 4 in Table 3. Second, both do equally well in
predicting the discrimination data. However, Model 2
can accomplish this only at the expense of a great
variation in the parameter k. An examination of the
estimated value of the constant k (see Table 3) in
each of the studies shows that k ranges from 19.3 to
1.30 x 107, Although several arguments have been ad-
vanced for a power law with an additive constant,
k (McGill, 1960), none of these formulations would
predict a range of k values of this extent. However,



the observed variability of the estimate of the param-
eter k may be due to the fact that no near-threshold
intensities were employed. It is quite possible that,
if near-threshold intensities were employed, k would
be more tightly constrained. In any event, the wide
variation in k poses some difficulties for the gen-
eralized ratio model.

Model 1, on the other hand, with but a single pa-
rameter, provides as good a fit to Condition 8 as
Model 2 with two parameters. Furthermore, we have
reason to believe that Model 2 provides an equally
good fit simply because an appropriate choice of k
can yield the same prediction as Model 1.7 Generally
speaking, if a two-parameter model can do no better
than a one-parameter model, the one-parameter
model is preferred. Hence, the results obtained here
favor Model 1, the loudness discrimination model.

It is interesting to note that Mansfield (1976), in
deriving a model for visual adaptation and bright-
ness, arrives at a near-miss law (over a range of about
5 log units) for intensity discrimination for the bright-
nesses of lights. Furthermore, the data from his study
and those of Barlow (1957) and Blackwell (1946) sup-
port a near-miss relationship with an exponent of
about .68. As we have shown earlier, data that fit a
near-miss model will also fit the sensory discrimina-
tion model (Model 1) proposed here. The brightness
exponent typically found in these experiments is on
the order of .33, that is, 1 minus the near-miss expo-
nent. Thus, there is some indication that Model 1
may apply to brightness and brightness discrimina-
tion. However, how generally the model might apply
in vision is difficult to determine, since changes in the
state of adaptation, etc., can alter the form of the
relationship between Al and 1 (e.g., Cornsweet &
Pinsker, 1965; Hood & Finkelstein, 1979). Thus, we
would expect that changes that affect the relationship
between Al and I would also alter the psychophysical
function relating brightness to intensity. These condi-
tions could be investigated to test the discrimination
model for visual brightness.

With respect to loudness, we can examine certain
features of the discrimination model to see whether
these features have a reasonable psychological inter-
pretation, To predict thresholds, the loudness dis-
crimination model requires two parameters, m, the
exponent of the power function, and AL, the size of
the threshold loudness difference. Table 2 shows that
there is some variation in both the values of the
exponents and the values of the critical loudness dif-
ferences across studies. A logical question is whether
any of this variation can be attributed to differences
among the parameters of the studies. An examina-
tion of Table 1 shows that the durations of the tone
bursts varied from study to study. Therefore, Fig-
ure 3 examines the relationship between exponent
and tone-burst duration. An examination of Fig-
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Figure 3. Exponents of the power function discrimination model
as a function of tonal duration in milliseconds.

ure 3 shows no strong systematic relationship be-
tween exponent and duration; however, there may
be a slight tendency for the higher exponents to be
associated with the shorter durations. This tendency
becomes more pronounced if the two studies using
20-msec tones are ignored. Figure 4, on the other
hand, shows that the threshold loudness differ-
ence (AL;) decreases rapidly with increasing dura-
tion. Both Luce and Green’s (1972) timing model
and McGill’s (1967) counting model would predict
a variation of this sort. The fact that both m and AL
refer to specifiable sensory processes, and the fact
that AL varies in the expected way with tone duration
while m does not, lends support to the loudness dif-
ference model. This kind of specifiability leads more
readily to tests of the model in terms of more basic
SENSOry processws.

Another virtue of the loudness difference model is
that it provides a direct link between threshold and
suprathreshold experiments. In both cases, the pre-
sentation of two signals differing in intensity gives
rise to a loudness difference, AL, which can be ex-
pressed as the difference between power-functionally
transformed sound intensities. Thus, according to
the model, the same sensory processes operate at
threshold and suprathreshold levels. It is interesting
to note that average exponents obtained in the pres-
ent experiments are not too far different from the
exponents obtained from nonmetric analyses of judg-
ments of loudness differences [.13, Parker &
Schneider, 1974; .13, Schneider et al., 1974), judg-
ments of loudness similarity (.12, Parker & Schneider,
1974), judgments of loudness ratios [.11 and .07,
Schneider, Parker, Farrell, & Kanow, 1976; .11,
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Figure 4. Loudness difference at threshold as a function of tonal
duration in milliseconds.

.11, and .22, Richards, 1974 (analyzed in Schneider
et al., 1976)]. The average value of the exponent
for the threshold studies is .11, as compared with
.12 for the nonmetrically analyzed suprathreshold
experiments. Note that these exponent values are
approximately half as large as those estimated from
straightforward magnitude estimation experiments.
Possible reasons for this discrepancy have been dis-
cussed elsewhere (Marks, 1974; Schneider et al.,
1974; Wagenaar, 1975). The interesting thing to note
is that in those cases in which the observer is ex-
plicitly asked to compare signals differing in inten-
sity (two-alternative or two-interval forced choice;
judgments of loudness differences, similarities, or
ratios), the judgments are based on the subtractive
difference between power functions of the two inten-
sities in which the exponent of the power transforma-
tion is approximately .12.

Falmagne (1974, p. 131) has argued that ‘‘a sen-
sory scale should be called a scale of sensation only
if it explains a large body of sensory data, collected
with a variety of methods.”” A power function on
sound intensity with an exponent near .12 does exactly
that for pairs of monaurally presented 1,000-Hz tone
bursts. It fails to explain the larger exponents ob-
tained with magnitude estimates or productions of
loudness with single stimuli; however, these larger
exponents may be due to nonlinearities in the re-
sponse system relating numbers to loudnesses (Rule,
Curtis, & Markley, 1970; Schneider et al., 1976).

The value of the exponent (.12) should be taken
only as an approximation. The wide variation in esti-
mates of this exponent in the experiments reported
here may reflect large intersubject differences. Typ-
ically, many of the studies reported above employed
only one to three subjects. If there is wide variation

in the exponent value across subjects, then studies
involving only a few subjects may legitimately arrive
at different estimates of the exponent. Finally, it is
not clear to what extent the exponent of the power
function is influenced by experimental parameters
such as signal duration, background noise, etc.

The studies reviewed here suggest that Fechner’s
assumption is indeed consistent with a power func-
tion representation for loudness. According to the
favored model, loudness is a power function of
sound intensity. In any task involving (1) discrimina-
tion of two tones, (2) judgments of loudness differ-
ence, (3) judgments of loudness similarity, (4) paired
comparisons of loudness differences, and (5) judg-
ments of loudness ratios (see Schneider et al., 1976),
the comparison made between the two tones is based
on the subtractive difference of their loudness values.
This subtractive difference (AL) is constant at thresh-
old (Fechner’s assumption). At suprathreshold lev-
els, stimulus comparisons are based on the loudness
difference values of the two stimuli. Thus, according
to this model, threshold and suprathreshold judg-
ments reflect the same basic sensory processes.

An important question, which is as yet unanswered,
is the extent to which Model 1 (sensory discrimina-
tion model) can account for threshold and supra-
threshold difference judgments for other sensory
continua. The study by Mansfield (1976) suggests
that the model may hold under certain conditions for
visual brightness. If it can be shown to be widely
applicable in both vision and the other senses, then
we could conclude that Fechner was correct in assum-
ing that ‘“‘equally often noticed differences are sub-
jectively equal.” Fechner’s mistake may not have
been in his assumption, but rather in his acceptance
of Weber’s law.
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NOTES

1. The general form of the loudness function can be written
L=(c’')™, where ¢’ is a scalar constant. Clearly, then, it is per-
missible to specify 1 with respect to some reference intensity, 1.
In this way, loudness is specified in arbitrary units, since 171,
is a dimensionless variable.
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2. For convenience of formulation, we always designate the
more intense stimulus as I, and the less intense as I;. This cor-
responds to usual practice in intensity-increment studies. However,
it reverses the usual practice in intensity-decrement studies in
which the more intense stimulus is called the standard (Iy). Also
note that all exponents in this paper are applied to sound inten-
sities, not sound pressures.

3. Note that it does not matter whether the minimization is
carried out in terms of sound intensity or sound pressure (P),
since 1 =cP?. To see this, note that by substitution AL = (I /1,)™ -
(1/1)™ = (P/P)*™ — (P/P,)*™. Hence, the only difference is that
the exponent estimated when sound pressure is used will be twice
the value of the exponent of sound intensity.

4. In making comparisons across experiments, it is assumed that
ALs are directly comparable from experiment to experiment. There
is some suggestion in the literature that this may not be true when
comparisons are made across frequencies. McGill (1967) found the
scalar constant, ¢’, in L=¢’I1™, to be dependent upon tonal fre-
quency, and the Penner, Leshowitz, Cudahy, & Ricard (1974) data
are in accord with this dependency. With the scalar constant in-
cluded, AL, =c’'[(I./1,)™ - (I1,/1,)™]. Hence, without the rough
constancy of ¢', relations involving several AL;s (such as that in
Figure 3) cannot be sensibly discussed. Note that ¢’ cannot be
estimated in Equation 10 since it cancels out in the ratio (ZAL)*/
(nZAL?). Finally, it should be noted that there are two ways in
which the size of AL, can vary within or across experiments. First,
the acuity of the subject could vary. This would be reflected in the
size of the difference between I, and I with a larger difference
producing a larger AL, for a fixed value of the exponent, m.
Second, for fixed I. and I, AL, will depend on the size of the ex-
ponent, m. Hence, AL, reflects the operation of both of these fac-
tors.

5. Asin the case of Model 1, it can be shown that, for Model 2,
it does not make any difference whether pressure or intensity is
used in the minimization process. If pressure is used, the recovered
exponent will be twice the value of the exponent for intensity. Also
note that AR, like AL, is the same whether expressed in intensity
Or pressure units.

6. If an equivalent analysis is carried out for both Model 1 and
Model 2 with stimuli less than 30 dB, the results are comparable
to those reported here. The exponent values ranged from .05 to
.15, with a mean of .10. With the exception of the McGill and
Goldberg (1968a) study, the results for Model 2 were essentially un-
changed. Exponents ranged from .05 to .13, with a mean of .10.
However, for the McGill and Goldberg (1968a) data, the estimated
exponent was only .10, as compared with the exponent of .75
(see Table 3) found for the data above 30 dB. Hence, the anom-
alous exponent shown in Table 3 for this study disappears when
the full data are analyzed. It should also be noted that, for Model 2,
the values of the parameter k for the full data were quite different
from the values of that parameter when only the data above 30 dB
are considered. The probable reason for this is discussed in Foot-
note 7.

7. The reason the two models can make similar predlcuons is as
follows. Consider the ratio of I for Model 1 to I for Model 2.
This ratio is [AL + (I/1 )m']'/""/{IOAR[(I /1™ + k] k}/™a If m,
=m,, as it does for most of the studies reported here, this ratio
becomes [(1,/1)™ + AL)/[108R(1./1)™ + k(104R — 1)]. For 104R close
to 1.0 and k(102R - 1)ZAL, the two terms will have similar values.
Substituting from Equation 6,

k(10°R~ 1) = k{H[((lu/lo) +R/ /1™ + k)= 1 }
'

When k =0, this function equals zero. For k > 0, the value of this

function increases. It can be shown that a lower bound for this

function is [(lcl,/lo)m'(ISL/Io)m]/[(IsL/Io)m/k + 1], where ([cL/lo)m

— (I, /1g)™ is the smallest power function intensity difference in

the threshold study, and that an upper bound is [(I.,/I))™—
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To/T0)™/ [(Lee/1)™/k + 1], where (I.,/1,)™ = (I,,/1,)™ is the larg-
est such difference. As k = o, the lower bound approaches
(I /1™ = (I /1,)™ and the upper bound approaches (I.,/1,)™ —
(I,u/1,)™. Note that these lower and upper bounds on k(104K —1)
for the large k bracket our estimate of AL which is (1/n)Z[(14/1,)™
- (I4/1,)™]. Hence, as k is increased from zero, it should be pos-
sible to find a value of k such that k(10°R — 1) & AL, If the value
of k which does this is large, then 10R(I/1)™ & (I,/1,)™ and
the two models will make identical predictions. In the experiments
reported here, with the exception of McGill and Goldberg (1968a),
such an equivalence did indeed occur. Hence, it is not surprising
that k varied as widely as it did, since the expression k(104R — 1)
approaches asymptotic value rather slowly.

8. To see this, it is necessary only to divide through both sides

of Equation 17 by I" and rearrange terms so that the equation now
reads {[k(mI™!+ 11"~ }A[k(=" )" +1]° -1} = k(m)/k(n’). No-
tice that the left side of the equation must equal k(n)/k(n"). If
the left side must equal a constant, then the derivative of the left
side with respect to I must equal zero. Setting the derivative of the
left side equal to zero results in the requirement that {[k(m)I"~! + 1]
- 1}/{§k(n')1"-' +1°=~ 1) = k@K@ + 117k k1!
+1]"7'}. Both of these equations can be true only if [k(m)I"'
+11™" = [k(r")I™ '+ 1)""L. This, in turn, can be true only for
n=1, ork(n')=k(n).
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