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A theoretical and empirical comparison
of mainframe, microcomputer, and pocket

calculator pseudorandom number generators

PATRICK ONGHENA
Katholieke Uniuersiteit Leuuen, Leuuen, Belgium

This article presents an extensive theoretical and empirical analysis of the pseudorandom num
ber generators provided by subroutine libraries (NAG, CERN, IMSL, and ESSL), statistical and
simulation software packages (GLIM, SAS, SPSS, DATASIM, ESSP, and LLRANDOMII), built
in functions of programming languages (APL, Turbo Pascal, Advanced BASIC, GW·BASIC, and
QBASIC), and autoimplemented algorithms (Fishman & Moore, 1986; Wichmann & Hill, 1982;
Van Es, Gill, & Van Putten, 1983). On the basis of these analyses, it is concluded that most of
the built-in functions of the software packages that were tested can be used safely. In addition,
it is concluded that the Wichmann and Hill algorithm is a good choice if only single-precision
arithmetic is available, but that a prime-modulus multiplicative congruential generator with modu
lus 231 -1 and multiplier 16,807 is a better choice if double-precision arithmetic is available, and
that the same generator with multiplier 62,089,911 or 742,938,285 is the best choice if extended
precision arithmetic is available. A Turbo Pascal and a VS FORTRAN program for the latter
are given in the Appendixes.

In the social and behavioral sciences, random numbers
may be needed in a variety of situations. They may be
needed for the design of experiments (random sampling
and random assignment of subjects to the experimental
conditions), for data analysis (Monte Carlo testing, boot
strap and jackknife techniques), or for more theoretical
work (building and testing stochastic models of psycho
logical processes) (Bradley, 1989a, 1989b; Diaconis &
Efron, 1983; Heth, 1984; Whicker & Sigelman, 1991).

In former times, these numbers were generated by phys
ical devices each time anew or through reference to a
prefab table, but nowadays they are almost exclusively
generated by computer algorithms (Dudewicz & RaIley,
1981; Hull & Dobell, 1962; Ripley, 1987). There is a
growing concern, however, about the "randomness" of
the numbers generated by using the built-in computer algo
rithms of software packages, and more and more, re
searchers have been encouraged to implementan alternative
random-number program (Brysbaert, 1991; L'Ecuyer,
1990; Lordahl, 1988; Ripley, 1983, 1988).

This article represents an attempt to determine to what
extent such a concern is justified, and whether or not
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researchers should indeed make the effort to implement
the alternative algorithms. For this purpose, the statisti
cal properties of the "random" numbers generated by
prewritten programs in software libraries, built-in func
tions of commonly used software packages and compilers,
and some alternative autoimplemented algorithms for
mainframes, personal computers, and pocket calculators
were examined. More specifically, the generators in the
NAG FORTRAN Library (Numerical Algorithms Group,
1990); the CERN Program Library (CERN, 1989); the
GUM System (Payne, 1987); the Statistical Analysis Sys
tem (SAS, 1989, 1991); the DATASIM package (Brad
ley, 1988); the Turbo Pascal (Borland, 1990), Advanced
BASIC (IBM, 1986), GW-BASIC (Microsoft, 1987), and
QBASIC (Microsoft, 1991) programming languages; the
algorithms of Wichmann and Hill (1982) and Fishman
and Moore (1986); and two pocket calculator generators
(Van Es et al., 1983) were compared. Reference is also
made to IMSL (1987), ESSL (1990), SPSS (1983), ESSP
(Lewis, Orav, & Uribe, 1988), LLRANDOMII (Lewis
& Uribe, 1988), and APL (Katzen, 1970).

A review of the theoretical properties will be given,
and some empirical results will be added. On the basis
of these properties and results, and taking into account
the speed of the algorithms and the possible computational
environments, some recommendations concerning the
most appropriate generators will also be made.

PSEUDORANDOM
NUMBER GENERATORS

The generators discussed below are special cases of
Lehmer's congruential iteration (Knuth, 1981)1
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The CERNUB Pseudorandom Number
Generator for Mainframes

The CERN Program Library (CERN, 1989) is a large
collection of general-purpose programs maintained and
offered in both source and object code form on the CERN
central computers. The pseudorandom number generator
uses a multiplicative congruential algorithm with multi
plier 44,485,709,377,909 and modulus 248

, The seed can
be any odd number.

The NAG Pseudorandom Number
Generator for Mainframes

The NAG FORTRAN Library (Numerical Algorithms
Group, 1990) is a collection of mathematical subroutines
coded in FORTRAN that can be called from within any
other program. The mainframe subroutines that generate
pseudorandom numbers use a multiplicative congruential
algorithm with multiplier 1313 and modulus 259:

Xi+\ = (13 13Xi) mod 259;

that is, multiply the base (Xi) by 1313
, divide by 259, and

take the remainder to get the next number (Xi+.).
The seed (Xo) is set by default to 123,456,789 = (232+ 1),

but it can be changed to any other odd number.

where a, c, and m are nonnegative integers (a and C less
than m, and a different from zero), and mod is the modu
lus operator (which gives the remainder of an integer di
vision). If an initial value Xo is chosen from the set {O,
1, m - 1}, then the formula produces a sequence x \.
X2, of numbers in the same set, called pseudorandom
numbers. These integers are then divided by m to obtain
a sequence of real numbers between 0 and I.

The generators vary in their choice of a, c, m, and pos
sible xos. The integer a is called the multiplier, c is called
the increment, m is called the modulus, and Xo is called
the seed. The terms mixed congruential generator and
multiplicative congruential generator are used by many
authors to denote linear congruential algorithms with c *'
oand c = 0, respectively. If c = 0 and m is a prime in
teger, the term prime-modulus multiplicative congruen
tial generator is used. It is obvious from Equation I that,
for all multiplicative congruential generators, the seed
should not be zero.

Xi+1 = (axi+C) mod m, (I) The SAS Pseudorandom Number Generator
The Statistical Analysis System (SAS, 1989, 1991) is

an integrated software package for data analysis. For both
the mainframe- and the PC-version, the built-in RANUNI
function uses a prime-modulus multiplicative congruen
tial generator with multiplier 397,204,094 and modulus
23\-1 (a generator proposed by Learmonth & Lewis,
1974). The seed must be a numeric constant less than
23\-1. If the seed is 0, SAS uses a reading of the time
of day from the computer's clock to generate the first num
ber. Otherwise, the specified constant is used directly. 2

The DATAS1M Pseudorandom
Number Generator

Bradley's (1988, 1989a, 1989b) data simulator DATA
SIM is a general-purpose program for generating, analyz
ing, and graphing simulated data for experimental,
multivariate, and contingency table designs. It uses as a
default a prime-modulus multiplicative congruential
generator with multiplier 16,807 and modulus 231- I (a
generator due to Lewis, Goodman, & Miller, 1969), but,
with the RMULT and the RMOD commands, it is possi
ble to change these two parameters. The seed is either
selected at random (on the basis of digits obtained from
the system clock), or explicitly set by the user (a positive
integer less than 231_ 1).

The same generator is used by ESSL (1990), SPSS
(1983), ESSP (Lewis et aI., 1988), and APL (Katzen.
1970).

The Turbo Pascal Pseudorandom
Number Generator

The Turbo Pascal (Borland, 1990) programming lan
guage provides the user with a built-in pseudorandom
generator in the Random function. This function is initial
ized by making a call to the Randomize procedure to ob
tain a seed based on the system clock, or by explicitly
assigning a value (in the range from -231 to 231_ I) to
the predeclared variable RandSeed. Although the generat
ing algorithm is undocumented in the manual, one letter
to the Technical Department of Borland Inc. was enough
to obtain the required information: from Version 4.0 on
(up to Version 6.0, the version that was current at the time
of writing the letter), Turbo Pascal uses a mixed congruen
tial pseudorandom number generator with multiplier
134,775,813, increment 1, and modulus 232

•

The GUM System Pseudorandom Number
Generator for Mainframes

The Generalized Linear Interactive Modelling System
(Payne, 1987) is a flexible, interactive program for sta
tistical analysis, developed under the auspices of the Royal
Statistical Society. It provides a framework for statistical
analysis through the fitting of generalized linear models
to the data. The pseudorandom number generator uses a
mixed congruential algorithm with multiplier 8,404,997,
increment 1, and modulus 235. The seed can be any non
negative integer less than the modulus.

The BASIC Pseudorandom Number Generator
The Advanced BASIC (IBM, 1986), GW-BASIC

(Microsoft, 1987), and QBASIC (Microsoft, 1991) pro
gramming languages provide the function RND, which
is initialized by the RANDOMIZE command together
with a number between - 2\5 and 2\S - I, and which re
turns a pseudorandom single-precision number between
oand 1. As with Turbo Pascal, the generating algorithm
is undocumented in the manual. Our letters to Microsoft
Inc. about the algorithm remain unanswered.
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The Wichmann and Hill Algorithm
Wichmann and Hill (1982) presented FORTRAN code

for three coupled prime-modulus multiplicative genera
tors with multipliers 171, 172, 170 and moduli 30,269,
30,307, and 30,323. Because three multiplicative con
gruential generators are involved, three seeds are needed
(larger than zero and smaller than the moduli 30,269,
30,307, and 30,323, respectively). Ready-made BASIC
and Pascal versions are also available (Brysbaert, 1991;
Wichmann & Hill, 1987).

It can be shown (using the Chinese remainder theorem;
see, e.g., Knuth, 1981; Zeisel, 1986) that the resulting
generator is equivalent to a simple multiplicative con
gruential generator with multiplier 16,555,425,264,690
and modulus 27,817,185,604,309. However, the coupled
algorithm requires arithmetic only up to 30,323 and can
therefore be implemented easily on a 16-bitmicroprocessor.

The Fishman and Moore Multipliers
After an exhaustive theoretical and empirical analysis

of prime-modulus multiplicative congruential generators
with modulus 231-1, Fishman and Moore (1986) found
62,089,911,742,938,285,950,706,376,1,226,874,159,
and 1,343,714,438 to be the optimal multipliers among
the more than 534 million candidates. Between these five
best multipliers there were no consistent differences. No
tice that neither 16,807 (as in ESSL, DATASIM, SPSS,
ESSP, and APL) nor 397,204,094 (as in SAS) is one of
the five. However, the DATASIM package gives the user
the opportunity to change the default multiplier with the
RMULT command (but see below).

Following the Fishman and Moore (1986) study, IMSL
(1987) gives the choice between 16,807, 397,204,094,
and950,706,376 as multipliers and LLRANOOMII (Lewis
& Uribe, 1988) between 16,807, 397,204,094, and all
five Fishman and Moore multipliers. A Turbo Pascal PC
implementation for the two smallest Fishman and Moore
multipliers is given in Appendix A and a VS FORTRAN
mainframe implementation for all five Fishman and
Moore multipliers is given in Appendix B.

The Pocket Calculator Pseudorandom
Number Generators

Van Es et al. (1983) suggested two pseudorandom num
ber generators for pocket calculators (using decimal arith
metic) with a to-figure display and lO-figure accuracy.
Pocket I has modulus 1()5, multiplier 31,481, and incre
ment 21,139 and makes use of the equivalence of Equa
tion 1 with

"'.1 = (au/+b) mod 1 = Frac(au/+b), (2)

where u/ = xilm, b = elm, and Frac(x) is the fractional
part of a real number x, or Frac(x) = X - Int(x)-that
is, the original number minus the integer part.

Pocket IT has modulus 109
, multiplier 314,159,221, and

increment 211,324,863 and makes use of the equivalence
of Equation 2 with

(3)

where uJI) = Int(10su/), uJ~) = Frac(lOsu/),
a(l) =

Int(IO-Sa), and a(~) = Frac(10-Sa). Although this notation
is cumbersome, the splitting up of the numbers a and u,
of Equation 2 into the five most significant and the five
least significant digits is necessary to avoid rounding er
rors in the multiplications.

Both are mixed congruential generators, so they can be
seeded with any nonnegative integer less than the modulus.

A THEORETICAL COMPARISON

The Period of the Generator
A simple index for the quality of a generator is its pe

riod. Since any pseudorandom number depends only on
the previous one, once a value has been repeated, the en
tire sequence after it must be repeated. The period is the
length of such a repeating sequence. It is obvious that
generators with large periods are to be preferred.

Knuth (1981) has shown that (1) mixed congruential
generators have the maximal period m if and only if the
increment and the modulus have no common divisor other
than 1, and the multiplier a is chosen such that (a mod
p) = 1 for each prime factor p of the modulus and (a
mod 4) = 1 if 4 is a factor of the modulus; (2) multipli
cative congruential generators with modulus 2k (k>2)
have maximal period 2k

-
2 if and only if the multiplier

is a primitive root modulo m-that is, (a(m-l)lp mod m)
* 1 for each prime factor p of m-I-and the seed is odd;
and (3) prime-modulus multiplicative congruential gener
ators have period m - 1 if and only if the multiplier is a
primitive root modulo m. This gives for some of the gener
ators described above the periods of Table 1. For the
BASIC built-in generators, no theoretical results are avail
able because of the lack of information.

In a large-scale empirical study, Modianos, Scott, and
Cornwell (1984, 1987) found the period of mM PC
BASIC and mM PC Extended BASIC generators to be

Table 1
Periods of Some Pseudoraudom Number Generators

and Tbeir Relation to tbe Moduli

Generator Period Relation to Modulus m

NAG 257 = 1.44 X 1017 m/4
CERN 246 = 7.04xI013 m/4
GUM 2" = 3.44xl0'o m
SAS 231-2 = 2.15x109 m-I
DATASIM 231-2 = 2.15xI09 m-l
Turbo Pascal 231 = 4.29 x 109 m
Wichmann and Hill 6.95xlO" (m,-1)(m.-l)(m,-I)/4
Fishman and Moore 231-2 = 2.15x109 m-I
Pocket I I ()5 m
Pocket U 109 m

Note-Software versions are: NAG Mark 14, CERN 1989 release,
GUM Release 3.77, SAS Version 6.04, DATASIM Version 1.1, and
Turbo Pascal Version 6.0.
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216, which is much too short for most applications. Whit
ney (1984) came to the same result with IBM PC Ad
vanced BASIC, and he also observed systematic, short,
wave-like subcycles.

In an attempt to replicate these findings, Version A3.21
of Advanced BASIC, Version 3.2 of GW-BASIC, and
Version 1.0 of QBASIC were tested. The results of Mo
dianos et al. (1984, 1987) could not be confirmed, and
a replication of Whitney's (1984) random-walk analysis
did not reveal any systematic subcycles for any of the
BASIC versions. More than a week of PC time showed
that the periods of the BASIC generators had to be more
than 232.

It should also be noted that Wichmann and Hill's algo
rithm does not have the maximal period 2.78 X 1013

• De
pendencies between the three generators reduce the pe
riod of the combined generatorto (m, -1)(m2 -1)(m3-1)/4,
or about 6.95xl0'2 (Wichmann & Hill, 1984, 1987).

The Dimensional Structure of the Generator
With the use of theoretical tests, it is possible to assess

the global randomness of a generator over the full period.
The most famous test in this context is the spectral test
proposed by Conveyou and MacPherson (1967) and devel
oped by Knuth (1969). The spectral test is based on the
fact that the pseudorandom numbers (Xi, Xi+" ... , Xi+t-1),

i = 0, ... m-l, lie in the hypercube [O,mf on various
sets of parallel equidistant hyperplanes (see also Mar
saglia, 1968). The numbers have the highest global ran
domness if the distance between consecutive hyperplanes,
for the set of hyperplanes that makes this distance max
imal, is as small as possible. The spectral test consists
in computing these maximal distances Vt' for a number of
values of t; the transformation jJ.t = 1l't/2v~/[(t12)!m] yields
an index of quality (the merit), which is roughly compara
ble over different values of t and m. A generator passes
the test if jJ.t ~ 0.1 for 2 :5 t :5 6, and it passes "with
flying colors" if jJ.t ~ 1 for all these t (Knuth, 1981).

Algorithms for performing the spectral test are given
by Golder (1976a, 1976b), Hoaglin and King (1978), and

Table 2
Spectral Test Merits 1" for 2 :S t :S 6

for Some Pseudorandom Number Generators

NAG 2.56 0.72 1.96 0.96 1.56
CERN 0.62 0.61 0.06 2.11 1.00
GUM 1.12 1.67 0.07 3.13 1.26
SAS 1.12 1.13 1.96 3.97 1.06
DATASIM 0.41 0.51 1.08 3.22 1.73
Turbo Pascal 0.70 1.32 0.90 2.83 3.06
Wichmann and HiIl* 2.01 1.74 2.06 4.91 2.90
62,089,911 t 2.14 4.34 4.23 4.77 7.99
742,938,285t 2.73 3.78 5.47 5.94 8.04
950,706,376t 2.67 4.30 5.63 6.00 7.66
1,226,874,I59t 2.57 4.02 4.58 6.15 8.63
1,343,714,438t 2.46 3.42 4.56 5.73 7.55
Pocket I 0.11 1.52 0.91 1.24 0.21
Pocket II 0.81 2.15 0.56 2.21 3.43

Note-Tested versions are: NAG Mark 14, CERN 1989 release, GUM
Release 3.77, SAS Version 6.04, DATASIM Version 1.1, and Turbo
Pascal Version 6.0. *Modifiedspectral test (MacLaren, 1989). tFor
the Fishman and Moore algorithm, the five best multipliers are given.

Ripley (1987). Table 2 gives the results for the genera
tors described above (except for the BASIC generators).

Only the CERN and GUM generators do not pass the
test. Both have merits below 0.1 in the fourth dimension.
The SAS, Wichmann and Hill, and Fishman and Moore
generators pass "with flying colors." In all dimensions,
the Fishman and Moore algorithms pass the spectral test
with superior merits in comparison with the SAS func
tion and the Wichmann and Hill algorithm. Moreover,
for the Wichmann and Hill algorithm, it remains unclear
whether the merits of the modified spectral test are com
pletely comparable with the merits of the conventional
spectral test (MacLaren, 1989). As Ripley (1988) argues:

The "better the unknown than the devil we know" atti
tude still surfaces. For example, Wichmann and Hill ad
vocate combining three simple congruential generators. We
know very little about such combination generators. The
authors (and their referees) even stated the wrong period.
This may well be an excellent generator, but to my knowl
edge none can prove so. The history of the subject has
shown that empirical tests are not sufficiently comprehen
sive; theoretical calculations are required. (p. 55)

This argument holds a forteriori for the undocumented
BASIC generators.

AN EMPIRICAL COMPARISON

The Precision of the Generator
Before the results of the empirical tests are reported,

it should be mentioned that in implementing a generator
one should take account of the word size (and conse
quently the precision of the representable values in a float
ing point system) that the computer can handle. Other
wise, it is very possible to destroy the optimal properties
of a theoretically sound generator. Bradley, Senko, and
Stewart (1990) properly remarked that with respect to the
Fishman and Moore multipliers in DATASIM, the user
should verify that no loss in precision occurs. With an
IBM PCIAT with an 80287 floating-point coprocessor
using 64-bit double-precision arithmetic, all five Fishman
and Moore multipliers are indeed too large for the multi
plications to be evaluated correctly. The PC gives

(62,089,911)(231-2) = 133,337,068,454,095,504

(742,938,285)(231_2) = 1,595,447,817,024,787,200

(950,706,376)(231- 2) = 2,041,626,394,607,926,784

(1,226,874,159)(231-2) = 2,634,692,192,152,503,808

(1,343,714,438)(231-2) = 2,885,604,780,499,080,704

instead of the correct (hand-calculated) values:

(62,089,911)(231-2) = 133,337,068,454,095,506

(742,938,285)(23'-2) = 1,595,447,817,024,787,110

(950,706,376)(231- 2) = 2,041,626,394,607,926,896

(1,226,874,159)(23'-2) = 2,634,692,192,152,503,714

(1,343,714,438)(231-2) = 2,885,604,780,499,080,948.
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The same problem would arise if the SAS multiplier was
used in a straightforward implementation, using double
precision arithmetic. The PC gives

(397,204,094)(231-2) = 852,989,295,989,246,720

instead of the correct (hand-calculated) value:

(397,204,094)(231-2) = 852,989,295,989,246,724.

This inaccuracy is caused by the internal representation
of floating-point variables and operations (Lewis & Orav,
1989; Thisted, 1987). Notice that the multipliers are
smaller than 23 1 and the products smaller than 26 2

, so that
one could mistakenly expect to have a correct implemen
tation by using 64-bit arithmetic. However, 64-bit arith
metic is not 64-bit precision. In Turbo Pascal double
precision, for example, 1 bit is used for the sign and 11
bits for the exponent, leaving only 52 bits for the signifi
cand (or mantissa). The smallest Fishman and Moore mul
tiplier already gives a product larger than 25 7

• For the
generator, the rounding-off errors result in a deviation
from the theoretical sequence of the congruential algo
rithm, which could produce serious dependencies in the
pseudorandom numbers (see below).

The problem can be avoided on an IBM PCI AT with
an 80287 floating-point coprocessor for the smallest two
Fishman and Moore multipliers by using 80-bit extended
precision arithmetic (as in Appendix A). In Turbo Pas
cal extended-precision, for example, 63 bits are used for
the significand. The SAS and the built-in Turbo Pascal
generator can also be implemented by using 80-bit
extended-precision arithmetic. A simple algorithm for a
generator with one of the largest three Fishman and Moore
multipliers is possible with the use of the 128-bit
quadruple-precision arithmetic of VS FORTRAN Ver
sion 2 on mainframe (as in Appendix B). For the DATA
SIM default multiplier 16,807 there is no problem, since
a straightforward implementation requires only 64-bit
double-precision arithmetic. It is even possible to imple
ment this generator by using only 32-bit single-precision
arithmetic (Bratley, Fox, & Schrage, 1983; Park &
Miller, 1988; Schrage, 1979).

Statistical Tests
In order to check the local randomness of subsequences

of moderate length and to assess the effect of implemen
tation inaccuracy, a battery of statistical tests was per
formed on the pseudorandom number generators described
above. The Fishman and Moore generators were tested
twice-first, by using the RMULT command of DATA
SIM, and second, by using the algorithms of Appendixes
A and B. In addition, the disreputable RANDU was sub
jected to the same battery of tests as a control. RANDU
is a multiplicative congruential generator with multiplier
65,539 and modulus 23 1

, which has been used very widely
on IBM 360/370 and PDP-II machines but which has
been shown to be fatally flawed in the third dimension
(Fishman & Moore, 1982; Marsaglia, 1972).

The battery of statistical tests consisted of (1) the
Kolmogorov-Smirnov distribution test; (2) the chi-square
goodness-of-fit test for uniformity (9 df); (3) the gaps test
(n = 0.4; Tu = 0.6; 9 df); (4) the runs-above-the-mean
test (9 df); (5) the runs-below-the-mean test (9 df);
(6) the runs-up test (6 df); (7) the runs-down test (6 df);
(8) the pairs test (99 df); (9) the triplets test 024 df); and
(0) the autocorrelation test (10 df). Appendix C gives
references and descriptions of these tests. Following Fish
man and Moore (1982) and L'Ecuyer (988), 100 con
secutive sequences of 200,000 pseudorandom numbers for
each of the generators 00,000 for the BASIC generators)
were produced for each test. Consequently, for each test,
100 test statistics and 100 corresponding p values were
obtained. Next, the Kolmogorov-Smirnov test was used
again, but this time on a metalevel to check whether the
100 statistics and p values of the first-level tests were
plausible under the expected theoretical distribution (see
Appendix C). Furthermore, this metalevel Kolmogorov
Smirnov test was used on the 1,000 P values of all first
level tests for each generator to have an overall measure
of goodness-of-fit to the uniform distribution. The tests
were programmed in VS FORTRAN Version 2 (IBM,
1987), using the NAG Library subroutines G08CBF
(Test 1), G08CGF (Test 2), G08EDF (Tests 3, 4, and 5),
G08EAF (Tests 6 and 7), G08EBF (Test 8), G08ECF
(Test 9), and G13ABF (Test 10), and were carried out
on an IBM 3090/600e VF mainframe under the VM/XA
operating system (the programs are available from the
author). The testing took more than 300 h of CPU time.

In Table 3, the p values for the metalevel Kolmogorov
Smirnov tests are presented for each statistical test and
each generator. Although the DATASIM default genera
tor performed very well on all tests, DATASIM, using
the RMULT command to get the Fishman and Moore
multipliers, gave p values smaller than .0001 on all the
tests, indicating strong deviations from randomness as a
result of the rounding-off errors. Also, for the first gener
ator of Van Es et al. (1983) and for RANDU, the p value
of the overall metalevel Kolmogorov-Smirnov test is
smaller than .0001, which gives evidence for the inap
propriateness of these generators.

In order to get a more differentiated picture, the p values
for each test smaller than .05 were marked "suspect,"
and the statistical tests for the corresponding generator
were repeated. The triplets test on GUM, the Kolmogorov
Smirnov test on the Fishman and Moore algorithm with
multiplier 62,089,911, the runs-above-the-mean and the
triplets tests on the Fishman and Moore algorithm with
multiplier 950,706,376, and the autocorrelation test on the
Fishman and Moore algorithm with multiplier 1,226,874,159
gave p values smaller than .05 on the first trial, but p
values larger than .05 on the second trial. Of course,
among the many p values of the first trial, one would ex
pect some p values smaller than .05, even if the null hy
pothesis of randomness were true. The p value of a meta
level Kolmogorov-Smirnov test on the 15,000 p values
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Generator Mainframe 80486 80286

Table 4
Number of Milliseconds Needed to Produce One Pseudorandom

Number With the Software Packages, the Built-In Functions
of the Compilers, and the Algorithms With or Without
Calling the Subroutine Libraries on an IBM 309016OOe

VF Mainframe Under the VM/XA Operating System, on
an IBM PC/80486 Running at 50 MHz Under DOS 5.0,

or on an IBM PCIAT 80286 With an 80287 Floating-
Point Coprocessor Running at 8 Mhz Under DOS 3.2

of the IS appropriate generators gave a p value of .433,
which shows a good fit of the p values to the uniform dis
tribution. Furthermore, because the second-trial p values
were larger than .05, it is probable that the suspect p
values on the first trial were the result of mere chance
fluctuations. The p values smaller than .0001 for the
second-trial runs-up, runs-down, and triplets tests on
RANDU confirm the inappropriateness of this generator.

DISCUSSION

be more than 100 times slower than the Lewis et aI. (1969)
generator involving only double-precision arithmetic.

The SAS generator is about 12 times slower on an
80486 than on a mainframe, but the programs coded in
Turbo Pascal with double-precision arithmetic on an
80486 are only about 3 times slower than the programs
coded in VS FORTRAN on a mainframe. By making use
of the extended-precision arithmetic of Turbo Pascal, one
can even have the algorithm of Fishman and Moore with
one of the two smallest multipliers run about 32 times
faster than on the mainframe. Note also the speed of the
built-in Turbo Pascal Random function. This is sheer
"mainframe" performance. The built-in QBASIC RND
function is disappointing in this respect.

For Turbo Pascal, the algorithms run about 40 to 50
times slower on an 80286 than on an 80486. For the sta
tistical packages, it is about 20 times slower, and for
BASIC, about 7.5 times slower. It seems that QBASIC
does not make optimal use of the 80486 speed.

It should be mentioned that the relative slowness of the
statistical software packages in generating pseudorandom
numbers is the price to pay for the additional features they
offer for using the pseudorandom numbers. For example,
in the case of DAT ASIM, the uniform random numbers
are stored in an array for subsequent use, which requires
the evaluation of two subscripts on each invocation, and
the ability to alter the values of the multiplier or modulus
means that these are represented internally as variables
rather than constants. Consequently, the speed perfor
mance of DATASIM is not the speed performance of the
congruential algorithm with multiplier 16,807 and modu
lus 231-1 as such. The latter is given in the row labeled
Lewis in Table 4. The same applies to SAS. An indicator
of the speed performance of its algorithm with multiplier
397,204,094 and modulus 23 1 -1 as such is given in the
row labeled Fishman and Moore I in Table 4.

On the basis of the theoretical and empirical results,
one can conclude that the available pseudorandom num
ber generators in statistical packages such as SAS, SPSS,
ESSP, and DATASIM; in compilers such as Turbo Pascal
and APL; and in mathematical software libraries such as
NAG, ESSL, and IMSL are good enough to justify their
use. This should be reassuring, because recently some
doubt has been raised about the reliability of these gener
ators and because programming and debugging alternative
algorithms could be a very time-consuming activity, es
pecially if one wanted to generate random variates accord
ing to a specific distribution (see, e.g., Brysbaert, 1991;
L'Ecuyer, 1990; Lordahl, 1988; Ripley, 1983, 1988).

However, the empirical results indicate that it is inap
propriate to change the DATASIM default multiplier to
one of the Fishman and Moore multipliers, because the
inaccuracy in the multiplications causes serious depen-

1.9000
1.0900
0.121Oa

0.6530c

0.521Oa

0.3790'

0.1150
0.0500
0.0030a

0.0870 b

0.0140a

0.0074'

0.0023
0.0035
0.0088
0.0093

The Speed of the Generator
The time needed to produce one pseudorandom num

ber with the software packages, the built-in functions of
the compilers, and the algorithms with or without calling
the subroutine libraries described above were monitored
by generating 200,000 numbers on an ffiM 3090/6OOe VF
mainframe under the VM/XA operating system or on an
ffiM PC/80486 running at 50 MHz under DOS 5.0, or
10,000 numbers on an IBM PC/AT 80286 with an 80287
floating-point coprocessor runningat 8 MHzunderDOS 3.2.
Clock speeds were verified with the Landmark System
Speed Test (Landmark Research, 1990). Timing the
pocket calculator generators was not considered relevant,
because the time needed to produce pseudorandom num
bers is mainly a function of the ability to use the pocket
calculator interactively.

Table 4 shows that it takes less than .01 msec to generate
a pseudorandomnumber on a mainframe, except when one
uses the Fishman and Moore algorithms. The quadruple
precision arithmetic in the latter causes the generator to

NAG
CERN
GUM
SAS
DATASIM
Turbo Pascal
BASIC
Wichmann and Hill 0.0045 d

Fishman and Moore Ie o.zaoo'
Fishman and Moore 2h o.zaoo'
Lewis' 0.0022 d O.OO66a 0.329Oa

"Using Turbo Pascal Version 6.0, double-precision. bQBASICVersion
1.0. cGW-BASIC Version 3.2. dUsing VS FORTRAN Version 2,
double-precision. "The two smallest Fishman and Moore multipliers
(Appendix A). 'Using VS FORTRAN Version 2, quadruple-precision.
'Using Turbo Pascal Version 6.0, extended-precision. hThe three larg
est Fishman and Moore multipliers (Appendix B). 'The algorithm of
Lewis, Goodman, and Miller (1969) used by, for example, DATASIM
Version I. I.
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dencies in the pseudorandom numbers. It is also not pos
sible to recommend routine scientific use of the BASIC
built-in RND function, because the generator is undocu
mented. Finally, the CERN and GUM generators do not
seem preferable, because they fail the spectral test in the
fourth dimension.

It should also be remarked that the pseudorandom num
ber generators in statistical packages are usually relatively
slow. Consequently, if speed is important and one merely
needs pseudorandom numbers, one should implement the
algorithms of Appendix A or B, or use the built-in func
tion of a compiler such as Turbo Pascal.

If one needs pseudorandom numbers, the use of exist
ing commercial software is not required at all. In fact,
the easy-to-implement algorithms (see the Appendixes)
are superior to most of the available built-in functions.
The appropriateness of the algorithms depends on the pre
cision that one's computer or compiler can handle. Ifonly
single-precision arithmetic is available, the Wichmann and
Hill generator seems to be a good choice (Brysbaert, 1991;
Wichmann & Hill, 1987). However, if double-precision
arithmetic is available, a prime-modulus multiplicative
congruential generator with modulus 23 1

- 1 and multiplier
16,807 is more appropriate for large applications, because
of its simplicity and the resulting speed advantage. If
extended-precision arithmetic is available, the same gener
ator with multiplier 62,089,911 or 742,938,285 (Appen
dix A) has an additional theoretical lead. On the basis of
the statistical tests concerning uniformity and indepen
dence, the use of the first generator of Van Es et al. (1983)
is not recommended. If only a pocket calculator is avail
able, the second generator of Van Es et al. would seem
to be a good choice.

Finally, it should be remarked that the quest for the op
timal pseudorandom number generator is not over. As
computer power gets progressively cheaper, more robust
generators with longer periods will be needed, and as
hardware configurations become increasingly sophisti
cated, the tools will be available to provide them.

A Word of Caution
The results of the present study can be misrepresented

in three important ways, all of which have to do with
generalizability. Therefore, it seems appropriate to state
explicitly what the study does not show..

1. The good results with the tested implementations do
not generalize to all other implementations. For exam
ple, Afflerbach (1985) and Aldridge (1987) have reported
specific problems for the Apple II series of computers,
not dealt with in this review. Mcleod (1985) even found
problems in implementing the Wichmann and Hill algo
rithm on Prime-400 computers, because on these machines
only 23 bits are used for the representation of the frac
tional part of a real variable.

2. The good results with the tested congruential gener
ators do not generalize to all other generators. For ex
ample, Ferrenberg, Landau, and Wong (1992) have shown
how fast implementations of four noncongruential gener
ators severely biased their Monte Carlo simulations of the

behavior of atoms in a magnetic crystal. However, the
only congruential algorithm that they tested (the genera
tor of Lewis et al., 1969, the default in DATASIM) gave
good results, even when alternative algorithms were used
to increase the speed.

3. The good results with the algorithms to generate uni
form pseudorandom numbers do not generalize immediately
to any complete application. It can be that the interaction
with or the position in the complete algorithm is prob
lematic. For example, Brysbaert (1991) and Castell an
(1992) have shown that the random permutation algorithm
proposed by Nilsson (1978) does not generate permuta
tions that are equally likely and that the deviations are
extreme and systematic, even if one has a good implemen
tation of a good pseudorandom number generator. As
another example, Brysbaert and Cavegn (1993) have
shown how multiple reseeding of the pseudorandom num
ber generator in the same program may lead to severe

. departures from randomness.
Consequently, the results of this study are by no means

a safeguard for the correct application of algorithms for
randomness. This study merely compares the tools for
starting to build these applications and presents the best
ones. For each application, it is the responsibility of the
researcher to scrutinize the final product.
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NOTES

I. We will not deal with the Fibonacci and the Tausworthe genera
tors because they are rarely used, and only little theory is available (see
Marsaglia, 1976, 1985).

2. In former SAS versions,there was a separate UNIFORM function
using a multiplicative congruential generator with multiplier 16,807,
modulus 2". and a 64-value shuffle table. The seed had to be either
oor a five-, six-, or seven-digit odd integer (SAS, 1988). From Ver
sion 6.04 on, the UNIFORM function produces the same streams of
numbers as the RANUNI function.

APPENDIX A
A Turbo Pascal Function for the Prime-Modulus
Multiplicative Congruential Generator Proposed

by Fishman and Moore (1986) Using SO-Bit
Extended-Precision Arithmetic

function fishman : extended;

{Fishman is a function to generate one pseudorandom real
between zero and one following Fishman and Moore (1986).
An extended-precision variable with the name 'seed' should be
initialized in the main program with a positive integer. A mathe
matical coprocessor is required.}

const a : extended = 742938285; {the multiplier}
m : extended = 2147483647; {the modulus}

begin
seed: = (a*seed) - (int«a*seed)/m»*m;
fishman: =seed/m;

end;

{The multiplier a can be changed to 62089911. If the multiplier
is changed to 397204094, the generator proposed by Learmonth
and Lewis (1974) is obtained. If it is changed to 16807, the
generator proposed by Lewis, Goodman, and Miller (1969) is
obtained. In the latter case only double-precision arithmetic is
required.

The correctness of the implementation can be checked with:

program testfish;

uses crt;

var i : longint;
u, seed: extended;

begin
drscr;
seed: =2147483646;
for i: = 1 to 10 do

begin
u: =fishman;
writeln(u: 10:10);
end;

readln
end.

This should give .6540424017, .2032902977, .1634123433,
.0948051145, .1617738056, .6769099178, .4410270808,
.081%11824, .3259203002, and .9101976547.}

APPENDIX B
A VS FORTRAN Version 2 Subroutine for the Prime Modulus Multiplicative Congruential Generator

Proposed by Fishman and Moore (1986), Using 12S-Bit Quadruple-Precision Arithmetic

SUBROUTINE FISHMAN(QSEED,U,N)
C

INTEGER N,I
REAL*16 QSEED,U(N),QMULT,Q31Ml

C
C FISHMAN is a subroutine to generate pseudorandom reals between zero and one following Fish-
C man and Moore (1986). On entry, QSEED and N need to be specified. QSEED is a quadruple-
C precision constant between lQO and 2147483646QO and N is an integer constant specifying the
C number of pseudorandom reals. The output vector U gives N quadruple-precision pseudorandom
C reals between zero and one.
C

QMULT= 1343714438QO
Q31Ml =2147483647QO
DO 7 I=l,N
QSEED=QMOD(QMULT*QSEED,Q31Ml)
U(I) = QSEED/Q31 M1

7 CONTINUE
RETURN
END



The correctness of the implementation can be checked with:

This should give .3742842047, .8185105211, .8821909571, .1886723238, .5398265391,
.6456288102, .8941928232, .8355328761, .0669999332, and .6502664646.

QMULT can be changed to 1226874159QO, 950706376QO, 742938285QO, or 62089911QO. If
QMULT is changed to 397204094QO, the generator proposed by Leannonth and Lewis (1974) is
obtained. If QMULT is changed to 16807DO, the generator proposed by Lewis, Goodman, and
Miller (1969) is obtained. In the latter case only double-precision arithmetic is required.
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C
C
C
C
C
C
C
C
C INTEGER J
C REAL*16 V(1O)
C CALL FISHMAN(2147483646QO, V, 10)
C DO 6 J=l,1O
C WRITE (*,100) V(J)
C 6 CONTINUE
C 100 FORMAT (F12.1O)
C STOP
C END
C
C
C

APPENDIX C
Description of the Battery of Statistical Tests Used in the
Empirical Analysis of Pseudorandom Number Generators

The Kolmogorov-Smirnov distribution test and the chi-square
goodness-of-fit test are well-known tests for uniformity (see,
e.g., Siegel & Castellan, 1988). The other tests are less known
and are presented below. This has already been done for this
journal by Edgell (1979), Strube (1983), and Rasmussen (1984),
but here some further details are given.

Gaps, Runs-Above-the-Mean, and
Runs-Below-the-Mean Tests

Gaps tests are used to test for cyclical trends in a series of
n observations. The term gap is used to describe the distance
in the series between two numbers that lie in the interval irr;
r u) . A gap ends at Xj if ri -s Xj -s r u and the next gap begins
at Xj>l.

To perform the gaps test, the number of gaps of different
lengths is counted. Let OJ denote the number of gaps of length
i, for i = 1, 2, ... k-1, and let Ok denote the number of gaps
of length k or greater. An unfinished gap at the end of a se
quence is not counted.

Under the null hypothesis of randomness, the expected fre
quencies for gaps of length i, ei, is

n

e, = p(l_p);-1 EOI
1=1

if i < k, and
n

e, = (1_p);-1 EOI
1=1

if i = k, with

ru-rf
p = ---

rmax-rmin

where r max - r min is the length of the interval of all possible num
bers. The usual x' statistic with k-1 degrees of freedom,

k (o;-ei)'
x' = E--,

;=1 e;

is used to test this null hypothesis.
A runs-above-the-mean test can be understood as a gaps test

with rt equal to the lowest possible xj and r u equal to the ex
pected value of xj; a runs-below-the-mean test as a gaps test
with n equal to the expected value of Xj and ru equal to the highest
possible xj.

Runs-Up and Runs-Down Tests
Runs tests are used to test whether the frequencies of ascend

ing or descending sequences of certain lengths in a series of ob
servations deviate from the frequencies that might be expected
if the observations were random numbers. A run up is a sequence
of numbers in increasing order. A run up ends at Xj when Xj>l <
Xj and the new run begins at Xj>l'

To perform the runs up test, the number of runs up of differ
ent lengths is counted. Let 0; denote the number of runs of length
i, for i = 1,2, ... k-1, and let Ok: denote the number of runs
of length k or greater. An unfinished run at the end of a sequence
is not counted.

An approximate X' statistic with k degrees of freedom,

x' = (o-e)TE-I(o-e),

is used, where 0 is the vector of observed frequencies, oi, for
i = 1, 2, ... k, e is the vector of expected frequencies under
the null hypothesis of randomness, et, for i = 1, 2, ... k, and
E is the matrix of covariances of the frequencies under the null
hypothesis. For the derivation of the expected values and covar
iances of the frequencies, the reader is referred to Knuth (1981).

A run down is a sequence of numbers in decreasing order.
A runs-down test can be performed by multiplying each obser
vation by - I and performing a runs-up test. Other runs tests
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are described by Edgington (1961), Rasmussen (1984), and
Ripley (1987).

Pairs and Triplets Tests
Pairs and triplets tests are used to test whether the frequen

cies of certain pairs or triplets of adjacent observations in a se
ries of n observations deviate from the frequencies that might
be expected if the observations were random numbers. For the
pairs test, an m x m matrix 0 of observed frequencies is formed
containing the elements Ojk, which are the number of pairs
(Xi, Xi.,) such that

j-I j
-- <Xi <-

m m

and

k-I k
-- <Xi+l<-,

m m

where i = I, 3, 5, ... n - I, and m is chosen such that none
of the cells has an expected frequency of less than 5 (Siegel &
Castellan, 1988).

Under the null hypothesis that the sequence is random, the
expected number of pairs for each class (i.e., each element of
the frequency matrix) is the same; that is, the pairs should be
uniformly distributed over the unit square [0,1]'. Thus the ex
pected frequency for each class, ejk, is just the total number of
pairs divided by the number of classes:

m m

E EOjk
j=l k=1

ejk = e = m 2

A X2 statistic with m2
- I degrees of freedom,

m m

E E (Ojk- e )2
j=1 k=l

X2 =:...------
e

is used to test the hypothesis of randomness.
For the triplets test, an m x m tensor is formed in a similar

way. The null hypothesis, then, is that the triplets are uniformly
distributed over the unit cube [0, I]'. A X2 statistic with m' - I
degrees of freedom is used to test the hypothesis of randomness.

The Autocorrelation Test
An autocorrelation test can be used to check whether there

is no correlation between adjacent observations. To perform the
autocorrelation test for a series of n observations, the sample
autocorrelation coefficients of lags k = 1, 2, ... K, are com-

puted (K < n, n > I). The autocorrelation coefficient of lag
k is defined as

n-s k

E (xi-i) (Xi+k- i )
i=1

n

E (xi-i)'
i=1

A X' statistic with K degrees of freedom, defined as
K

X' = nE rl .
k=l

can be used to test the hypothesis of a zero autocorrelation func
tion (Box & Jenkins, 1976, pp. 290-293; Box & Pierce, 1970;
Davies & Newbold, 1979).

The Metalevel Kolmogorov-Smirnov Test
The results of first-level statistical tests for randomness can

be used again as input for a metalevel Kolmogorov-Srnimov test
to increase power (L'Ecuyer, 1988; Ripley, 1987). For, under
the null hypothesis of randomness, N independent repetitions
of first-level statistical tests result in N test statistics from a spe
cific theoretical distribution of test statistics. Consequently, the
empirical distribution of test statistics can be compared with this
theoretical distribution by using the Kolmogorov-Smimov cri
terion to test the null hypothesis of randomness. Furthermore,
following the probability integral transform theorem, testing
whether N statistics are plausible under the expected theoreti
cal distribution is the same as testing whether the N first-level
p values are distributed uniformly in the [0, I] interval (Mood,
Graybill, & Boes, 1974, pp. 202-203). With the Kolmogorov
Srnimov distribution test, the N first-levelp values are condensed
in one metalevel p value. This is the p value that is shown in
Table 3.

For example, if 100 gaps tests were performed on 100 con
secutive sequences of 200,000 pseudorandom numbers, all of
which result in very small p values, then the null hypothesis
of randomness would be rejected if one were using the metalevel
Kolmogorov-Smimov test. The same would be true if allp values
were very large, or, more generally, if all p values fell within
the same small range. So the metalevel Kolrnogorov-Smirnov
test does not take into account the magnitude of the p values
as such, but rather the distribution of the p values between 0
and 1. Only if the p values are distributed evenly over the [0, 1]
interval will the metalevel p value be high and the null hypoth
esis of randomness be not rejected.

(Manuscript received March 23, 1992;
revision accepted for publication April 20, 1993.)


