
Behavior Research Methods, Instruments, & Computers
1993, 25 (2), 238-241

9. SYMPOSIUM ON DATA VlSUALIZATION

Chaired by Frank Marchak, TASC

Dynamic programming for the analysis
of serial behaviors

EDWARD W. LARGE
Ohio State University, Columbus, Ohio

Studies of breakdowns in music performance can provide rich information about the planning
activities required for music performance, as well as offer significant advantages over studies
of skilled performance in other domains (Palmer & van de Sande, 1993). Yet despite the potential
benefits, documented evidence of errors in music performance is scarce, primarily because of meth­
odological limitations. One important practical problem that arises is how to find a correspon­
dence between the actual performance and the score, or intended performance. When performances
are long and complex, with potentially many errors, matching a performance to a musical score
becomes a nontrivial task. This paper describes an algorithm for this task, developed in the con­
text of a study of music production errors. The solution to the problem utilizes dynamic program­
ming techniques and runs in polynomial time.

Music provides a rich domain for the study of complex
serial behaviors. For example, studies of errors or break­
downs in music performance can provide information
about the planning activities required for music perfor­
mance and also offer significant advantages over other
studies of skilled performance (Palmer & van de Sande,
1993). First, the demands of producing many events
quickly are so great that errors are fairly common, even
in highly skilled performances (Palmer, 1992). Second,
the temporal demands of music performance require that
musicians continue when an error is made, which pro­
vides naturalistic conditions for the study of errors. Third,
sampling biases arising from error-collection methods can
be avoided by controlling the frequency of occurrence of
musical events in a piece. Finally, data collection via
computer-monitored musical instruments allows error de­
tection without the perceptual biases that arise in acous­
tic domains.

Despite the potential benefits of the musical domain,
documented evidence of errors in music performance is
scarce, primarily because of methodological limitations .
In music performance, a score is provided that specifies
a sequence of pitch events to be performed, with precisely
specified event onset times and durations. The performer

This research was supported by NIMH Grant lR29-MH45764 to Caro­
line Palmer. I thank John Kolen and Caroline Palmer for comments on
an earlier version of this paper. Reprint requests should be addressed
to E. W. Large, Department of Computer and Information Science, 2036
Neil Avenue, Ohio State University, Columbus, OH 43210.

is expected to execute precisely those pitch events called
for in the score, but deviations in timing and dynamics
are expected as part of the performer's artistic license.
It can be difficult to distinguish these artistic deviations
from actual errors. In addition, there is the practical prob­
lem of how to find a correspondence between the actual
performance and the score, or intended performance. At
first blush, this may seem easy, but when performances
are long and complex, with potentially many errors,
matching a performance to a musical score becomes a non­
trivial task.

This paper addresses this second issue. I describe an
algorithm developed in the context of a study of music
production errors, in which children and adult pianists
learned to play piano pieces. First, the subjects were asked
to perform familiar pieces, and then they were asked to
learn to play novel pieces. Under both conditions, their
performances were recorded on a computer-monitored pi­
ano. The goal of the first phase of computer analysis was
to code pitch errors according to a scheme similar to that
used in speech-error research (Dell, 1986; Garrett, 1975).
The problem of determining the correspondence, how­
ever, was complicated by two factors. The first was that
subject skill levels varied widely, so that although some
performances were perfect, others were barely recogniz­
able. The second was that some of the familiar pieces were
long and complex, such as Beethoven sonatas, with
hundreds to thousands of events. The nature of the data
to be analyzed, therefore, required a robust and efficient
algorithm.

238 Copyright 1993 Psychonomic Society, Inc.

ANALYsIS OF SERIAL BEHAVIORS 239

(I)

for j f- m downto I

Figure 1. Procedure ScoreTable.

score[,lUl f- value(A['l, I(1) + rowMax(i+l,j+I, score)

o , if i>n, or j>m
2 +score(i+ I,j+ I) (match)
1 +score(i+ I,j+ I) (substitution) (2)

score(i+ I,j) (addition)
score(i,j+ I) (deletion)

max(
score(i ,j) =

We have defined this problem, however, so that it satis­
fies the principle of optimality (Brassard & Bratley, 1988).
That is, an optimal solution to this problem will contain
within it optimal solutions to subproblems. To see this,
imagine an optimal correspondence, Corr(l, I), in which
at - it is the first pairing. If at - it is removed, the
remainder of the correspondence is an optimal solution
to the subproblem Corr(2,2), which is created by remov­
ing at from A and it from J. If there were any solution
to the subproblem that had a higher score, we could sim­
ply add the pairing at - it to that solution, and we would
have a better (higher scoring) solution to the original prob­
lem. We formalize this notion with the following recur­
rence relation:

ScoreTable(A,/, score)

n f- lengtb(A)

m f- lengtb(l)

for i f- n downto I

A DYNAMIC PROGRAMMING SOLUTION

ries has an exponential lower bound; therefore, brute­
force search is out of the question.

It is possible on the basis of this formula to write a recur­
sive algorithm to generate an optimal correspondence, but
it, too, would have an exponential running time. The prob­
lem now is that this algorithm would generate the solu­
tion to the same subproblem more than once.

Fortunately, this overlapping-subproblems property
(Cormen, Leiserson, & Rivest, 1990) means that this
problem can actually be solved in polynomial time using
dynamic programming techniques. Dynamic program­
ming algorithms take advantage of the overlapping­
subproblems property by solving each subproblem once
and storing the solution in a table where it can be looked
up when needed. For this problem, there are in fact only
nrn unique subproblems. Figure I gives a procedure,
ScoreTable, which builds a table containing optimal scores
for each of the nrn unique subproblems. The table is con­
structed bottom-up (from bottom to top, right to left), so
that an optimal solution can simply be read from the table.

Here value(A[i]'/UD, returns the point value for the
pairing ai - ij, and rowMax(i,j) returns the maximum
score in row i beginning at column j. A table filled ac-

The first section of this paper describes in some detail
the problem of finding the best correspondence between
an actual and an intended performance and explains
why it presents an interesting computational challenge.
The next section gives a solution to the problem using
a technique called dynamic programming, and discusses
ways in which the basic solution can be improved and
refined to yield a robust and efficient computer pro­
gram. The final section describes some limitations of
the technique and the ways in which it can be general­
ized to the study of performance breakdowns in other
domains.

THE PROBLEM

In determining the correspondence between an actual
and intended performance (as defined by the musical
score), four types of occurrences must be identified. A
match occurs when the subject performs an intended event
correctly. A substitution occurs when the subject performs
an intended pitch event incorrectly (e.g., plays a wrong
note). An addition occurs when the subject inserts one
or more unintended events between the performance of
intended events. Finally, a deletion occurs when the sub­
ject fails to perform one or more intended events.

More abstractly, let us defme a correspondence between
two sequences of events, A = {a\, a2, ... , an} and J =
{i\, i2 , ... , im }, the actual and intended performances,
as a sequence of pairings Corr(l,1) = {ai, - ijpai, ­
i)" ... , ail - ijJ between events in A and events in J.
Each pairing represents either a match or a substitution.
An event in A that does not occur in any pairing can be
considered to be an addition. An event in J that does not
occur in any pairing can be considered to be a deletion.
The correspondence must preserve the order of both se­
quences.

We can create an optimization problem by defining a
scoring function for the evaluation of candidate correspon­
dences. For each pairing, a match counts as 2 points and
a substitution counts as I point. Additions and deletions
contribute no points. Finding the best correspondence can
then be viewed as optimization of this scoring function.

The naive approach to this problem would be brute­
force search: Enumerate all legal correspondences be­
tween the actual and intended performance and then pick
the best one. But brute-force search is expensive. If n is
the number of events in the actual performance, and m
is the number of events in the intended performance, the
number of legal correspondences is given by!

k = in-moo) (~) (n:k) = (nn~':)! .

This function grows very quickly. For n = m = 3,
there are only 20 solutions to be checked, but for n =
16, m = 13 (as in Figure 2), there are 67,863,915 legal
correspondences, and most musical performances are
much larger. More formally, it can be shown that the se-

240 LARGE

else i~i+1

then i ~ nexti

ReadSolution(A,/,score)

Improving and Renning the Algorithm
The algorithm described above can be improved in an

important way. The overall time complexity of O(m2 'n)
is due to the row and column searching operations used
in both procedures. The complexity could be reduced to
O(m'n) by using auxiliary tables. If the algorithm kept
track of the appropriate row and column maxima in the
auxiliary tables as the main table is built, the need for
searches would be eliminated. The actual program devel­
oped for the study described above uses this technique.

The algorithm described in this paper applies only to
sequences made up of simple pitch events (i.e., single
notes). Most music also contains compound events (i.e.,
musical chords). It is necessary for the program to iden­
tify compound events and apply a slightly more complex
scoring function for them.

In addition, the scoring function employed usually ad­
mits multiple optimum correspondences, even in situa­
tions where human analysts believe that the intent of the
performer is unambiguous. The algorithm as presented
in this paper resolves the ambiguity simply by taking the
maximum score available when doing the row and column
searches. In practice, however, this does not always pro­
duce satisfactory results. This is because the scoring func­
tion fails to take into account information such as event
similarity and temporal structure of the performance. The
actual program must score event pairings on the basis of
similarity (e.g., the number of notes that are the same
in two chords, or the pitch height of two sequential notes);
it also allows the user to adjust the scoring function de­
pending on the stimulus characteristics.

Finally, the fact that the algorithm gives partial credit
for substitutions (which is how it identifies substitutions)
enforces a limit on the number of contiguous deletions
the algorithm can identify. There is a tradeoff between
identifying deletions in order to get an exact match a lit­
tle farther along in the correspondence and simply con­
sidering the events played to be substitutions, which get
partial credit and can "overpower" exact matches if there
are enough of them. To overcome this difficulty, the scor­
ing function used in the program weights exact matches
more heavily than the one presented in this paper.

The computer program based on the algorithm de­
scribed above is able to analyze even very large perfor­
mances (over 1,000 events) in a reasonable amount of
time. The program can provide output in matrix form and

SUMMARY AND CONCLUSIONS

ing for (leftmost, bottommost) maximum subproblem
scores. It prints out the constituent pairings of the cor­
respondence as it finds them. The effect of the algorithm
can be observed by noting the shaded entries in Figure 2.
Here, findRowMax and findColumnMax are similar to
rowMax, except these subroutines return the index of the
maximum score rather than the score itself. This proce-

. dure also takes O(m2'n), thus the overall algorithm takes
O(m2' n) time.

9 10 11 12 13

A3 A3 B3 D4 D4

Intended Events

j

J 17 17

17 ,.
OJg • A' ,S ts ,S rs ,.
-c 9 A' 13 " 13

'0 C4 '2 12 '2

11 A3 11 11 '0

'2 A3 '0 9

" A.

" B3

rs B3

,. D4

j~j+1

l v: next]

nexti ~ findRowMax(i+I,j+ I, score)

next] ~ findColumnMax(i+I,j+I, score)

if score[nextijU+lj > score[i+I][next}l

untili>norj>m

Figure 3. Procedure ReadSolution.

n ~ length(A)

m~ length(l)

i~ findColumnMax(I, I, score)

i~ 1

repeat

print('A[11HIIJ],)

Figure 2. The table created by procedure ScoreTable. Highlighted
cells indicate the component pairings of the correspondence printed
by procedure ReadSolution (see Figure 3).

cording to this algorithm for a sample problem is shown
in Figure 2. Each entry in the table, score[il[il, gives
the optimal score for subproblem Corr(i,j) according to
the recurrence relation given above. Since rowMax must
search a row each time it is called, it takes O(n) time,
and the entire procedure takes O(m2'n) time.

Next, an actual correspondence must be read from the
table. Figure 3 shows procedure ReadSolution, which be­
gins with the (bottommost) maximum score in column I
and steps down and to the right through the table search-

in a form suitable for input to statistical analysis programs.
We estimate error-eoding accuracy (by its first-run agree­
ment with human analysts) to begreater than 90%. Users
can adjust the scoring function to improve the quality of
the correspondence as necessary. Future work will inves­
tigate the possibility of representing the output in graphi­
cal "piano roll" notation (Palmer, 1989) in order to al­
low the user an intuitive, graphical means of adjusting
the correspondence manually to agree with his/her musi­
cal judgment of the performer's intention when automatic
analysis fails to give the desired results.

Finally, the algorithm presented in this paper is domain
independent. That is, it can be adapted to the analysis of
any serial behavior for which an actual performance and
an intended performance can be provided. Because of the
heuristic nature of the scoring function, however, domain­
dependent scoring functions must be developed empiri­
cally to suit the more important characteristics of the be­
havior under study.

REFERENCES

BRASSARD, G., & BRATLEY, P. (1988). Algorithmics: Theory and prac­
tice. Englewood Cliffs, NJ: Prentice-Hall.

ANALYSIS OF SERIAL BEHAVIORS 241

CORMEN, T. H., LEISERSON, C. E., & RIVEST, R. L. (1990). Introduc­
tion to Algorithms. Cambridge, MA: MIT Press.

DELL, G. S. (1986). A spreading-activation theory of retrieval in sen­
tence production. Psychological Review, 93, 283-321.

GARRETT, M. F. (1975). The analysis of sentence production. InG. H.
Bower (Ed.), The psychology of learning and motivation (pp. 133­
177). San Diego: Academic Press.

PALMER, C. (1989). Computer graphics in music performance research.
Behavior Research Methods, Instruments, & Computers, 21, 265-270.

PALMER, C. (1992). The role of interpretive preferences in music per­
formance. In M. R. Jones & S. Holleran (Eds.), Cognitive bases of
musical communication (pp. 249-262). Washington, DC: American
Psychological Association.

PALMER, c., & VAN DE SANDE, C. (1993). Units ofknowledge in music
performance. Journal ofExperimental Psychology: Learning, Mem­
ory, & Cognition, 19, 457-470.

NOTE

I. The number of legal correspondences can be counted in the fol­
lowing way. First, decide how many events in A are additions, and throw
these away. If n ? m, we must throwaway at least n - m events. For
each possible number of additions, k, select the k events to throwaway.
There are (k) ways to do this. Now, match the remaining (m - k)
events with the m events in I. Since we must preserve order, all we
really need to do is pick (m - k) events of I. There are (n ~kl ways
to do this.

