
Behavior Research Methods, Instruments, & Computers
/993, 25 (2), /27-/36

A powerful, inexpensive experiment controller
or IBM PC interface and

experiment control language

WILLIAM L. PALYA and DONALD E. WALTER
Jacksonville State University, Jacksonville, Alabama

A very powerful, but inexpensive, advanced technology (16 MHz 80C188EB) experiment con
troller is described. It can be programmed in either a BASIC-like (ECBASIC) or an ALGOL-like
(ECL) procedure specification language. It provides l-msec resolution, optional transparent total
data logging, and is designed to function as a remote peripheral processor in a network with vir
tually any computer acting as the network supervisor (e.g., IBM compatible or Macintosh). Each
serial port on the host computer can support up to 10 simultaneous experiments. The various
optional I/O modules provide for opto-isolated normally open or normally closed switch operation
input, high current output, as well as D/A and AID functions. Our I/O modules can also be plugged
directly into an IBM PC parallel port by using a small adaptor board. In this way, the advan
tages of using ECBASIC or ECL to control experiments are available to researchers who wish
to simply interface their host computer directly to the apparatus in order to minimize expense.

This paper presents the details of our new experiment
control computer. The functionality of our previous con
troller (Walter & Palya, 1984) has been greatly enhanced.
Two control languages are supported, the hardware can
be used either in a network mode with IBM-compatible
or Macintosh computers, or as a simple interface between
an IBM PC and an experimental apparatus. Several I/O
options are available, and l-msec resolution is provided.
The ruggedized %2-in. thick boards are commercially
manufactured, solder masked and silk screened. Signifi
cant new features of the procedure specification languages
include interrupt routines that provide a convenient way
to control concurrent processes, and six letter variables.

There are a vast number of ways that computers facili
tate the conduct of inquiry in psychology. In many cases,
prespecified outputs are presented to a subject and the re
sulting behavior is used to alter subsequent outputs or is
simply recorded. Computers and software have been op
timized for two types of research within this paradigm.
In one, typically labeled experiment generation, humans
respond on a keyboard in response to stimuli presented
on a CRT. As a result, special-purpose hardware is un
necessary. MEL and SuperLab are typical of this class
of system. The other type, typically labeled experiment
control, processes a variety of digital events, such as turn
ing on and off lamps or buzzers, and receiving a variety

This research was supported by NSF Grant DIR-89l5226 to W. L.
Palya. The authors thank Josey Chu for the graphics used in the pre
sentation and in this proceedings paper, and we gratefully acknowledge
Elizabeth Palya for contributions in all phases of this project. Correspon
dence and requests for reprints should be sent to W. L. Palya, Depart
ment of Psychology, Jacksonville State University, Jacksonville, AL
36265 (e-mail: palya@sebac.jsu.edu).

of digital switch operations, such as leverpresses. Occa
sionally, analog inputs and/or outputs are used. The Med
PC system and the controller described in the present
paper are of this latter type.

Most of the rationale underlying the appropriateness of
our implementation philosophy and the details of how to
use our system have been extensively covered for our pre
vious system and will not be repeated here. The interested
reader is referred to Cooper, Garcia, and Gibbon (1988),
D' Andrea and Knepton (1988), Palya (1988), Pevey
(1988), Walter (1988), Walter and Palya (1984), and
Weisman and Palya (1988). The present paper will present
only an overview of the research environment and the fea
tures available with the new hardware and software. A
very extensive user's manual (Palya & Walter, 1993) pro
vides detailed descriptions of how to set up and use the
current hardware and software. The language reference
sections for ECBASIC and ECL provide format informa
tion and examples of each instruction. The networking
sections for ECBASIC and ECL indicate how to set up
the network for each and how to use the PC and Macin
tosh support software. The final section provides detailed
information on the hardware itself.

Our Implementation Philosophy
There were three major decisions in the evolution of

our implementation philosophy. The initial and most fun
damental (illustrated in Figure 1) was the choice between
a time-sharing solution and a distributed-network solu
tion. A time-share solution uses a single CPU and rela
tively complex software and hardware to carry out mul
tiple experiments simultaneously. Worst-case latency to
service a response increases with each additional experi
ment; when it exceeds acceptable limits, an additional
computer is added.

127 Copyright 1993 Psychonomic Society, Inc.

128 PALYA AND WALTER

Figure 2. An illustration of the two most popular methods to specify
an experimental procedure: state notation versus algorithmic
notation.

Implementation Philosophy:
Data Recording

AlgorithmicState

Implementation Philosophy:
Procedural Specification

A distributed network, on the other hand, uses a small,
special-purpose controller (hardware interface plus micro
processor) at each experimental station, and interconnects
and supervises them over a single wire. We chose a
distributed-network solution because it maximized the reli
ability, simplified the hookup, and provided dramatically
faster worst-case response. Latency to service a response
does not increase with each additional experiment in that
each apparatus has its own CPU.

The second decision involved the nature of the procedure
specification language. The choice (illustrated in Figure 2)
was between a state-notation solution and an algorithmic
language solution. State notation specifies the nature of
each experimental state and the rules for transition be
tween them; an algorithmic language specifies various ex
perimental operations and path decisions. We chose to im
plement an algorithmic procedure specification system
because it was less cryptic, more researchers would have

Implementation Philosophy:
Hardware

Summary Complete

Time Share

Distributed Network

373130
373130

363083
365397
366002
366045

1
2

21
2
1
1

1
3
3
3

3
1

Responses = 2463

Reinforcers = 50

Figure 3. An illustration of two approaches to data collection. A
set of measures (e.g., total responses, nnmher of reinforcers, total
running time, etc.) versus total data collection (e.g., 363,083 msec
into the session, Light 21 came on and was foUowedat 365,397 msec
into the session by a peck to Key 2; pecks on Key 1 occurred at
366,002 msec, 366,045 msec, ... , and 373,130 msec, followed by
reinforcement at 373,130 msec).

- ••• 0

o

Figure 1. A schematic illustration of a time-shared and distributed
network research environment. Time-shared solutions have a rela
tively complex, centralized interface and long interconnects to the
experimental apparatuses. A distributed network, on the other hand,
has a simple, single-wire interconnect with each apparatus. Time
share solutions are obligated to add additional compute power to
maintain worst-case response times as tasks increase or get more
demanding. Distributed networks can simultaneously run a great
many experiments that are computationally, extremely complex, that
require extremely short delays to service an input, and that require
complete data recording.

prior experience with an algorithmic language, and those
programming skills could be used for other applications,
such as data analysis.

The final major implementation decision, illustrated in
Figure 3, involved the nature of the data saved. The choice
was between recording only a few preselected data sum
maries (e.g., total number of responses) versus maintain
ing a complete record of each event and when it occurred
(e.g., at 363,083 msec into the session, Light 21 went
on, and it was followed by a peck on Key 2 at 365,397
msec, etc.). We chose to make the recording of both sum
mary recordings and complete event transcriptions sim
ple. The facility to do total data recording enables more
detailed and more interactive analysis, as well as post
analyses in light of new information. We provided for
summary recording because it was easy to implement, it
makes for extremely simple data analysis, and some
researchers may actually prefer it.

EXPERIMENT CONTROL INTERFACE AND LANGUAGE 129

Hardware Options

Figure 4. A schematic illustration of theconfiguration options avail
able with the 8OC188EB Experiment Controller. There are four
daughter boards; they provide 2-A relays, 306-mA drivers, 5-A
triacs, and an I/O tester. These boards can be connected either to
theexperiment controller or directly to an mM PC through an adap
tor board plugged into the parallel port. The experiment controller
can be connected to a wide variety of computers, as well as to a dumb
terminal, if a stand-alone system is desired.

Hardware Options
As illustrated in Figure 4, there are three ways that our

hardware can be used to conduct research.
1. As a distributed network: In this case, each ex

perimental apparatus is a self-contained, remote computer
supervised and integrated by some host computer. The
experiment controllers can be connected to virtually any
computer ranging from a TRS80, Macintosh, or PC to
a Vax. Day-to-day activities, such as writing procedure
specifications, data archiving, and data analysis are car
ried out on the host computer using its resources. An ex
periment controller CPU and the desired 110 interface are
typically mounted on the experimental apparatus. The con
troller is then connected to the host computer through a
single wire.

2. As an interface for an ffiM-compatible computer:
In this case, an adaptor and the desired I/O interface are
mounted on the experimental apparatus. The adaptor is
then connected to an ffiM-compatible computer's printer
port through a flat cable.

3. As a stand-alone computer: Our experiment con
troller can be programmed with a simple "dumb" ter
minal attached to the serial port. In this case, an ECBASIC
program is entered line by line and run exactly as any
BASIC program. However, programs cannot be stored,
and data must be printed to a local printer or manually
transcribed from the terminal screen. The tradeoff in this
case is less convenience for less expense.

The controller (18 X 16 em) is based on a 16-MHz
8OC188EB. It executes 8,088 instructions, has 128K bytes
of RAM, 128K bytes of ROM, two RS-422 communica
tion ports, and a built-in serial line diagnostic monitor.
Interchangeable daughter boards, which provide the ability
to directly connect to most research equipment, can be
connected to the controller. The controller supports up
to two of our digital 110 daughter boards plus almost any
of the commercially available "SBX" family daughter

boards. A wide variety of analog/digital and digital!
analog, as well as parallel and serial SBX boards, are
available from a number of suppliers.

Our daughter boards can also be connected directly to
an IBM PC by using a small adaptor board (11.5 x
10 em) plugged into the parallel printer port. In this way,
researchers can run a single experiment using the power
and convenience of ECBASIC or ECL at minimum ex
pense. The major cost is that the existing CPU must be
dedicated to experiment control while an experiment is
running. An advantage of this as a "start-up" approach
is that as research is expanded and funding becomes avail
able, experiment controllers can be added with virtually
no lost investment and only a minimal wiring change.

Each of the different daughter boards provides at least
20 outputs and four optically isolated inputs. If desired,
the daughter boards can be partially populated in order
to reduce costs. The four versions provide different cur
rent capabilities. The driver interface board (18 x 7.5 ern)
contains 20 300-mA drivers, one 2-A relay, and one IO-A
relay. The relay interface board (20 x 10 ern) contains
20 2-A relays and one IO-A relay. The triac interface
board (23 X 13.5 ern) contains 20 5-A triacs, one 2-A
relay, and one IO-A relay. A diagnostic tester/program
development module (16.5 x 8 em) is also available. It
contains 24 LED indicators and four pushbutton input
switches.

Installation
Our view is that the many wires between an apparatus

and the control equipment should be relatively short, out
of the way, and not subject to a lot of movement. Most
reliability problems in computer/electronic equipment
originate in wires and connectors. Therefore, the boards
are ruggedized and were designed to be mounted in or
on the experimental apparatus itself. We mount them,
without an enclosure, on the back of the pigeon "intelli
gence panels" or on the back of the chambers. A typical
installation would use an I/O board permanently mounted
on the intelligence panel and attached to the various in
puts and outputs through wires only a few centimeters
long. Connections are made to a pluggable, screw-type,
terminal strip on the daughter board. The daughter board
would then be connected to the experiment controller,
which can be also be mounted on the intelligence panel
or some other convenient place (such as on the back of
the experimental enclosure). The interconnection is with
pluggable, insulation displacement, flat cable jumpers. A
small, 5-V power supply is then attached to the experi
ment controller. A second power supply is used to pro
vide whatever power is used to operate the lights and
feeder for the experimental apparatus. It is attached
directly to the daughter board. This allows researchers
maximum freedom with respect to apparatus voltage and
maximum "noise" isolation for the experiment controller.
We mount our power supplies on the side of the pigeon
chamber so that the on/off switch is convenient. In the just
described configuration, the apparatus is a self-contained,

experimental
apparatus

~ r---
, driver I

EJ
, tester I

experimental
controller

CPU

130 PALYA AND WALTER

remote, networkable station, which can be plugged in at
any place along a single, four-conductor network link.
Our chambers are about 60 m from the host computer,
and nine chambers are plugged into the same wire.

As an altemativeoption, the I/O daughter board mounted
on the intelligence panel may be connected to our paral
lel port adaptor board and plugged directly into an mM
PC or IBM PC clone. The adaptor board is powered by
virtually any wall outlet 9-VAC power adaptor. ECBASIC
or ECL is then run on the mM PC itself, and events in
the apparatus are directly controlled through the parallel
port.

Using the System
The conduct of inquiry typically involves three distinct

activities. Initially, the experimental procedure must be
specified: for example, "tum on output AAA, if behavior
BBB then do CCC, and record DOD." Second, the pro
cedures must be enacted: for example, "run subject AAA
with procedure BBB in apparatus CCC and label the ob
tained data file ODD." Finally, data analysis could in
volve, for example, "select data AAA, calculate BBB,
and graph CCc." Each of these activities will be cov
ered in tum.

Procedure specification. The researcher invokes a
word processor or editor and enters the procedure speci
fication program in the same way that any other text is
entered. All the facilities of the editor can therefore be
used. For example, frequently used blocks of code can
be cut from one program and pasted into another program.
The resulting program is then stored on the disk as a sim
ple ASCII file.

Procedure enactment. The researcher invokes a com
munication program that transfers files between a disk and
a serial port. Our software, ExpRun, was specifically writ
ten for supervising experiments run on our controllers.
A version is available for the mM PC, Macintosh, and
Vax. Experiments are enacted by respondingto its prompts
for apparatus number, procedure, subject, weight, and
resulting data file name. In addition to loading and run
ning the designated procedure in the designated appara
tus, ExpRun provides a variety of interconnect facilities
and supports both summary data recording and transpar
ent total data recording. If complete event logging is
desired, classes of events designated in the ECBASIC or
ECL procedure specification, such as pecks to key left,
are automatically and transparently logged and uploaded
to the designated disk file. Any other program that links
serial ports and disk files could be used to provide a sub
set of these functions. Modem communication programs
such as ProCom and White Knight can be used to load
ECBASIC programs and retrieve summary data.

Data analysis. If summary data had been obtained, then
the data files can be imported directly into Excel, IMP,
Systat, and so on. The experiment controller allows the for
matting of data for import into virtually any commercially
available software. If, on the other hand, complete event
records had been obtained, then the data must first be

preprocessed. A program must be written that goes
through the raw data file extracting the information of in
terest, such as, for example, the total number of pecks
and total number of pecks in green that were followed
by yellow. These data files can then be directly plotted
or imported into an analysis program. We do not currently
provide a select utility, but we have found the software
to select data to be relatively easy to write.

Procedure Specification
There are three ways to specify an experimental pro

cedure to be carried out by the experiment controller. Ex
periment Control BASIC, or ECBASIC, is the simplest
and easiest to use. Specific experiment control instruc
tions were developed so that the ease of using BASIC
would be available, without the cumbersome problems
typically associated with attempting to do real-time ex
periment control in Dartmouth BASIC. ECBASIC is very
fast; it provides for l-msec resolution, while automati
cally and transparently providing for total data collection.
Experiment Control Language, or ECL, is an ALGOL
like language conceptualized specifically for running ex
periments. It also provides for l-msec resolution and to
tal data collection. However, it can carry out many more
instructions per second than can ECBASIC and is there
fore the preferred option if worst-case response latencies
of less than a few milliseconds must be maintained, while
also carrying out compute intensive feedback. A third op
tion is to tailor ECBASIC or ECL to specific research
needs. Source code is available to "not-for-profit" users
who are in extremely demanding situations and who wish
to optimize either to their needs. This third option is
neither necessary nor advisable for the average researcher.

ECBASIC. ECBASIC is very much like all other
BASICs. Assignment of variables, program flow, and data
handling are the same. Any textbook on BASIC will pro
vide examples of how to accomplish various tasks, and
it is very likely that a BASIC guru is handy to any labo
ratory. This, in fact, was a major reason that we chose
to work within the syntactical rules of BASIC for one of
our procedure specification languages.

Appendix A provides a list of the program mode com
mands, functions, and system control commands avail
able with ECBASIC.

The traditional BASIC program commands are avail
able. FOR and NEXT set up and delimit a loop. GOTO
unconditionally redirects program flow. GOSUB and
RETURN provide the ability to exit program flow from
a variety of places, execute a common subroutine, and
subsequently return to the exiting point in the program.
IF THEN provides for branching based on a comparison.
ON allows for multiple path branching. The READ,
DATA, and RESTORE commands provide the facility to
use an array of predetermined values in a program.
SLEEP halts program execution for a time period. Because
ECBASIC is designed for real-time experiment control,
this instruction is not the problem it was in Dartmouth
BASIC. REM provides for comments in a program. DIM

EXPERIMENT CONTROL INTERFACE AND LANGUAGE 131

allocates space for variables. STOP terminates program
execution. END signifies the last line of a program,

A number of input/output commands have been added
to BASIC. Most are self-explanatory. TURNON turns on
and TURNOFF turns off one of the 48 outputs. PULSON
and PULSOFF pulses on or off a particular output for
some time and then returns that output to its previous state,
LINK links outputs such as the magazine light and maga
zine together so that they can be conveniently manipu
lated as a single output. FREEZE, BLANK, and THAW
are for storing the status of the outputs, turning off all
outputs, and subsequently returning them to their previous
state, as is often desired for a reinforcement cycle.

COUNT initiates the transparent counting of an input
into a variable and is extremely useful. ECBASIC can au
tomatically and transparently increment a designated vari
able every time a response occurs on a particular input.
For example, following COUNT 1,PECKS, all responses
on Key 1 automatically increment the variable PECKS.
The researcher need only base decisions on the current
value of that variable or on the difference between its cur
rent value and some previous value at an anchor point.
CLICK transparently pulses a designated output on every
occurrence of the specified input without further program
intervention. This instruction can be used for feedback
clicks or for running a cumulative recorder. CLOCK
transparently stores the time of each occurrence of a speci
fied input in a variable without further program interven
tion. This instruction can be used to conveniently store
interresponse times when transparent, complete data log
ging is not used.

ONKEY and ONTICK specify interrupt routine pointers
and allow the researcher to easily write concurrent pro
cedures. The procedures for each of the concurrent pro
cesses can be written independently. If one of the speci
fied events, such as a left-key peck or right-key peck,
occurs, the program will "go sub" to the designated in
terrupt routine, and can then do whatever is appropriate
in response to that event. In this way, the program can
wait in a loop and whenever an appropriate input occurs,
it can do the code appropriate for that behavior and sub
sequently return to the wait loop. ONKEY interrupts on
an input, and ONTICK interrupts on a time.

A number of instructions have also been added to
BASIC to facilitate the transmission of information up the
network link (automatically and transparently stored to
the disk file under the file name specified when the ex
periment was started by ExpRun). The experiment control
program need not keep track of what file to write to, it
need only put items into its output stream. REPORT speci
fies an input or timer as one that should be automatically
logged to the network link each time it occurs. MARKER
is a pseudoevent that is not necessarily associated with
anything presented to the subject and is available for use
when it simplifies the analysis of complete data logs. For
example, if a marker is output 1 min before an event, then
the rate in the minute before an event can be calculated
without doing a backspace through the data stream after

the event is found. SEND allows the program to send data
other than the items designated in REPORT up to the ap
propriate disk file, MONIT allows the status of some vari
able to be monitored in real time while the experiment
is being run. PRINT allows a program to output or print
data to the network line when only summary data are col
lected. In this way, sending data to the appropriate disk
file on the host computer is exactly the same as sending
it to a printer. A hard copy of the resulting disk file can
be subsequently obtained by a printing utility on the host
computer, or the data can be imported directly to a data
analysis package, LPRINT outputs data to a local printer
if one is attached to the experiment controller's second
serial port. In this way, a self-contained experiment that
runs many months could directly output daily or weekly
logs without the use of a host computer.

Instructions for more advanced programmers are avail
able. STICK and HTICK start and halt a timer that can
be used to generate an interrupt at the specified time,
POKE stores a particular value into a specific memory
location. CALL provides for a call to an assembly lan
guage routine. CLEAR clears the values from all the vari
ables. ALLOC forces the allocation of a block of mem
ory to the program. INPUT reads numerical values from
the network line. OUTPB and OUTPW transmit a byte
and a word, respectively, to the SBX port. CONFIG al
lows each input to be configured as normally open or nor
mally closed and to have a specified debounce time.

Functions are also provided in ECBASIC. A function
stands for some specific value and is therefore essentially
the same as the variable A after a LET A = 10 statement.
A function can be used in any arithmetic expression just
as if it were a number. ABS(X) is evaluated as the abso
lute value of X. SGN(X) is evaluated as a -lor + 1, de
pending on the value of its argument. RANGE(X,Y) is
evaluated as a random number in the range X to Y.
PROB(X) is evaluated as a l ,with the probability speci
fied by X. RANDO provides a random integer. DRANDO
provides a double precision random number. SELECT()
selects a number from an array without replacement.
MOD(X,Y) provides the remainder of X divided by Y.
TIME(X) is an extremely powerful and therefore useful
function. It is evaluated as the time since variable X was
used to store the current time or to "anchor" time. For
example, if at any point in the program, B is set equal
to the current time or "time since 0" (B=TIME(O)), then
TIME(B) or "time since B" can subsequently be used to
provide the time since B. No clocks need ever be checked
and no timers need ever be incremented by the procedure
specification written by the researcher. ECBASIC does
all of that transparently by itself.

The following functions are provided for the more ad
vanced users. ADDRO returns the address of the specified
variable. PEEK(X) returns the contents of the specified
memory location. INCHO returns the value of a character
read from the network line. LINCHO returns the value
of a character read from the second serial port. INPBO
and INPWO input a byte and a word, respectively, from

132 PALYA AND WALTER

the SBX port. FREEO returns the amount of free
memory.

System control commands are most applicable to the
version of ECBASIC, which runs on the PC and controls
the experimental apparatus through the printer port. An
ECBASIC program can be stored on the disk with SAVE
and retrieved with LOAD. The user can return to DOS
with QUIT. The program space can be initialized with
NEW, programs can be executed with RUN, and pro
grams can be LISTed to the screen. Additionally, special
network control commands (unnecessary to the average
researcher) are available. ECHO and NOECHO are pro
vided for efficient network communication. OFF directs
a controller to disconnect from the network, and
OFFRUN directs a controller to disconnect and then be
gin running the procedure specificationprogram. The net
worked controllers LIST to the network and LLIST to a
local printer.

If ECBASIC is run on the host and the experimental
apparatus is connected via an interface plugged into the
printer port, then both the CRT and keyboard are sup
ported by ECBASIC. As a result, they can be used as part
of the experimental apparatus. PRINT writes to the CRT,
and INPUT and INCH read from the keyboard.

Appendix B provides a listing of a realistically com
plex experimental procedure implemented in ECBASIC.
The task is a two-key, concurrent schedule with a change
over delay (COD). This procedure specifiesthat responses
to either of two inputs occasionally produce a reinforcer.
The appropriate time for a response to one or the other
is independent and unpredictable (much like two one
armed bandits with payoffs governed by some timing
mechanism). An added requirement is that following a
change to the other alternative, no response will be rein
forced for 2 sec. An attempt was made to solve it in a
way that was neither flat-footed nor arcane. The follow
ing text is included to facilitate a careful examination of
the program listing, rather than being self-explanatory.

Because it is good programming practice in ECBASIC
to put interrupt routines at the beginning of a program
for faster execution, the program starts (line 10) by jump
ing around those routines to line 1000. It then begins by
allocating space for an array of variable-interval (VI)
values and VI constants (1000), specifying the number
of reinforcers (1010), and the mean VI duration (1020).
Next, it sets up an array of FleshIer-Hoffman values for
each of the concurrent Vis. (Our procedure is to use root
values and expand them to the desired VI. Only six are
used in this example to shorten the length of the listing
[1030-1060].) It then specifies that each occurrence of
input I and input 2 is to be temporally tagged and put
into the data stream (1070, 1080). Markers that desig
nate the beginning of each VI (1090, 11(0) are then put
into the data stream. It then specifies that the current VI
interreinforcement intervals for the two keys are each to
be a random element from the array of potential VI values
(1110, 1120). The program then specifies where to go
whenever there is a peck on Key I (1130) and whenever

there is a peck on Key 2 (1140). The actual experiment
begins by initializing the reinforcement in progress flag
(2000) and the time remaining in the COD (2010). In
order to keep track of which key was pecked last for the
COD, LASTKY is initialized to zero (2020). The two VI
values are started decrementing toward zero by starting
Tickers I and 2 (2030, 2040). The houselights and the
blue keylights behind the left and center keys are illumi
nated (2050), and then (unless reinforcement is occurring)
the program waits for a peck (3000) in, what is in effect,
a while loop. If a peck on Key 1 occurs, ECBASIC will
go to subroutine at line 100 (as specified in the ONKEY
1,100 instruction [1130]). Ifa peck on Key 2 occurs, EC
BASIC will go to subroutine at line 300 (as specified in
the ONKEY 2,100 instruction [1140]).

Suppose an input on Key I occurs. As directed by the
ONKEY I instruction, ECBASIC starts executing at line
100 and does the "what-to-do-when-Key-f-occurs pro
cedure. " In this example, the experimental procedure pro
hibits pecks immediately following a switch to a differ
ent key from being reinforced. As a result, the first thing
ECBASIC does is to determine if the previous peck had
been to the other key. If it had been, then the LASTKY
pecked indicator is updated (110), the COD time remain
ing is set to 2 sec (120), the COD is begun decrementing
(130), and program flow returns to the main wait loop.
If it had not been to the other key (100), the LASTKY
pecked indicator is updated (150); if it has been long
enough since the first peck in this series (160) and if the
VI time has elapsed (170), it will be reinforced (180 and
the following statements). So that the program can get
a new VI value for the appropriate schedule, the obtained
reinforcer is labeled (180). The module of code that starts
reinforcement is then entered. The two VI tickers are
halted (190,200). All outputs are turned off (210). The
magazine light and magazine are operated (220). The start
time of the reinforcement cycle is noted (230), and the
program returns (240) to the main while loop at 3000.
In this case, reinforcement is on (3000), so the program
takes one of two paths depending on whether the rein
forcer was from VII or V12. If it had been VI2 (4000),
then it would send a marker indicating that to the event
stream (4030), sleep for the rest of a 4-sec reinforcement
cycle (4040), and then tum off all outputs (4050) and dec
rement the reinforcement counter (4060) so that ECBASIC
will know when to terminate the session. If enough rein
forcers have occurred (4070), the network host is in
formed that the session is over (5000); otherwise, a new
VI value for the just-reinforced schedule (4080, 4120,
4130) is obtained, and the program execution goes to the
reinitialization section (4140).

EeL. Experiment Control Language, or ECL, was de
veloped to enable researchers with tasks that require ex
tremely short, worst-case delays but that are also com
putationally intensive to carry out. ECL forgoes the very
simple and standardized syntax of BASIC in order to pro
vide faster execution. As can be seen in Appendix C,
many of the instructions in ECL are the same as those

EXPERIMENT CONTROL INTERFACE AND LANGUAGE 133

in ECBASIC; the syntax is more like ALGOL. The spe
cific syntax of ECL was the result of our attempt to gener
ate a language that was easy to use, that executed very
quickly, and that was reasonable to implement. Because
ECL has the feel of a number of structured languages,
researchers with prior experience and/or access to refer
ence materials or gurus familiar with PASCAL or AL
GOL should find the specification of experimental pro
cedures relatively easy with ECL.

ECL has a variety of program flow commands. Labels
can be used to provide a symbolic destination for pro
gram flow. GOTO redirects program flow to a label.
SUBROUTINE defines a user subroutine as all the code
between the subsequent BEGIN and END. It is terminated
by a RETURN. PRIORITY can be used to set the pri
ority level of a subroutine. CALL can be used to redirect
program flow to a user subroutine. For example, CALL
OBSERV executes the code in the OBSERV subroutine
and then returns to continue program execution. WHILE
reexecutes the same line of code or executes all statements
between its BEGIN and END as long as its condition is
nonzero. FOR executes a block of statements a number
of times. It is essentially equivalent to a FOR/NEXT loop
in BASIC. For example, FOR I = 1,10 executes the code
following its semicolon, or the code within its BEGIN
END boundaries, 10 times. The IF statement condition
ally executes a block of statements. If the condition is true,
the THEN block is executed. If it is false, the next con
secutive instruction is executed or the ELSE block is ex
ecuted (if an ELSE is listed). CONTINUE forces the next
loop iteration in a FOR or WHILE loop. BREAK forces
an exit from a FOR or WHILE loop. STOP terminates
the program. IDLE halts program flow until an interrupt
occurs. WAITIN halts program flow for a specified time
or until a specified input. It returns the initiating event
as the value of a variable. For example, the instruction
WAITIN(a,timlmt,keyl ,key2) will wait until the time
specified by •'timlmt, " an input on "key I," or an input
on ,.key2." When one of those three events happens, pro
gram flow is continued. The value of "a" can then be
used to direct program flow accordingly. The instruction
CONC is basically WAITIN optimized for running con
current schedules. Program flow falls through when
"keyI" occurs after "timeI ," "key2" occurs after
"time2," or "key3" occurs after "time3." A COD can
be specified in the instruction. The value of "a" can then
be used to direct program flow.

A number of input/output instructions are available with
ECL. INPUT specifies which hardware input (I through
8) is to increment which variable, whether the input is
a contact make or break, the debounce time, and whether
or not the response is to be automatically recorded. The
variable (e.g., LFTPKS) specified in INPUT can subse
quently be used in expressions. For example, when the
pecks are less than some number past the starting value,
one block of code can be executed, and when past that
value, some other block of code can be executed. TURNON
turns on the specified output. PULSON turns on an out-

put, halts program flow for a duration, and then turns the
output off. For example, a 4-sec reinforcement cycle could
be implemented with PULSON (REIN,4000). TURNOFF
turns off the specified output. PULSOFF turns off an out
put for a duration. The COMBINE command ties together
outputs so that activating anyone output activates them
all. For example, the magazine and magazine light could
be combined: operating the magazine would subsequently
also operate the magazine light. CLICK sends a pulse to
the designated output on every occurrence of the desig
nated input.

FREEZE saves the status of all the outputs. BLANK
turns off all outputs, and THAW restores the frozen con
dition of all the outputs. These instructions are useful when
turning off all outputs for a short duration, such as dur
ing reinforcement or time out. SEND puts a data item into
the data stream to be automatically collected by ExpRun
(the communication module) in the host computer. For
example, SEND(DATA(J)) can be used to pass an ele
ment of a data array to the host computer. MARKER puts
a marker into the data stream. For example, MARKER(42)
puts Marker 42 into the data stream. This marker can sub
sequently be used to indicate to the data-analysis program
that the second link of a tandem schedule had been en
tered at that point in the data stream.

ECL also provides random-number functions, all of
which can be used in expressions. RAND returns a random
number between 0 and 1,000. XRAND returns a random
number between 0 and 100,000,000. SEED forces a spe
cific seed to the random number generator in order to ob
tain repeatable, random sequencing. RANGE returns a
random number within the specified range. For example,
a random set of waits from I to 10 sec could be imple
mented with SLEEP(RANGE(I, 10)*1000). With PROB,
a path can be set to occur with a specified probability.
XPROB provides probabilities across the same extended
range as XRAND. For example, PROB(SOO) will cause
the block of code following a THEN to be executed half
the time; otherwise, the code following ELSE will be
executed.

Several commandsare provided for timekeeping. SLEEP
halts program flow for a specified time. For example,
SLEEP(IOOO) halts program flow I sec. Variables that can
be set to automatically decrement every I msec are con
venient to implement time bases that run only during a por
tion of the schedule. For example, a VI value that is to
run during some parts of the schedule can be easily im
plemented with a ticker. STICK starts a ticker decrementing
a specified variable from its initial value. This process is
automatic and does not require program intervention. The
variable can subsequently be used to make decisions based
on time. HTICK halts the specified ticker. TIME is equiva
lent to the same instruction available in ECBASIC. TIME
will return a time difference between the current time and
any expression. For example, TIME(FISTRn provides the
time since FISTRT. The instruction makes it easy to spec
ify that, for example, ifthe elapsed time since the anchor
point is less than 60 sec, one block of code could be ex-

134 PALYA AND WALTER

ecuted; otherwise, the next consecutive instruction would
be executed. Real time cannot be lost and cumulative tim
ing errors cannot occur with this instruction, in that it rep
resents the total ticks since the beginning of the session.
SLEEP halts program flow. In contrast, a time duration
implemented with a ticker or with TIME need not "lock
up" the program. Even though most timing and counting
is done transparently by ECL itself, it is sometimes handy
to have the program carry out activities while timing.

ABS(X) is evaluated as the absolute value of X. SGN(X)
is evaluated as a-lor + 1 depending on the value of
its argument. MOD(X,Y) provides the remainder of X
divided by Y. TICKS is a predefined variable that is in
cremented every millisecond. Variables must be allocated
or defined at the beginning of a program with either the
VARIABLE or the WORD statement. They can be simply
initialized or can be set to a value. DEFINE can be used
to define a symbol as a constant. This clarifies program
ming by providing names for things that are actually num
bers. Output 20 can be defined as red, and subsequently
the instruction TURNON RED can be used. REINF is
a predetermined variable specified by ExpRun when the
program is loaded into the controller. ExpRun prompts
the user for the desired number of reinforcers when the
experiment begins. The ECL program may then use it to
determine when to terminate the procedure.

Appendix D provides a listing of a sample ECL pro
gram. It is the same concurrent VI schedule with a COD
as was previously implemented in ECBASIC. It was im
plemented without the CONC instruction in order to pro
vide a realistically complex procedure specification. As
can be seen, ECL is "structured" but more verbose than
ECBASIC. The text is intended as an adjunct to careful
scrutiny of the program listing. The experiment program
is in three sections. The first is initialization; the second
is a WHILE loop that executes until the desired number
of reinforcers for the session have been provided. The
final section contains the two subroutines that specify the
details of each ofthe concurrent schedules (in this case,
they are the same).

The first two instructions of the program combine the
outputs connected to the magazine and magazine light and
name that output FOODUP. The third and fourth instruc
tions combine the houselight and the blue keylights be
hind Key I and Key 2 and name that output KEYLTS.
The next three instructions allocate the following vari
ables: (1) the six VI root constants for expansion to a
FleshIer-Hoffman series (only six values in order to save
listing space) and the mean VI value; (2) the time remain
ing in the interreinforcement interval for the "current"
VIl and V12, and the time remaining in the "current"
COD; and (3) "semaphores" noting which key had been
pecked last and which VI had been reinforced. Next, the
VI root constants and the mean VI value (30 sec) are
specified.

Markers indicating the start of each VI are put into the
data stream, and the first two interreinforcement inter
vals of the session are then generated. They are random

elements from the VI constants multiplied by the mean
VI value and rounded. The two input instructions spec
ify several things; that the hardware inputs I and 2 are
the first and second input (I, I and 2,2), should be con
figured as normally closed (+), all occurrences should
be temporally tagged and passed into the event stream (re
port), the names of the subroutines to be executed
whenever one of the inputs occurs (KEY1SAND
KEY2S), and the debounce time for each input (30 msec).

The experiment proper is then begun. While there are
reinforcers yet to be given, the loop executes. Reinforce
ment on (RNFON) (i.e., a reinforcement has been sched
uled), COD time remaining (CODTIM), and the last key
to be pecked (LASTKY) are each initialized to zero.

The current interreinforcement intervals are begun
decrementing toward zero (i.e., the condition that allows
the next peck to be reinforced) (CALL STICK instruc
tions). The keylights are turned on, and the main WHILE
loop is entered. The program waits in this empty BEGIN/
END loop for a peck, unless a reinforcer is scheduled.
Suppose a peck on Key 1 occurs. As specified in the
INPUT instruction, the subroutine for a keypeck on Key 1
(SUBROUTINE KEY1S) begins executing. If the prior
peck had been to Key 2 (IF LASTKY.EQ.2), then
LASTKY is updated to indicate that Key 1 is now the
LASTKY pecked. The COD time is reset to 2 sec, because
the procedure is to prohibit pecks within 2 sec of a change
from being reinforced. The COD is begun decrementing
to zero (the condition that permits the next peck to be rein
forced) (CALL STICK instruction), and the program re
turns to the main WHILE loop to wait for further pecks.
Ifthe prior peck had not been on Key 2, then LASTKY
is updated (for the case where LASTKY had been zero)
(LASTKY = 1 instruction), then it is determined whether
the COD and the VI have elapsed. If both have elapsed,
then a reinforcer is scheduled (RNFON = 1), a marker in
dicates that event, and the program returns to the main
wait loop. This time back to the main wait loop a rein
forcer is scheduled, therefore program flow falls through
(the empty BEGIN/END loop), the VI timers are stopped
(HTICK instructions), the keylights are turned off, and
food is presented for 4 sec (CALL PULSON instruction).
The program then determines which schedule paid off
(IF(RNFON.EQ.1)THEN and IF(RNFON.EQ.2)THEN);
this information is sent to the data stream (with appropri
ate markers), and a new interreinforcement interval is
generated for that VI (VIlTIM = or VI2TIM = instruc
tions), the reinforcement counter is decremented
(REINF=REINF-1), and the program goes back to the
beginning of the "session is running" loop. The sched
ule continues unless the specified number of reinforcers
had been delivered (when REINF is not greater than zero),
in which case the program stops (CALL STOP).

Availability
Both the hardware and software are in the public do

main for "not-for-profit" users. A system may be obtained
in two ways. Researchers may purchase preassembled,

EXPERIMENT CONTROL INTERFACE AND LANGUAGE 135

working systems or may build the systems themselves.
The boards are solder masked to minimize the possibility
of solder shorts, and they are silk screened to designate
the parts and their orientation. We have experienced very
few assembly problems ourselves. Unfortunately, our ex
periences with our previous controller were not univer
sally successful. Some labs that assembled their own
boards experienced intermittent failures on some boards,
whereas other labs experienced no problems whatsoever
with any of their boards. Our solution has evolved to
recommend that prebuilt boards be purchased unless cost
is of an overriding concern or if the lab technician is
known to be sufficiently competent.

REFERENCES

COOPER, L. D., GARCIA, R., & GtBBON, J. (1988). The labtop Macin
tosh: An interface and communications software for experiment con
trol of animalleaming research. Behavior Research Methods, Instru
ments, & Computers, 20, 88-92.

D'ANDREA, J. A., & KNEPTON, J. (1988). Construction and implemen
tation of a low-cost electronic experiment control interface. Behavior
Research Methods, Instruments, & Computers, 20, 97-99.

PALYA, W. L. (1988). An introduction to the Walter/Palya Controller
and ECBASIC. Behavior Research Methods. Instruments, & Com
puters, 20, 81-87.

PALYA, W. L., & WALTER, D. E. (1993). Document Set for the High
Performance Experiment Controller. Unpublished manuscript, Jack
sonville State University, Department of Psychology, Jacksonville, AL.

PEVEY, M. E. (1988). Using an IBM PC to network Walter/Palya ex
periment controllers. Behavior Research Methods, Instruments, &
Computers, 20, 100-103.

WALTER, D. E. (1988). The Waiter/Palya experiment controller users'

APPENDIX B
Concurrent VI with COD in ECBASIC

10GOTO 1000
100 IF LASTKY <> 2 THEN GOTO 150
110 LASTKY:1
12.0CODTIM:2000
130 STICK 3,CODTIM
140 RETURN
150 LASTKY:1
160 IF CODTIM ,. 0 THEN RETURN
170 IF VI1TIM > 0 THEN RETURN
180RNFON:1
190HTICK 1
200HTICK2
210 BLANK
22.0TURNON 2,3
230 RNSTRT:TIME(O)
240 RETURN
300 IF LASTKY <> 1 THEN GOTO 350
310 LASTKY:2
32.0CODTIM:2000
330 STICK 3,CODTIM
340 RETURN
350 LASTKY:2
360 IF CODTIM > 0 THEN RETURN
370 IF VI2TIM > 0 THEN RETURN
380RNFON:2
390 GOTO 190
400 DATA 884,2897,542.4,8822,14055,27918
1000 DIM VIVALS(6),VICON(6)
1010 REINF:50
1020 VIAVG:30
1030 FOR 1:1 TO 6
1040 READ VICON<D

group meeting and help session. Behavior Research Methods. Instru
ments, & Computers, 20, 104-105.

WALTER, D. E., & PALYA, W. L. (1984). An inexpensive experiment
controller for stand-alone applications or distributed processing net
works. Behavior Research Methods, Instruments, & Computers, 16,
125-134.

WEISMAN, R., & PALYA, W. L. (1988). Development and operating
environments for a network of Walter/Palya experiment controllers
on the Macintosh computer. Behavior Research Methods, Instruments,
& Computers, 20, 93-96.

APPENDIX A
Operations Currently Available with ECBAS~_

Program Mode Commands

ALLOC FOR/NEXT ON OOSUB REM
BLANK FREEZE ON OOTO REPORT
CALL OOSUB ONKEY RESTORE
CLEAR OOTO ONTICK RETURN
CLICK HTICK OUTPB SEND
CLOCK IF THEN OUTPW SLEEP
CONFIG INPUT POKE STICK
COUNT LINK PRINT STOP
DATA LPRINT PULSOFF THAW
DIM MARKER PULSON TURNOFF
END MONIT READ TURNON

Functions

ADDR INCH MOD RANGE
ABS INPB PEEK SELECT
DRAND INPW PROB SGN
FREE LINCH RAND TIME

System Control Commands

ECHO LOAD OFF RUN
LIST NEW OFFRUN SAVE
LLIST NOECHO QUIT

1050 VIVALS<D:«(VlCON(DOVIAVG)+5Y10
1060NEXfI
1070 REPORT INPUT,l
1080 REPORT INPUT,2
1090 MARKER 100
1100 MARKER 101
1110 VIITIM:VIVALS(RANGE(l,6))
1120 VI2TIM:VIVALS(RANGE(l,6))
11300NKEY 1,100
1140 ONKEY 2,300
2000RNFON:O
2010 CODTIM:O
2020 LASTKY:o
2030 STICK 1,VI1TIM
2040 STICK 2,VI2TIM
2050 TURNON 4,9,21
3000 IF RNFON:O THEN COTO 3000
4000 IF RNFON <> 1 THEN GOTO 4030
4010 MARKER 200
4020 GOTO 4040
4030 MARKER 201
4040 SLEEP 4000·TIME(RNSTRT)
4050 BLANK
4060 REINF:REINF-1
4070 IF REINF < 1 THEN GOTO 5000
4080 IF RNFON <> 1 THEN GOTO 412.0
4090 VI1TIM=VIVALS(RANGE(1,6))
4100 MARKER 100
4110 GOTO 2.000
4120 VI2TIM:VIVALS(RANGE(1,6))
4130 MARKER 101
4140 GOTO 2.000
5000 PRINT .oDONE"
9999 END

136 PALYA AND WALTER

APPENDIX C
Operations Currently Available with ECL

Program Flow Commands

BEGIN CONTINUE IDLE STOP
BREAK END IF THEN ELSE SUBROUTINE
CALL FOR PRIORITY WAITIN
CONC GOTO RETURN WHILE

I/O Commands

BLANK FREEZE PULSON THAW
CLICK INPUT PULSOFF TURNON
COMBINE MARKER SEND TURNOFF

Time/Probability Commands

HTICK RANGE STICK XPROB
PROB SEED TIME XRAND
RAND SLEEP

Functions, Variables, and Defined Variables

ABS MOD SGN VARIABLE
DEFINE REINF TICKS WORD

CODTIM=O;
LASTKY=O;
CALL STICK(1,VI1TIM);
CALL STICK(2,VI2TIMJ;
CALL TURNON(KEYLTS,RECORD);
WHILE (RNFON .EQ. 0) ;0 "main wait" loopv
BEGIN;
END;

CALL HTlCK(l);
CALL HTlCK(2);
CALL TURNOFF(KEYLTS,RECORD);
CALL PULSON(FOODUP,40oo,RECORD);
IF (RNFON .EQ. 1) THEN ;0 Key 1 paid ofT°1
BEGIN;
CALL MARKER(100);
VI1TIM = «(VlCONlRANGE(l,6)]° VIAVG) .. 500) 11000;

END;
IF (RNFON .EQ. 2) THEN ;0 Key 2 paid ofT°1
BEGIN;

CALL MARKER(01);
Vl2TIM = ((VlCONlRANGE(l,6)]° VIAVG) + 500)/1000;

END;
REINF=REINF·1;

END;
CALL STOP;

APPENDIX D
Concurrent VI with COD in ECL

COMBINE 2,3;
DEFINE FOODUP=2;
coMBINE 4,9,21;
DEFINE KEYLTS=4;

VARIABLE VICONl6], VIAVG;
VARIABLE VI1TIM,VIZfIM,CODTIM;
VARIABLE LASTKY, RNFON;

VICONl1] = 884;
VICON[2] = 2897;
VICONl3] = 5424;
VICONl4] = 8822;
VICONl5j = 14055;
VICONl6] = 27918;

VIAVG=30000;

CALL MARKER(1OO);
CALL MARKER(l01);
VI1TIM = «(VlCONIRANGEO,6)] ° VIAVG) .. 500) 11000;
VIzrIM = «(VlCONIRANGEO,6)]° VIAVG) .. 500)/1000;

INPUT1,l,+"RECORD,KEY1S,30;
INPUT2,2,+,,RECORD,KEY2S,30;

WInLE<RE1NF .GT. 0)
BEGIN;

RNFON=o;

1* "session is running" loop */

SUBROUTINE KEY1S(l); ;0 when Key 1 peck °1
BEGIN;

IF (LASTKY .EQ. 2) THEN ;0 key switch 80 restart COD 0/

BEGIN;
LASTKY"l;
CODTIM=2oo0;
CALL STICK(3,CODTIM);
RETURN;

END;
LASTKY"l;
IF (CODTIM .GT. 0) THEN RETURN;
IF (Vl1TIM .GT. 0) THEN RETURN;
RNFON=1;
CALL MARKER(200);
RETURN;

END;

SUBROUTINE KEY2S(l); ;0 when Key 2 peck 0/
BEGIN;

IF (LASTKY .EQ. 1) THEN ;0 keyawitch 80 restart COD 0/

BEGIN;
LASTKY,,2;
CODTIM,,2000;
CALL STICK(3,CODTIM);
RETURN;

END;
LASTKY=2;
IF (CODTIM .GT. 0) THEN RETURN;
IF (VlZfIM .GT. 0) THEN RETURN;
RNFON=2;
CALL MARKER(20l);
RETURN;

END;

