
Behavior Research Methods, Instruments, & Computers
1990, 22 (6), 520-525

- COMPUTER TECHNOLOGY

How to obtain near-millisecond precision
on the IBM PC with visual stimuli not

exceeding one printed line

JAN GABRIELSSON
Uppsala University, Uppsala, Sweden

and

ROBERT J. JARVELLA
Unioersity of Umeti, Umea, Sweden

Techniques are described for using an IBM PC equipped with a mouse to investigate the read­
ing of character sequences of maximally one display line. Solutions are given to problems that
arise and derive from the PC's real-time clock, the slowness of the display, and registration of
input during a test session. A program for using the techniques to study asynchronous percep­
tion of printed words is described, and a demonstration program is provided as an appendix.

Studies of printed word recognition in which latency
measures are used as data are manifold in the psycho­
linguistic literature (see, e.g., Coltheart, 1987; Henderson,
1982). Most such work has been done in the last 15 years,
with laboratory computers. Some of the programs writ­
ten, including one we describe here, have been im­
plemented on IBM-compatible PCs. These computers are
very common, and there are cheaper as well as more ex­
pensive models available, most of which are sufficiently
hardware-compatible for using such programs.

A general aim in presenting visual stimuli and collect­
ing timed responses is that the job be done as accurately
as possible (see, e.g., Reed, 1979). In the present paper,
we point out some obstacles one should be aware of, if
one sets out to do high-precision timing with a PC. Pro­
grams having this purpose tend to be very machine­
dependent, as is the Mental Lexicon Experiment (MLE)
program presented below. The kernel of the program run­
ning the experiment is written in assembly language to
make the critical parts as fast as possible, and to be able
to manipulate the machine on a low level.

There are three sources of difficulty in putting together
a reaction time (RT) program for studying visual processes
on the PC: the clock, the display, and the input device used.

The work reported here was supported by the Swedish Research Coun­
cil for the Humanities and SocialSciences (HSFR) and the Swedish Board
of Technical Development (STU). Correspondence concerning thispaper
should be addressed to Jan Gabrielsson, Department of Computer
Science, Uppsala University, S-751 20 Uppsala, Sweden, or to Robert J.
Jarvella, Department of Linguistics, University of Umea, S-901 87
Umea, Sweden.

The Clock
Unfortunately, the real-time clock that DOS provides

is too imprecise for timing milliseconds (its resolution is
only 55 msec). A technique for reprogramming the real­
time clock has been illustrated in a number of recent
papers (see Crosbie, 1989; Dlhopolsky, 1988, 1989;
Emerson, 1988). This (almost) standard method for read­
ing time on the PC in milliseconds is useful when the
stimulus presentation and the recording of data are con­
tinuous. However, for experimental paradigms with dis­
crete trials, there is a better technique available, used for
timing assembly language instructions (Sheppard, 1987).
The technique involves the use of the internal 8253 timer
chip and obtains a resolution of 840 nsec, but it requires
one to stop the timer to read the result (thus losing con­
tinuous time). In the MLE program described below, the
events of interest are discrete events. Together with other
sources of timing errors, we use the technique to gain a
total resolution still exceeding 1 msec.

The Display
Computer displays are slow. Monitors (depending on

their graphic standard) rewrite the screen 50-100 times
per second. Using a 50-Hz screen, it will take anything
up to 20 msec until information sent to the screen is writ­
ten there. Thus, it is necessary to know when this mo­
ment occurs. Most graphic adapters used on the IBM PC
have a status register that allows one to tell when the raster
beam is in the upper left-hand corner of the screen, just
about to start rewriting the screen page. Using this infor­
mation, one can synchronize the timer with the screen.
If the stimulus is, for example, centered on the screen,

Copyright 1990 Psychonomic Society, Inc. 520

one subtracts half the screen-rewrite time from the
response. Synchronization of a PC's display with milli­
second timer to control the location of a stimulus is also
taken up by Dlhopolsky (1989). In paradigms that depend
on quickly removing graphic information, afterglow on
the screen is a further problem.

Recording Responses
As an input device, we use a mouse. The obvious

alternative-to use the keyboard-should be viewed with
caution. Intelligent keyboards tend to buffer or delay
responses. Graves and Bradley (1987), for example, have
reported variable delays averaging 18.4 msec for an lliM
PC keyboard, and twice that long for a PC-compatible
keyboard. Using the mouse, the size of corresponding
error will be much smaller, and also constant.

A simple solution for recording responses is to let the
program listen for input while in a short loop. For milli­
second resolution, one must then poll for input every milli­
second. That may be too time-consuming, however, if
there is some other computing to do in the program. The
solution in MLE is the internal 8259A PIC (Programmable
Interrupt Controller), which is used to generate an inter­
rupt when a signal is recorded at the COM port to which
the mouse is connected. Unlike the keyboard case, the
signal here will arise whenever a mouse button is pressed
or the mouse is moved, without the response being buf­
fered or otherwise delayed. 1 The interrupt routine asso­
ciated with the generated interrupt reads the timer and
stores away the result. The mouse is then disabled, so that
the subject cannot press the button twice and in so doing
destroy the first result. Notice that the above set-up is
possible only by going directly to the hardware (avoid­
ing the mouse software driver). Also, the ball inside the
mouse should be removed when buttonpresses alone are
desired, because otherwise any movement of the mouse
will generate interrupts, stopping the clock. We illustrate
this interrupt technique in the demonstration program in
the Appendix.

A Program Implementing These Principles
The MLE program was written to study the recogni­

tion of printed words displayed with small stimulus-onset
asynchronies (SOAs). An SOA paradigm has proven to
be a satisfactory means for asking whether a printed se­
quence is recognized in a single step (as a whole), or in
more than one step (as a series of parts). If a sequence
is recognized in one step, withholding some (any) of its
letters even briefly should delay the sequence's recogni­
tion. If it is recognized in several steps, withholding par­
ticular (noncritical) letters at first should not have this ef­
fect. This issue is relevant in the testing of models of the
recognition of morphologically complex words (see
Jarvella, Job, Sandstrom, & Schreuder, 1987).

The MLE program provides flexibility in the asyn­
chronous presentation of single and multiword stimulus
strings of up to 80 characters long, as well as convenience
in collecting and analyzing data. To use MLE, one needs
a PC-compatible computer running the DOS operating

PRECISION ON IBM PC 521

system with two double-sided disk drives or a hard disk;
at least 256K of memory; an IBM MGA, CGA, EGA,
or VGA graphics adapter; DOS 2.11 or later; and a
Microsoft-compatible mouse (serial version).

On entering MLE, one is presented with a menu, with
which one selects a prepared data input (stimulus) file and
defines an experiment. One important item shown in the
menu is the raster-time unit: the amount of time the com­
puter running the program uses to rewrite the screen
(ca. 10-20 msec, depending on the machine), calculated
every time the program is run. Multiples of this unit de­
fine what time asynchronies can be used between differ­
ent parts of a stimulus.

In a stimulus file used with MLE, one formats each item
as a string consisting of four elements:

1. The division of the character sequence that is desired
(e.g., Ice/hockey/ player).

2. The order of appearance desired for those pieces.
(e.g., [2,1,3] would mean first display hockey, then lee,
and then player).

3. The delays desired between the pieces (e.g., {2, 3}
means add Ice to hockey after 2 raster-time units, and add
player to Ice hockey after 3 more raster-time units.

4. The correct response (e.g., *L forleft buttoncorrect).

Since experiments often include repeated measures based
on a set of items of the same type, the possibility also
exists for specifying (2)-(4) for sets of items in an init
file, which the program always searches for when started,
but can also be specified using the menu.

An init file, a stimulus file, a file for writing results
in, and an experiment name are all that is needed to run
an experimental session with MLE. However, there are
also a number of options that one chooses explicitly or
selects by default. Two choices concern the order of
stimuli desired (random or fixed), and the absence or
presence of feedback after each trial (response and RT
recorded). Fixed order together with verbose mode is a
convenient option when one is checking materials in set­
ting up an experiment. A number of more implicit choices
can be made under the menu's heading "settings":
whether one wants a random and/or constant delay be­
fore each stimulus appears; the maximum time it should
stay on; whether it should be centered; whether a fixa­
tion point is desired, and if so, what ASCII character
should be used; how many raster-time units in advance
of the stimulus the fixation point should be turned off (to
avoid masking caused by afterglow); whether one wants
40 or 80 character lines; and whether there is any condi­
tion for which RT need not be stored (e.g., in a go/no-go
decision task).

When a subject has been run, MLE calculates a set of
summary statistics in the subject's result file, including
means, standard deviations, minimums, maximums, and
errors committed in any condition, and it lists each stimu­
lus together with the response given and its latency. Ex­
tended statistics that have the same form but that com­
bine the result files for all subjects who have been tested
using the same data file are available on request; these

522 GABRIELSSON AND JARVELLA

give as output condition means, SDs, and so forth, over
subjects, and pooled data for each item.

Program Availability
The MLE program and documentation for using it are

available by contactingJARVELLA@SEUMDC51.bitnet.

REFERENCES

COLTHEART, M. (ED.)(1987). Attention andperformance XII: Thepsy­
chology of reading. Hove, U.K.: Erlbaum.

CROSBIE, J. (1989). A simpleTurbo Pascal4.0 programfor millisecond
timing on the lliM PC/XT/AT. BehaviorResearch Methods, Instru­
ments, & Computers, 21, 408-413.

DLHOPOLSKY, J. G. (1988). C language functions for millisecondtim­
ing on the lliM PC. Behavior Research Methods, Instruments, & Com­
puters, 20, 560-565.

DLHOPOLSKY, 1. G. (1989). Synchronizing stimulusdisplayswith milli­
second timer software for the lliM PC. BehaviorResearch Methods,
Instruments, & Computers, 21, 441-446.

EMERSON, P. L. (1988). Using serial interfacesand the C language for

real-time experiments. BehaviorResearch Methods, Instruments, &
Computers, 20, 330-336.

GRAVES, R., &; BRADLEY, R. (1987). Millisecondinterval timer and au­
ditory reaction time programs for the lliM PC. BehaviorResearch
Methods, Instruments, & Computers, 19, 30-35.

HENDERSON, L. (1982). Orthography and word recognition in read­
ing. London: Academic Press.

lARVELLA, R.I., lOB, R., SANDSTROM, G., &; SCHREUDER, R. (1987).
Morphological constraints on word recognition. In A. Allport,
D. MacKay, W. Prinz, & E. Scheerer (Eds.), Languageperception
and production (pp. 245-262). London: Academic Press.

REED, A. V. (1979). Microcomputer display timing: Problems and so­
lutions. Behavior Research Methods & Instrumentation, 11, 572­
576.

SHEPPARD, B. (1987). High-performance software analysis on the
lliM PC. Byte, 12, 157-164.

NOTE

1. The interrupt is actually generated when a complete byte is read
from the serial port. For instance, if the baud rate is 2,400, a constant
delay of about 4 msec will arise. This can, however, be calculated to
any desired level of precision.

APPENDIX

1* Timing routine using a mouse as input device.

Written in Turbo C 2.0

Assumptions:

-CGA (MDA) compatible graphic adapter.

EGA and VGA will work as CGA if set to color text mode.

-Mouse, hardware compatible with Microsoft's Mouse.

-Mouse connected to COM port 1.*1

#include <stdio.h>

#include <dos.h>

#include <math.h>

#include <conio.h>

#include <mem.h>

1* Each tick is 838.096 nsec *1
1* Each DOS tick is 54.925 msec *1
1* Timer control registers *1

#define MAX COUNT

#define COUNT CONVERT

#define TIMER CONVERT

#define TIMER MODE

#define TlMERO

#define timer low

#define PIC MASK Ox21

#define PIC EOI Ox20

I*#define VTRACE Ox03BA

#defineVTRACE Ox03DA

#define NORM_ATTR Ox07

I*#define SCREEN_BASE OxBOOO

#define SCREEN BASE OxB800

#define INT VECT OxOC

#define INT DATA Ox03F8

'define INT DISABLE OxlO

65535

838.096

54.925

Ox43

Ox40

«unsigned far *lOx0000046C)

1* Interrupt controller mask *1
1* Interrupt controller address *1
1* Videosync address for MDA *1
1* Videosync address for CGA *1
1* Normal video attribute *1
1* Base address for MDA screen memory *1
1* Base address for CGA screen memory *1
1* Interrupt vector for COM 1 *1

1* *1
1* Disable mask for COM 1 *1

PRECISION ON ffiM PC 523

APPENDIX (Continued)

'define INT ENABLE OxEF

#define v RETRACE 1

'define FALSE 0

#define TRUE 1

/* Enable mask for COM 1 */

/* Vertical retrace is about 1 ms */

unsigned ch, cl, new_timer, old_timer;

double timer_adjust,rt;

void interrupt (far *old_mouse) ();

int key, mouse_running;

char *(keys[J) = ("Mouse moved", "Right key", "Left key");

#define start timer() \

(outportb(TlMER_MODE,Ox34), \

outportb(TlMERO,O), \

outportb(TlMERo, 0) , \

old timer *timer_Iow)

'define stop_timer() \

(disable(), \

outportb(TlMER_MODE,o), \

cl inportb(TlMERo), \

ch inportb(TlMERO), \

new timer

timer_adjust;

enable ())

/* Given 840ns counter and 55msec counter calculate milliseconds *1

double calc_timet)

unsigned count;

double usec, msec;

count = MAX_COUNT-«ch« 8) I cl); /* Counter ticks backwards *1

usec (double)count*COUNT CONVEkT/looo.o;

msec = (double) (new_timer-old_timer) *TIMER_CONVERT;

if (floor (msec) == 0.0 && usec < timer adjust) usec

return msec+(usec - timer_adjustl/looo.O;

'define disable_IDouse() \

(outportb(PIC_MASK, (inportb(PIC_MASK)

mouse running = FALSE)

INT_DISABLE)), \

'define enable_mouse() \

(outportb(PIC_MASK, (inportb(PIC_MASK) & INT__ENABLE)), \

mouse_running = TRUE)

#define eoi() outportb(PIC_EOI,PIC_EOI)

#define raster_on() (inportb(VTRACE) & Ox08)

524 GABRIELSSON AND JARVELLA

APPENDIX (Continued)

#define sync_screen() \

while(raster_on()); \

while (!raster_on ())

1* Mouse interrupt routine. When the subject presses a key the key pressed and

time elapsed since start_timer was called is read. Mouse_running is set to

false so the subject can't press the mouse again and destroy the data

before we have a chance to read them. */

void interrupt new_mouse()

if (!mouse_running)

eoi () ;

return;

disable_mouse();

stop_timer () ;

key ~ inportb(INT_DATA);

rt ~ calc_time();

eoi () ;

1* Install the interrupt routine that will be called every time a mouse key is

pressed or the mouse is moved.*1

void trap_mouse!)

eoi () ;

disable_mouse();

old_mouse = getvect(INT_VECT);

setvect(INT_VECT,new_mouse);

1* Restore old mouse interrupt routine */

void free_mouse()

setvect(INT_VECT,old mouse);

enable_mouse();

1* A character in the video buffer is made up of two bytes; the ascii code for

the character and the video attribute. Every character is paired with a

video attribute. The length of the new "string" and the offset into the

video buffer according the given x and yare calculated.*/

char *prepare_string(str,x,y,pos,len)

char *str; int x, y, *pos, *len;

static char p[255], *s = p;

while (*str) { *s++ = *str++; *s++

*len s-p;

*pos (BO*y+x)*2;

return p;

/* Wait for beam to be in upper left corner */

/* Start timer */

/* Wait for beam to be in upper left corner */

/* Stop timer and read time elapsed */

/* Wait for beam to be in upper left corner */

PRECISION ON mM PC 525

APPENDIX (Continued)

/* Transform the first byte that the MicroSoft mouse returns into 1 for left

key and 2 for right key. 0 means that the mouse just moved. */

ildefine key_trans (A) ((A & Ox30) » 4)

/* Move string to video buffer */

#define draw_string(S,OFFS,LEN) \

movedata(_DS, (unsigned) S, SCREEN_BASE,OFFS, (size_t) LEN)

main ()

double d,t;

char *st;

int pos,len;

/* Calibrate timer */

timer_adjust 0;

start_timer (); /* Start and stop timer to get overhead * /
stop_timer () ;

t = calc_time (); /* Time (in usee) to time "nothing" */

timer_adjust = t * 1000.0;

clrscr () ;

/* Time how often the Screen is redrawn */

sync_screen();

start_timer () ;

sync_screen ()

stop_timer () ;

t = calc_time () ;

printf("Screen is redrawn every %.Ollfms\nRETURN to continue ,t);

getch();

/* A small experiment ... */

st prepare_string("Syncronizing",20,10,&pos,&len);

trap_mouse(); /* Set up mouse to call our interrupt routine */

sync_screen ()

enable_mouse();

start_timer(); /* Start timer */

draw_string(st,pos,len); /* Move our string into the video buffer */

while(mouse_running);/* Wait for subject to press a key */

/* Restore mouse interrupt routine */

/* The string appeared in the middle of the screen, so half the time it

takes to redraw the screen is subtracted from the response time. */

rt = rt - (t-V_RETRACE)/2.0;

printf("RT %.Ollfms, %s",rt,keys[key_trans(key)]);

getch ();

(Manuscript received May 25. 1990;
revision accepted for publication August 30, 1990.)

