
Behavior Research Methods, Instruments, & Computers
1986, 18 (3), 307-311

COMPUTER TECHNOLOGY

Accurate millisecond timing on Apple's
Macintosh using Drexel's MilliTimer

ROBERT WESTALL, M. NADINE PERKEY, and DOUGLAS L. CHUTE
Drexel University, Philadelphia, Pennsylvania

Many of the timed functions that concern psychologists, such as perceptual presentations and
reaction time, are sensitive to a maximum variability in display timing caused by screen-refresh
characteristics. For the Apple Macintosh, the screen operating speed is 60 Hz, which translates
to an average of 8.33-msec variability. For microcomputers other than the Macintosh, a variety
of hardware and software modifications to generate millisecond timing have become standard
(e.g., Reed, 1979). Other than Reed College's (1985) implementation in Rascal, which requires
the Rascal development language, there has been no method of which we were aware to syn­
chronize experimental timing with display presentation on the Macintosh. This limitation in the
usefulness of the Macintosh as an otherwise excellent research tool can be overcome using Drexel
University's MilliTimer. The assembler code which follows should be considered in the public
domain and can be readily adapted to any of the Macintosh-based languages.

Although in many respects the Apple Macintosh's high­
resolution graphics, ease of editing, and convenient user
interface make the Macintosh an ideal research tool, one
major limitation from a psychologist's point of view has
been the lack of millisecond timing. The essence of this
problem has been described by Reed (1979), and his so­
lutions for personal computers other than the Macintosh
have become the standard. Essentially a synchronization
is required between the timing in the experimental con­
trol program and the videoscan. Such synchronization re­
moves an average error of 8.33 msec between the regis­
tration of a timed experimental event and the display of
a stimulus on the screen. Unfortunately for the Macin­
tosh, the fact that the development libraries provided by
Apple do not allow direct access to a timer with millisec­
ond accuracy seemed to preclude the use of this machine
to run research-grade software. Reed College (1985) ad­
dressed the problem in their Rascal development language.

We have developed a MilliTimer routine (Perkey, 1986)
that provides millisecond timing for a number of psycho­
logical applications (Chute & Daniel, 1985), including
testing motor skills, testing pitch discrimination, mea­
suring reaction time, testing hemispheric specialization
of function, and solving problems (Chute, 1986).

MilliTimer is a small library that consists of two rou­
tines to assist Macintosh programmers in gaining access

Software developments were supported in part by a grant from the
Pew Memorial Trust to Drexel University and to Douglas Chute. The
first two authors are with the Software Development Group, and the
third author is with the Department of Neuropsychology, all at Drexel
University. Send reprint requests to D. L. Chute, Department of Neu­
ropsychology, Drexel University, Philadelphia, PA 19104.

to a millisecond timer. The MilliTimer listed here is
interrupt-driven off of timer no. 1 on the Synertek 6522
Versatile Interface Adapter (VIA) chip that is part of the
standard Macintosh configuration. MilliTimer uses the 16­
bit timer no. 1 in the free-run mode so that the timer will
run continuously, generating a level-l interrupt in the
processor each time it expires.

The program listing in Appendix A was written and as­
sembled using the Lisa cross-development system, Ver­
sion 3.9 (created by Apple Computer, 1985). No matter
which of the development systems for Macintosh is used,
the fundamental 68000 code will be the same. Appendix B
provides a listing for the Macintosh Development Sys­
tem (MDS). However, minor syntactic changes may be
needed, depending upon the version or the Macintosh as­
sembly development system used. The code can be easily
modified to adapt to any of the Macintosh-based languages.
The Pascal interface for the MilliTimer is given as:

Procedure MilliControl (CtrlFlag: Boolean);
Function MimCount : LongInt;

The first of these routines, MiIliControl, is used to tum
the MilliTimer on and off. Passing TRUE as the
parameter causes the MilliTimer to be installed into the
system heap and starts it counting milliseconds, starting
from zero. Normally this call is made once at the begin­
ning of a program. Passing FALSE as the parameter turns
off the MilliTimer and removes it from the system heap.
This normally is called only once before the program is
exited. The MilliTimer must be turned off before exit­
ing, or it will continue to operate as long as no other
process attempts to use the VIA timer no. 1.

Calling MiIIiCount returns the number of elapsed mil-

307 Copyright 1986 Psychonomic Society, Inc.

308 WESTALL, PERKEY, AND CHUTE

liseconds since MilliControl was last called. This func­
tion can be used like the toolbox call, TickCount. For ,
example,

MilliControl (True); [Called at beginning of program]
MyCounter: = MilliCount ; [Called for as many

timing events as experimentally required]
[Do other processing here]

MyCounter: = MilliCount - MyCounter;
MilliControl (False); [Called at exit of program]

Synchronizing the MilliTimer with the screen refresh
can be accomplished by synchronizing to TickCount,
which is automatically incremented during the vertical re­
trace interrupt. This is useful when using a visual cue to
elicit a timed response. For example,

MilliControl (True);
MyLonglnt: = TickCount + 1;
While MyLongInt > TickCount Do;
MyCounter: = MilliCount ; [Can be repeated as often

as required for timing different events]
[Do other processing here]

MyLongInt: = TickCount + 1;
While MyLongInt >TickCount Do;
MyCounter: = MilliCount - MyCounter;
MiIliControl (False);

Making continuous calls to MilliControl does not cause
problems, since each call causes the previous MilliTimer

to be removed from the system heap and a new one to
be installed. This has the effect of resetting the counter.

It is important to remember that any other process or
driver that uses the no. 1 timer on the 6522 chip (such
as the sound driver) will step on the MilliTimer, making
it necessary to reinitialize the counter with a call to Milli­
Control. Also, during timing of some user action, no disk
access can take place during the timing process, as the
time reported back by MilliControl is inflated by the disk
access time. Testing has shown the accuracy of the Milli­
Timer to be approximately ±1 msec per 30 min. Appen­
dix C provides a working demonstration applicable to
Microsoft BASIC routines. Users of this routine are cau­
tioned, however, that the processing times of interpreted
languages are potentially a source of timing error in the
millisecond range.

REFERENCES

CHUTE, D. L. (1986). MacLaboratory for psychology: General ex­
perimental psychology withApple's Macintosh. Behavior Research
Methods, Instruments, & Computers, 18, 205-209.

CHUTE, D. L., & DANIEL, R. S. (1985). MacLaboratory for psychol­
ogy. Dubuque: Kendall Hunt.

PERKEY, M. N. (1986). The effect of a machine-rich environment on
courseware development: The process and the product. Behavior
Research Methods, Instruments, & Computers, 18, 196-204.

REED, A. V. (1979).Microcomputer displaytiming:Problemsand so­
lutions. Behavior Research Methods & Instrumentation, 11, 572-576.

REED COLLEGE. (1985). Rascalusermanual: Macintosh language for
real time 110 oriented development. Portland, OR: Metaresearch.

.NOI.IST

.INClUDE

.INCLUDE

.lIST

.FUNC
MOVE.l
lEA
MOVEAl
MOVE.l
JMP

.PROC
MOVE.l
MOVEA.l.
MOVE.8
MOVE.8
MOVEA.l
MOVEAl.

.olEA
CMPA.l
8lE.S
CMPM.W

8NE.S
MOVEQ

eo2CNPM.l
D8NE
8EQ.S
SU8Q.l
8RA.S

.3SUBAl
ClR.l.
...DisposPtr

TIAsm /SysTrllllS.Text
T1Asm/SysEqu.Text

MilliCount
(SP)+,AI
lvllDT,AO
2"(AO),AO
-8(AO).(SP)
(AI)

MilllCootrol
A2,-(SP)
VIA,A2
"'010000008,VIER(A2)
VTl C(A2) ,DO
SysZone,AO
AppiZone,A I

Millilnterrupt, A2
AO,Al
.1
(AO)+ ,(A2)+

.0
"'<7-1>00
(AO)+ ,("2)+
00,.2
.3
"''!,AO
.0
"'<8+30>,AO
8(AO)
,SYS

APPENDIX A

;Save return lllit'ess inA1
;lOlJ! the8lit'ess oftilelevel I dlsp8tch tllble Into AO
;Place thetimer I interruptvector intoAO
;Make thefUnclilll result themillisecond count
;Return tothecalliogpnJITlIIlI

;Save A21II thest8ck
;Move tilebase 8lit'essoftheVIA intoA2
;Turn offtiletimer' Interrupts
;CIElllr theVIFR bit for timer I ,just incase
;LOlJ! the8lit'ess ofthe~ hellp intoAO
;lOlJ! the8lit'ess oftheapplicatilll hellp intoA1

;lOlll tile8lit'ess ofthe interrupt routine intoA2
;HIlve we rlllK:lled theendoftilesystem hellp?
;Yes, we're cbleSlllI'chiog for tileinterrupt
;CoolJ)8re II word Intilehellp withfirst WlI'd of tileInterrupt

;Not equIIl. keep SlllI'chil"Q
;lOlJ! 00 for loopiog
;Coolpere llIlOther longword in thehellpwiththeinterrupt
;lllllYe if not equIIl otherwise loop 7 times
;We found theinterrupt - make II short brllllCh
;FixAO
';1iI blK:k endkeep SlllI'ching tilehellp
;Set AO topoint tothe interrupt in thesystem hellp
;Wipe outthefirst" bytes oftileinterrupt
;De-lIl1ocate the38 bytes

MACINTOSH MILLITIMER 309

APPENDIX A (Continued)

.1 CMPI.W
BEQ.S
MOYEQ
JlBwPtr
TST.W
BNE.S
ADOQ.l
MOYEA.L
ORI.B
AH01.B
LEA
MOYE.l
MOYE.B
MOVE.B
MOYEQ
LEA

.SMOYE.W
DBRA
MOYE.B

.4 MOYE.l
MOVE.l
ADDQ.L
JMP

MilIilnterrupt

MOVE.B
LEA
ADOQ.L
ADDQ.L
CMPI.l
BMI.S
ClR.L
SU8Q.L

.ORTS

.END

-O,8(SP)
.4
-(30+8),00
,SYS,ClEAR
00
.4
-8,NJ
VIAIII
-0 I OOOOOOB ,VN:;R(A2)
-011 'I 1IIB,VN:;R(A2)
LvI lOT ,AI
AD,24(AI)
-S06,VTIC(A2)
-S03,VT ICH(A2)
-(15-1),00
MillIInlerrupt,AI
(AI). ,(AD).
00,.5
-I IOOOOOOB,VIER(A2)
(SP)+III
(SP).,AI
-2,SP
(AI)

VTlC(A1),00
*-12,NJ
- I ,(AD)+
-I ,(AD)
-1800,(AD)
.0
(AD)
-1,-4(AD)

;Test thebool., on thests:k
;IfFAlSE then brllllCl1 around initialization cooe
;We need 38 bytes ofsystem heapspace
;Get some memory!
;Everythlng O.K.?
;No, we C81\'t ttl llIlYIhing more
;Leeve 8 bytes forthemiIlicoonters
;Move theblIse lDhss oftheVIA into A2
;set bit6 of theVN:;R - timer I freerun mD
;ClelII' bit 7 of theVN:;R - pulse dlS8bled
;LDIld thelDhss of thelevel I dispetch t8ble into A1
;set upthe~ timer I interrupt vector
;LDIld 11IW byte ofcoonter Into thetimer I letch
;LDIld hiljlbyte oftimer I counter, start counting...
;lDlld 00for looping
;LDIld theDress of theinterrupt routine into AI
;Move 8 word of theinterruptinto theheap
;Loop 15times
;Turn ontimer I interrupts
;RestoreA2
;PIIQ returnlDhss InAI
;Move sts:k pointer 8bove thebool.,
;Return tothecalling proTem

;Clear VIFR bit for timer I ontheVIA
;set AD topoint tothemilllS8Cllllllcounter
;Incremant themllllS8Cllllll counter bV 1
;1 ncremant theb8ck1J'OUflll counter bV I
;H8ve 1800milliS8Clllllls elapsed?
;No, jump around error arrection cooe (next2 instrs.)
;C1ellr theb8ckr;roond timer
;SUbtrllCl I fl'OOl themllllS8Cllllll timer
;Return tothecaller

APPENDIX B

0000,
0000 ;...... File:MlIllTimerAsm.Txt
0000 ;...... Language: MDS Assembler v1.0
0000 ;•••••• Author: Robert Westall,SoftwareDevelopment Group,
0000 ;...... Drexel University
0000 ·.=ze=.a

0000
0000 INClUDE MacTraps.O
0000 INClUDE SysEquX.O
0000
0000 XDEF Mill iCDlI'It
0000 XDEF Mill iControl
0000
0000 MiII iCDIIlt
0000 226F 0004 I'I>VE.L 4(SP),AI
0004 41FS 0192 LEA LvllOT,AO
OOOS 2068OOIS I'I>VEAL 24(AO),AO
OOOC 32AS FFFA I'I>VE.W -6(AO),(A I)
0010 2257 I'I>VE.L (SP),AI
0012 508F ADOO.l ·S,Sp
0014 4E01 ...tIP (All
0016
0016 MilliControl
0016 2FOA I'I>VE.L A2,-{SP)
0018 247S 0104 I'I>VEAL VIA,A2
OOIC 157C004O ICOO I'I>VE.B ·XOI000000,VIER{A2)
0022 102A0800 I'I>VE.B VT IC{A2),DO
0026 207802A6 I'I>VEAL SysZone,AO
002A 227802AA I'I>VEAL AppIZone,AI

310 WESTALL, PERKEY, AND CHUTE

APPENDIX B (Continued)

oo2E
oo2E 4SFA 0074 .0: LEA MIIIIlnterrupt,A2
0032 B3C8 CMPAL AO,AI
0036 6FIE BlE.S .1
0036 B548 CMPM.W (AO)-,tA2)-
0038 66F4 IH.S .0
003A 7006 MOVEa -6,00
OO3C B588 .2: CMPM.l (AO)-,(A2)-
oo3E S6C8FFFC IlIH 00,.2
0044 6704 eees .3
0044 5988 SUBO.L -4,AO
0046 6OE6 BRAS .0
0048 91FC ooסס 0026 .3: St.eAL -38,AO
O<Y€ 42A8 0008 ClR.l 8tAO)
0052 A41FDlsposPtr ,SVS
00S4
OO~ OC6F ooסס 0008 .1: O1PI.W -o,8(SP)
OOSC 6740 BEa.s .4
005C 7026 MOVEa -38,00
OOSE ASIE -HewPtr ,SVS,ClEAR
0060 4A40 TST.W 00
0064 6638 IH.S ...
0064 S088 ADOO.L -8,AO
0066 24780104 MOVEAL VIA,A2
OO6A oo2AOO4016OO ORI.B -101o00ooo, VACR(A2)
0070 022Aoo7F 1600 Nl>1.B -IOIIIIIII,VACR(A2)
0076 43F80192 LEA LvllOT,AI
oo7A 2348 0018 MOVEl AO,24(AO
007E 157C OOOB 0800 MOVE.B -S06,VT IC(A2)
0084 157C 0003 OAOO MOVE.B -S03,VTICHtA2)
008A
008A 700E MOVEa -14,00
008C 43FAooI6 LEA Mlllllnterrupt,AI
0090 3009 '5: MOVE.W (AO-,(AO)-
0092 51C8FFFC DBRA 00,.5
0096 157C OOCO ICOO MOVE.B -IIIOOOOOO,VIERtA2)
009C 24SF .4: MOVEl (SP)-,A2
009E 225F MOVE.L (SP)-,AI
ooAO S48F ADOO.l -2,SP
00A2 4:01 ..tIP (AO
00A4
OOA4 MlIIllnterrupt
OOA4 10290800 MOVE.B VTIC(AO,OO
<>pAS 41FAFFF2 LEA *-12,AO
ooAC 5298 ADOO.L -UAO)-
ooAE 5290 ADOO.L -UAO)
OOBO OC9O ooסס 0708 CMPI.l -1800,(AO)
00B8 6806 BMI.S ~

00B8 4290 CLR.L (AO)
OOBA 53A8FFFC SUBO.L -I,-4(AO)
00Bf 4:75 ~: RTS

APPENDIXC

REM ***Thisprogram illustrates theuseof theDrexel MtlltTimer
REM ***Language: Microsoft Basicv2.1
REM ***Author: Robert Westall,SoftwareDevelopment Group
REM*** Drexel university, Philadelphia, PA 19104
REM *** Toavoidhandling single-precision mathematics, theMilIiCount
REM *** functionhasbeen modifiedto return aninteger(2 bytes). Easy
REM ***modification couldbemade to allow the return of the full 4
REM *** bytesof the counter for single-precision or 8 bytes for double-
REM *** precision.

REM *** Install theMilllTimer routines
DIM CountCodeX (II), ControlCodeX (85)
TrueX' I: FalseX' 0:MyTimeX' 0:NewTimeX' 0
CLS

MACINTOSH MILUTIMER 311

APPENDIX C (Continued)

FOR Kount • 0 TO 10: READ CountCodeX (Kountl: NEXT Kount
FOR Kount • 0 TO 84:READ ControlCodeX (Kountl: NEXT Kount

REM *** Initialize theMiII iTimer
MllliControl • VARPTR (ControICodeX(O»
CAll Mill iControl(TrueX)

REM *** Timeevent
MilliCount• VARPTR (CountcodeX(O»
CAll MIIIICount (VARPTR<MyTlmeX»
REM (***00 otherprocessing here***)
CAll MlllICount(VARPTR<NewTlmeX»
PRINT "The elapsed time in millisecondsis"; NewTlmeX-MyTimeX

REM *** Shutdown MiIIiTimer
MtlliControl • VARPTR (ControICodell(O»
CAlLMlllIControl (FalseX)

REM *** Machine code datafor "MllliCount"
OATA &H226F,&HOOO4,&H41 F8,&HO I92,&H2068,&HOO 18,&H32A8,&HFFFA
DATA &H2257,&HS08F,&H4EO I

REM ***Machinecode data for "MiIIIControl"
OATA&H2FOA.&H2478,&HOI04.&HI57C,&HO040,&HICOO.&H102A,&H0800
OATA &H2078.&H02A6,&H2278,&H02M,&H4SFA,&HOO74,&tI33C8,&H6F IE
DATA &tI3548,&H66F4,&H7006,&HBS88,&HS6C8,&HFFFC,&H6704,&HS988
OATA&H6OE6,&H9IFC,&HOOOO,&HOO26,&H42A8,&HOOO8.&HA41F,&HOC6F
OATA &HOOOO,&H0008.&H6740,&H7026,&HAS IE,&H4A40,&H6638,&HS088
OATA &H2478,&HO I04,&HOO2A,&HOO40,&H 1600,&H022A,&HOO7F,&H 1600
DATA &H43F8.&HO I92.&H2348,&HOO I8,&H 157C,&H0006,&H0800,&H157C
OATA &HOOO3,&HOAOO,&H700E,&H43FA,&HOO I6,&H30D9,&H5 IC8,&HFFFC
OATA &H I57C,&HOOCO,&H ICOO,&H24SF,&H22SF.&H548F,&H4EO I ,&H I029
OATA &H0800.&H41 FA,&HFFF2,&~298,&H5290,&HOC90.&H0000,&H0708
OATA &H6806,&H4290.&HS3A8,&tFFFC,&H4E75

(Manuscript received February 12, 1986;
revision accepted for publication May 1, 1986.)

