Behavior Research Methods, Instruments, & Computers
1986, 18 (3), 307-311

COMPUTER TECHNOLOGY

Accurate millisecond timing on Apple’s
Macintosh using Drexel’s MilliTimer

ROBERT WESTALL, M. NADINE PERKEY, and DOUGLAS L. CHUTE
Drexel University, Philadelphia, Pennsylvania

Many of the timed functions that concern psychologists, such as perceptual presentations and
reaction time, are sensitive to a maximum variability in display timing caused by screen-refresh
characteristics. For the Apple Macintosh, the screen operating speed is 60 Hz, which translates
to an average of 8.33-msec variability. For microcomputers other than the Macintosh, a variety
of hardware and software modifications to generate millisecond timing have become standard
(e.g., Reed, 1979). Other than Reed College’s (1985) implementation in Rascal, which requires
the Rascal development language, there has been no method of which we were aware to syn-
chronize experimental timing with display presentation on the Macintosh. This limitation in the
usefulness of the Macintosh as an otherwise excellent research tool can be overcome using Drexel
University’s MilliTimer. The assembler code which follows should be considered in the public
domain and can be readily adapted to any of the Macintosh-based languages.

Although in many respects the Apple Macintosh’s high-
resolution graphics, ease of editing, and convenient user
interface make the Macintosh an ideal research tool, one
major limitation from a psychologist’s point of view has
been the lack of millisecond timing. The essence of this
problem has been described by Reed (1979), and his so-
lutions for personal computers other than the Macintosh
have become the standard. Essentially a synchronization
is required between the timing in the experimental con-
trol program and the videoscan. Such synchronization re-
moves an average error of 8.33 msec between the regis-
tration of a timed experimental event and the display of
a stimulus on the screen. Unfortunately for the Macin-
tosh, the fact that the development libraries provided by
Apple do not allow direct access to a timer with millisec-
ond accuracy seemed to preclude the use of this machine
to run research-grade software. Reed College (1985) ad-
dressed the problem in their Rascal development language.

We have developed a MilliTimer routine (Perkey, 1986)
that provides millisecond timing for a number of psycho-
logical applications (Chute & Daniel, 1985), including
testing motor skills, testing pitch discrimination, mea-
suring reaction time, testing hemispheric specialization
of function, and solving problems (Chute, 1986).

MilliTimer is a small library that consists of two rou-
tines to assist Macintosh programmers in gaining access

Software developments were supported in part by a grant from the
Pew Memorial Trust to Drexel University and to Douglas Chute. The
first two authors are with the Software Development Group, and the
third author is with the Department of Neuropsychology, all at Drexel
University. Send reprint requests to D. L. Chute, Department of Neu-
ropsychology, Drexel University, Philadelphia, PA 19104.

307

to a millisecond timer. The MilliTimer listed here is
interrupt-driven off of timer no. 1 on the Synertek 6522
Versatile Interface Adapter (VIA) chip that is part of the
standard Macintosh configuration. MilliTimer uses the 16-
bit timer no. 1 in the free-run mode so that the timer will
run continuously, generating a level-1 interrupt in the
processor each time it expires.

The program listing in Appendix A was written and as-
sembled using the Lisa cross-development system, Ver-
sion 3.9 (created by Apple Computer, 1985). No matter
which of the development systems for Macintosh is used,
the fundamental 68000 code will be the same. Appendix B
provides a listing for the Macintosh Development Sys-
tem (MDS). However, minor syntactic changes may be
needed, depending upon the version or the Macintosh as-
sembly development system used. The code can be easily
modified to adapt to any of the Macintosh-based languages.
The Pascal interface for the MilliTimer is given as:

Procedure MilliControl (CtriFlag: Boolean);
Function MilliCount : Longlnt;

The first of these routines, MilliControl, is used to turn
the MilliTimer on and off. Passing TRUE as the
parameter causes the MilliTimer to be installed into the
system heap and starts it counting milliseconds, starting
from zero. Normally this call is made once at the begin-
ning of a program. Passing FALSE as the parameter turns
off the MilliTimer and removes it from the system heap.
This normally is called only once before the program is
exited. The MilliTimer must be turned off before exit-
ing, or it will continue to operate as long as no other
process attempts to use the VIA timer no. 1.

Calling MilliCount returns the number of elapsed mil-

Copyright 1986 Psychonomic Society, Inc.

308 WESTALL, PERKEY, AND CHUTE

liseconds since MilliControl was last called. This func-

tion can be used like the toolbox call, TickCount. For

example,

MilliControl (True); {Called at beginning of program]
MyCounter: = MilliCount ; [Called for as many
timing events as experimentally required]
[Do other processing here]
MyCounter: = MilliCount - MyCounter;
MilliControl (False); [Called at exit of program]

Synchronizing the MilliTimer with the screen refresh
can be accomplished by synchronizing to TickCount,
which is automatically incremented during the vertical re-
trace interrupt. This is useful when using a visual cue to
elicit a timed response. For example,

MilliControl (True);
MyLonglInt: = TickCount + 1;
While MyLongInt > TickCount Do;
MyCounter: = MilliCount ; [Can be repeated as often
as required for timing different events]
[Do other processing here]
MyLonglnt: = TickCount + 1;
While MyLongInt > TickCount Do;
MyCounter: = MilliCount - MyCounter;
MilliControl (False);

Making continuous calls to MilliControl does not cause
problems, since each call causes the previous MilliTimer

to be removed from the system heap and a new one to
be installed. This has the effect of resetting the counter.

It is important to remember that any other process or
driver that uses the no. 1 timer on the 6522 chip (such
as the sound driver) will step on the MilliTimer, making
it necessary to reinitialize the counter with a call to Milli-
Control. Also, during timing of some user action, no disk
access can take place during the timing process, as the
time reported back by MilliControl is inflated by the disk
access time. Testing has shown the accuracy of the Milli-
Timer to be approximately +1 msec per 30 min. Appen-
dix C provides a working demonstration applicable to
Microsoft BASIC routines. Users of this routine are cau-
tioned, however, that the processing times of interpreted
languages are potentially a source of timing error in the
millisecond range.

REFERENCES

CHutg, D. L. (1986). MacLaboratory for psychology: General ex-
perimental psychology with Apple’s Macintosh. Behavior Research
Methods, Instruments, & Computers, 18, 205-209.

CHUTE, D. L., & DaNIEL, R. S. (1985). MacLaboratory for psychol-
ogy. Dubuque: Kendall Hunt.

PErRkEY, M. N. (1986). The effect of a machine-rich environment on
courseware development: The process and the product. Behavior
Research Methods, Instruments, & Computers, 18, 196-204.

ReED, A. V. (1979). Microcomputer display timing: Problems and so-
lutions. Behavior Research Methods & Instrumentation, 11, 572-576.

REED COLLEGE. (1985). Rascal user manual: Macintosh language for
real time 1/O oriented development. Portland, OR: Metaresearch.

APPENDIX A

ANOLIST ‘
.INCLUDE TIAsm/SysTraps.Text
.INCLUDE TIAsm/Systqu.Text
LIST

FUNC MilliCount

MOVE.L (SP)+ Al

LEA Lv11DTAD

MOVEA.L 24(A0} AD

MOVE.L -8(A0),(SP)

JMP (A1)

.PROC MilliContro}

MOVE.L A2,-(5P)

MOVEALL. YIAA2

:Save return address in Al

;Load the address of the leve!l 1 dispatch table into AO
;Place the timer 1 interrupt vector into AD

:Make the function result the millisecond count
iReturn to the calling program

;Save A2 on the stack
;Move the base address of the VIA into A2

MOVE.B #010000008 YIER(A2) ;Turnoff the timer | interrupts
MOVE.B YT1C(A2),00 Cleer the VIFR bit for timer 1, just in case
MOVEAL SysZone AD :Loed the address of the system heep into AD
MOVEALL. Appllone Al ;Load the address of the application heep into Al
@0 LEA Millilnterrupt, A2 :Load the address of the interrupt routine into A2
CMPALL ADA! {Have we reached the end of the system heap?
BLE.S el :Yes, we're done searching for the interrupt
CMPM.W (AQ)+ (AZ)+ Compare a word in the heap with first word of the interrupt
BNE.S e :Not equal, keep seerching
MOVEQ #¢7-1>,D0 ;Load DO for looping
@2CMPM.L (A0)+ (A2)+ Compare another longword in the heap with the interrupt
DBNE D082 ;Leave if not equal otherwise loop 7 times
BEQ.S a3 ;We found the interrupt - meke a short branch
SUBQ.L *4 A0 Fix AD
BRA.S @0 60 back and keep searching the heap
@3 SUBAL #¢8+30> A0 ;Set AD to point to the interrupt in the system heep
CLRL. 8(A0) Wipe out the first 4 bytes of the interrupt

~DisposPtr SYS

;De-atlocate the 38 bytes

MACINTOSH MILLITIMER

APPENDIX A (Continued)

@1 CMPLW #0,8(5P) ;Test the boolean on the stack
BEQ.S @4 ;1T FALSE then branch around initialization code
MOVEQ *#¢30+8>,00 ;We need 38 bytes of system heap space
—NewPtr SYS,CLEAR {Get some memory!
TST.W DO Everything0.K.?
BNE.S 4 ;No, we can't do snything more
ADDQ.L *8 A0 ;Leave 8 bytes for the millicounters
MOYEA.L YIAA2 ;Move the base address of the YIA into A2
ORIB #01000000B YACR(A2) ;Set bit 6 of the YACR - timer 1 free run mode
AND1.B *011111118,YACR(AZ) Clear bit 7 of the YACR - pulse disabled
LEA Ly11DT Al ;Load the address of the level 1 dispstch table into Al
MOVE.L AD,24(A1) ;Set up the new timer 1 interrupt vector
MOVE.B #$0B VT1C(A2) ;Load low byte of counter into the timer 1 latch
MOVE.B #$03,VT1CH(A2) ;Load high byte of timer | counter, start counting...
MOVEQ #¢15-1>,00 ;Load DO for looping
LEA Millilnterrupt A1 ;Load the address of the interrupt routine into Al
@5 MOVEW (A1)+ (AO)+ :Move a word of the interrupt into the heep
DBRA DO,85 Loop 15 times
MOVE.B #110000008 VIER(A2) ;Turnon timer | interrupts
@4 MOVEL (SP)+ A2 ;Restore A2
MOVE.L (SP)+ Al :Place return address in Al
ADDQL *2.5p ;Move stack pointer above the boolean
JMP (A1) :Return to the calling program
Milliinterrupt
MOVE.B YTIC(A1),DO Clear YIFR bit for timer 1 on the YIA
LEA .12 A0 ;Set AD to point to the miltisecond counter
ADDQ.L - #1.(N0)+ ;Increment the millisecond counter by 1
ADDQL #1 (A0} ;Increment the background counter by 1
CMPIL #*1800,(A0) ;Have 1800 milliseconds elapsed?
BMLS e0 ;No, jump around error correction code (next 2 instrs.)
CLR.L (A0) Cleer the background timer
Susa.L *1,-4(A0) ;Subtract 1 from the millisecond timer
@O RTS ;Return to the caller
END
APPENDIX B
0000 j=m=s==
0000 ;====== File: MilliTimerAsm.Txt
0000 ;====== Language: MDS Assembler v1.0
0000 ;====== Author: Robert Westall, Software Development Group,
0000 ;====== Drexel University
0000 ;e=====
0000
0000 INCLUDE MacTraps.D
0000 INCLUDE SysEqux.D
0000
0000 XDEF MilliCount
0000 XDEF MilliContro)
0000
0000 MilliCount
0000 226F 0004 MOVE.L 4SP),Al
0004 41F8 0192 LEA LviiDT,AO
0008 2068 0018 MOVEAL 24(A0),A0
000C 32A8 FFFA MOVEW -6(A0),(A1)
0010 2257 MOVE.L (SP),Al
0012 SO8F ADDQ.L *8,5P
0014 4EDI JMP (A1)
0016
0016 MilliControl
0016 2FOA MOVEL A2,-(SP)
0018 24780104 MOVEAL VIA,A2
001C 157C 0040 1C00 MOVEB #%01000000,VIER(A2)
0022 102A 0800 MOVEB VTI1C(A2),00
0026 2078 02A6 MOVEAL SysZone,AO
002A 2278 02AA MOVEA.L ApplZone,Al

309

310

WESTALL, PERKEY, AND CHUTE

APPENDIX B (Continued)

002t
0028 45FA 0074 e0: LEA Milliinterrupt, A2
0032 B3C8 CMPAL AQ,Al
0036 6FIE BLES el
0036 B548 aPMw (AD)+ (A2)+
0038 66F4 BNE.S e0
003A 7006 MOVEQ #6,00
003C BS88 ez (MPML (AD)+ (A2)+
003E S6C8 FFFC DBNE D0,e2
0044 6704 BEQ.S 3
0044 5988 SUBQ.L *4,A0
0046 60E6 BRAS *0
0048 9IFC 00000026 @3. SUBAL #38,A0
004 42A8 0008 CLRL 8(A0)
0052 AdIF _DisposPtr ,SYS
0054
0054 OC6F 0000 0008 e): CMPLW #0,8(SP)
005C 6740 BEQS 04
005C 7026 MOVEQ #38,00
0058 ASIE _NewPtr ,SYS,CLEAR
0060 4A40 TST.W Do
0064 6638 BNE.S 4
0064 5088 ADDG.L *8,A0
0066 2478 0iD4 MOVEAL VIAA2
006A 002A 0040 1600 ORLB #%01000000,VACR(A2)
0070 022A 007F 1600 ANDIB 2R01111111,VACR(A2)
0076 43F80192 LEA LvIIDT,A}
007A 23480018 MOVEL AO,24(A1)
007E 157C 0008 0800 MOVE.B #308,VT 1C(A2)
0084 157C 0003 0A0O MOVESB #$03, VT I1CH(A2)
008A
008A 700E MOVEG *14,00
008C 43FA 0016 LEA Millilnterrupt,Al
0090 3009 05 MOVEW (A1)+,(AO)+
0092 SICBFFFC DBRA 00,85
0096 157C 00CO 1C00 MOVEB #%1 1000000, VIER(A2)
009C 245F @4 MOVEL (5P)+,A2
009 225F MOVEL (SP)+,Al
00A0 54BF ADDQ.L *2,5p
00A2 4D! JMP (A1)
00A4
00A4 Millilnterrupt
00A4 1029 0800 MOVEB VTIC(A1),00
00A8 4IFAFFF2 LEA *-12,A0
00AC 5298 ADDQL #1,(A0)+
00AE 5290 ADDQ.L #1,(A0)
00B0 0C90 0000 0708 cPIL #1800,(A0)
00B8 6B06 BMIS &6
00B8 4290 CLRL (A0)
00BA S3AB FFFC suBaL #1,-4A0)
00BE 475 @6: RTS
APPENDIX C

REM %% This program illustrates the use of the Drexel MilliTimer
REM %% | anguage: Microsoft Basic v2.|
REM %6¢ Author: Robert Westall, Sof tware Development Group

Drexel University, Philadelphia, PA 19104

REM *#%% T¢ avoid handling single-precision mathematics, the MilliCount
REM %% function has been modified to return an integer (2 bytes). Easy
REM *¢% modification could be made to allow the return of the fuil 4
REM *#x bytes of the counter for single-precision or 8 bytes for double-
REM %% precision.

REM w6

REM % [nstall the MilliTimer routines
DIM CountCodeR (11), ControlCode® (85)
True® = |: False® = O: MyTime® = O: NewTimeR = O

CLS

MACINTOSH MILLITIMER

APPENDIX C (Continued)

FOR Kount = 0 TO 10: READ CountCode® (Kount): NEXT Kount
FOR Kount = 0 TO 84: READ ControlCode® (Kount): NEXT Kount

REM %% |nitialize the MilliTimer
MilliControl = VARPTR (ControlCodeR(0))
CALL MilliControl (TrueR)

REM %% Time event
MilliCount = VARPTR (CountCodeR(0))
CALL MilliCount (VARPTR(MyTimeR))
REM (%00 gther processing herex}
CALL MilliCount (VARPTR{NewTimeR))
PRINT "The elapsed time in milliseconds is *; NewTimeR-MyTime®

REM 6% Shutdown MilliTimer
MilliControl = VARPTR (ControlCode®(0))
CALL MilliControl (FalseR)

REM *** Machine code data for "MilliCount”
DATA &H226F ,&H0004,8H41F8,8H0192,8H2068,86H0018,8H32A8 &HFFFA
DATA &H2257,8HS08F ,&H4ED |

REM **¥Machine code data for “MiiliControl”

DATA 8H2FOA,8H2478,8H01D4,8H157C,&H0040,8H1C00,8H102A,8H0800
DATA 8H2078,8H02A6,8H2278,&HO2AA, 8HASF A,8H0074,8HB3C8,&HEF 1E
DATA &HBS48,8H66F 4,8H7006,8HB588,84H56C8, &HFFFC,8H6704,8H5988

DATA &HEO0E6,8HI 1 FC,8H0000,8H0026,84H42A8,8H0008,&HA4 I F &HOCEF

DATA 8H0000,8H0008,8H6740,5H7026,8HAS | E,&H4A40,8H6638,86H5088
DATA &H2478,8H01D4,8H002A,8H0040,8H1600,8H022A,&HOO 7F ,&H 1600
DATA &H43F8,8H0192,8H2348,&H0018,8H157C,8&H000B,8H0800,86H157C
DATA &H0003,8&HOAQ0,&H700E,8HA3F A, 8HO0 16,8H30D9,8HS 1C8,&HFFFC

DATA &H157C,8HO0CO,&H 1C00,8H245F ,&H225F &HS4BF ,&H4ED | ,86H1029

DATA 8H0800,&H41F A, &HFFF 2,8H5298,8&H5290,84H0C90,8H0000,8H0708
DATA &H6B06,8H4290,8HSIAB, 8HFFFC,&HAE7S

(Manuscript received February 12, 1986;
revision accepted for publication May 1, 1986.)

31

