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'I'reatments of bias in detection and recognition models:
A review

A.E. DUSOIR
City of London Polytechnic, Whitechapel High Street, London E1 7PF, England

The review considers various proposals about the form of isobias curves and about the relation between
bias and bias conditions (payoff, presentation probabiiity, and instructions). Though the proposals differ
sharply, none of them proves to be adequately supported by existing evidence. There has been a curious
tendency to appeal to a priori arguments, to consider only a very restricted set of alternatives from
among the published proposals, to contrast proposals at levels of performance where their predictions are
minimally different, and to ignore existing evidence. The review tries to provide a solid basis for more

adequate experimental work in the future.

The current approach to detection and recognition
performance is to define separate discriminability and
bias parameters and to try to find two disjoint sets of
experimental variables, each affecting only one type of
parameter. Discriminability parameters have been
extensively discussed; much effort has been spent in
trying to find a discriminability parameter which does
indeed remain invariant under change in presentation
probability, payoft, and instructions, and in trying to
relate such a parameter to objective stimulus
conditions. Bias parameters have been neglected, by
comparison; much less effort, that is, has been spent
in trying to find a bias parameter which does indeed
remain invariant under change in objective
discriminability, or in trying to relate such a
parameter to presentation probability, payoff, and
instructions. Nevertheless, these last two issues have
by now attracted many quite distinct proposals, and
these are reviewed here.

PRELIMINARIES

The review considers detection and recognition
situations in which one of two stimuli, s; and s, is
presented on each trial and followed by one of two
responses, ry, rz, or by one of m rating responses. (For
the only relevant work outside this area, see Atkinson,
Bower, and Crothers (1965), Atkinson and Kinchla
(1965), and Markowitz and Swets (1967); these papers
consider bias in forced choice tasks.) Where it is
natural to treat one stimulus as ‘‘noise,"” the other as
“signal,” sy will be used to denote “‘noise’’; otherwise
assignment - of the labels to the stimuli will be
arbitrary. y will be used to denote the probability that
s; will be presented. Where some payoff is made

I am very gratetul to P. T. Smith, M. Coltheart, and D. H.
Krantz for many helptul comments; the Ilast contributed
substantially to the introductory section.

contingent on the joint occurrence of the ith stimulus
and the jth response, it will be denoted oj;.

We will be concerned with the conditional
probabilities, p(r | s). of response r given stimulus s.
In the rating response case, it will be assumed that the
m response categories have been collapsed, by the
well-known method, to yield m-1 separate
definitions of r; and r; (Egan, Schulman, &
Greenberg, 1959).

For brevity, let p(ry | sy) = q, p(rz | s = p. It is
usual to write q and p as functions of two separate
parameters

q = 1(65,0p) 1

p = g(©s,0p) 2

where Og is interpreted as a sensitivity parameter, Op
as a bias parameter. If one parameter is held constant
and the other varied, an isoparameter curve is traced
out. It will be convenient to use the brackets [] to
denote a family of isoparameter curves. Thus [Op], for
example, will denote the family of isobias curves
traced out by keeping ©p constant and varying ©s.

Suppose that there are two different parameteriza-
tions

q = f(05,0p) = f(05,0p) 3
p = g(0s,0p) = §(Os,Op). )

Equations 3 and 4 implicitly define ©g, 0, as functions
of ©g,0p. The relation may be put in explicit form as

Qg = u(Os.0p) &)

©p = v(Bs,0p) ©)

where u, vdepend on f, f, g, and §. Equations Sand 6
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determine whether the two parameterizations agree as
to their isoparameter curves. They yield identical
isosensitivity curves, [@g] = [@]. if in fact B is a
function -of the first variable only
B = u(Bg). (N
Similarly. they yield identical isobias curves. [Bp] =
[Bp]. if Op is a function of the second variable only
©p = v(Op). ®)

A parameterization may considerably simplify the
relation between experimental variables and data.
Given a proposed parameterization (0g,0p), and a list
(x4, X2, ..., Xp) of experimental variables, we may
partition the xj into the sets Xsb. Xsb. Xsb. X35b
according as they atfect O alone, Oy alone, both, or
neither. The trouble with the raw data parameteriza-
tion (q = Op. p = Og) is that most, possibly all,
variables fall into Xgp or Xgh. What we want is a
parameterization where most, if possible all, the
variables fall into X3p or Xsb; than ©g, Op can serve
as a direct source of inference about the xj.

The uniqueness of any such parameterization
depends on which of Equations 5-8 hold, since

66, o 000 o 5u 2 v ot

xieXsp > 5= 0, 5 F 0250 "ox T 50, 6% O
Su (=0

Su 9

B 50, [#0 ©

(g M b B by B io)

Xi€Xsb > 53 T 05 =07 50, "o, Y50, ox %0
év [=0

255 10 (10)

So if parameterizations (OS,@b) (Bs,6p) determine

X3b, ... Xsb and Xzb, - Xsb then Xsp = Xzb if
Equatlon 7 holds, Xsb = Xsb if Equation 8 holds,
otherwise X3p and Xgb are disjoint, as are Xgb and
Xsh. Note, however, that two parameterizations may
each make Xgp. Xsp nonempty, provided they
disagree totally about their composition. Thus, for
example, there is nothing to prevent ©p remaining
invariant under change in one variable and ©p =
v(Qg, ©p) remaining invariant under change in
another. Both parameterizations would then have
some point.

So far, empirical work has established some degree
of consensus, but only about sensitivity. The main,
and best known, example is the parameterization

(d’. ) in signal detection theory (Green & Swets,
1966), where any of a large number ot bias parameters
may complete the parameterization. Because these
bias parameters are related by Equation 6, not
Equation 8. there is almost no agreement about the
measurement ot bias.

The success of the (d', * ) parameterization rests on
the following: (i) Under this parameterization, there
exist some X3p variables. (ii) All these Xgp variables
are ones which might have been expected a priori to
affect “*bias”™ but not ‘‘sensitivity,”” namely payotf,
instructions, and the response category definitions.
Another such variable, y, probably has to go into Xgp
(Markowitz & Swets, 1967; Wickelgren, 1968), unless
the subject’'s memory for s, s, is controlled. (iii) It
seems a reasonable requirement of a sensitivity
parameter that it should not, for example, take the
same value for points (q.p). (q,p). p # p’. In fact, for
O to be a sensitivity parameter, there should be a
function, y, such that

05 = w(q.p) amn
q<q &p>p o
or = y(q.p) > w(q',p). (12)

q<q &pzyp

This is satisfied by the d’ parameter. Note, paren-
thetically, that Equations 11 and 12 make p a strictly
increasing function of q given fixed sensitivity.
Consequently any second parameter, ©Op, in
Equations 1 and 2, must necessarily index the extent
to which the subject chooses r, rather than r,, given
fixed sensitivity. This makes it reasonable to call any
©p a bias parameter. (iv) There seems to be no
alternative parameterization satisfying (i), (i), and
(iii).

It should be noted that (i)-(iv) support the d’
parameter in quite different ways. (i) gives the
parameter some point. (i) and (iii) justify it being
called a sensitivity parameter. (iv) gives the parameter
greater importance than it would otherwise have.

What still remains is to choose a bias parameter. As
will appear, there is no shortage of candidates. What
their proponents seem to be in search of is a
straightforward analogue of all of the points (i), (ii),
(iv) above; that is, they want to assume that some
measure Op can be found for which Xgf variables
exist, that Op is unique in satisfying this, and that the
Xsb variables include all the a priori ‘‘sensitivity’”
variables such as signal energy, noise level, presence
or absence of signal pedestal, . ... (Note that any list
of such variables must be very long and
heterogeneous, given the variety of experimental
situations to which detection models have been
applied.) It is important to see that the three parts of
this assumption are really quite distinct and
separable. No bias measure may exist which satisfies
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all three requirements together.

Given this (perhaps overambitious) demand that
the three requirements should be satisfied
simultaneously, to reject some candidate, ©p, it is
sufficient merely to show that ©p varies with some one
a priori sensitivity variable, e.g., signal energy. From
a more circumspect point of view, this result shows
merely that signal energy is not an Xgf variable for
that parameterization. Several important Xgp
variables for that parameterization may nonetheless
exist, in which case the parameterization ought to be
preserved. For brevity, we will write below of
“evidence against [Op]” whenever Op varies with
some particular a priori sensitivity variable. This is
deliberately noncommittal, and the reader is left to
draw the qualified or unqualified conclusion as he
thinks fit.

To avoid confusion, something should be said
about Hodos’s (1970) paper, since its title—*‘Non-
parametric index of response bias for use in detection
and recognition experiments’—might be taken to
render this review redundant. A nonparametric
comparison relation, relative to a set S of
parameter-specifying functions w,(q,p), ... wi(q,p),

wn(q,p), is a transitive, asymmetric binary
relation, *, defined on some subset P of pairs of
points [(q.p).(q’.p"] in the unit square, such that

a.p) * (q.p) — wi(q,p) > wilq'.p")

for all wjin S, all [(q,p).(q",p)]inP.  (13)

Thus P includes just those pairs about which all the
yj agree. This is interesting, since it allows inference to
be extended beyond parameterizations related via
Equations 7 and 8 into parameterizations related via
Equations 5 and 6. Norman (1964) provides a
discriminability comparison of exactly this sort,
relative to sensitivity parameters which yield
monotonic isosensitivity curves of nonincreasing
slope. Hodos’s title suggests that something similar is
about to be provided for bias. This is quite
misleading. What is in fact provided is a new
(arbitrary) bias parameter which in its formula-
tion makes no reference to any specific sen-
sitivity parameter. Hodos’s parameter is in this
respect no different from several bias parameters
already in existence (see below). It is, in any case, a
trivial matter to deparameterize Equations 1 and 2 to
give a direct isobias relation between p and q (the
relation need not be a function, of course). Thus, it is
no more than a matter of presentation whether or not
a bias measure is nonparametric in Hodos's greatly
reduced sense.

Certainly it would be most useful to have some bias
relation, *, satistying Equation 13, it S were
to include most proposed bias measures and P
were to be reasonably full. Unfortunately a glance at
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the isobias curves so far proposed (Figures 1 and 2)
suggests that their disagreement is rather too general
to allow these conditions to be satisfied. Of course,
this may cease to be true if empirical work
considerably reduces the number of plausible bias
parameters; a genuine nonparametric approach
might then be feasible.

TREATMENTS OF BIAS

Let p(rz | s9) = Fy(2), p(ra | s = Fy(z), where F,
and F, are continuous functions of a real variable and
increase monotonically from O te 1. Let change of bias
be represented as change in z and change of
discriminability as change in F,, F,. For fixed F, and
F,, any degree of bias, z = z¢ say, can be
characterized in a number of different ways: in terms
of Fy(z¢), Fy(zc), or some function of the two; in terms
of the local behavior of F; and F, around z = z¢; or in
terms of the distance (zc - r) between zc and some
reference point r (where r must be fixed relative to one
or both of F;, F, since the origin and scale of the
z-axis can only be fixed arbitrarily). Each of these
three types of characterization is found among the
bias measures currently in use.

Examples of the first type are:

(1) plry | sy)
(2) plry = y "plrz|s) + (1 -y) " plra|sy

v _ plr 's2)
(I -y) plrz|sy

3)

(1) gives the conditional probability of a false r,, (2)
the absolute probability of an r,, and (3) the absolute
probability of a correct r, divided by the absolute
probability of an incorrect r,. (1) came to psychology
from normative statistical decision theory (Neyman &
Pearson, 1933; Swets, Tanner, & Bridsall, Note 1).
(2) and (3) arose from more intuitive and
psychological considerations (Healy & Jones, 1973;
Parks, 1966; Thomas & Legge, 1970).
An example of the second type is:

F,'(z¢) __dpl(r, | sp)/dz
Fy'(z¢) ~ dplr, | sy/dz

@ p=

Z=1Z¢

(4), like (1), came from normative decision theory; the
rationale for its use in detection and recognition
experiments is discussed extensively by Peterson,
Birdsall, and Fox (1954) and by Green and Swets
(1966). In models of the signal detection theory type,
which assume that the subject takes an observation
from one of two probability density functions and
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Figure 1. Illustrative isobias curves.
(d) [B]. given that F,(z), F,(z) are the normal distribution function,
o =10 =23, 1.7 (), 1.3 (c), 1.0 (d), 0.9 (e), 0.7 0,

3.9 (a), 2.3 (b). 1.5 (&), 1.0 (d), 0.9 (&), 0.5 (D,

(@) [p(ry | spl. plry | sp) = 0.1 (a),’0.3 (b), 0.5 (c), 0.7 (), 0.9 (e).
(b} [p(r,)]. p(r;) = 0.3 (a), 0.5 (b), 0.7 (¢). ———y = 0.3,
——y =05, —— —y = 0.7. 0.5 (g).
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compares it with a fixed criterion, (4) gives likelthood 1.0 i Ly
ratio at criterion; but an analogous quantity appears ) Tseel Tl
with a different interpretation within the choice theory | Tl b
of Luce (1963), so a general definition, such as (4), o8l T
seems preferable. b *
Examples of the third type are: P
0.6]} ‘\\
(5) log b blsf5,) b {
(0) C o 1\
\‘ \\
Both Luce’s (1963) choice theory and signal detection | )
theory in its commonest form assume Fy(z) = F(z), o2 .
Fyz) = F(z + d), where d is a discriminability )
parameter. In the former, F is the logistic distribution ,
function (6? = n?/3) and d is 2 logn. In the latter, F is 0.0 0.2 0ua o o To
the normal distribution function (02 = 1) and d is the
familiar d’. (5), within choice theory, and (6), within plrle)
signal detection theory, measure a distance (z¢ - zg) 1.0 A—
in o units. In each case, zg, a point of zero bias, is \\\\% ““““ R -
chosen so that Fy(zg) = 1 - Fy(zo); thus at z¢ = zg N N e Ve
p(rz [ s9) = plry | sy). o8 \ N
Depending on which bias measure the subject keeps Y AN
constant as discriminability varies, very different PN
isobias curves are traced out (Figure 1). There is one 0.6 \ \
exception: (5) and (6) generate almost identical curves ptela) \ N
because of their similarity of definition and the 2 2 "\ \
relation between the logistic and the normal 0.é \ .
distributions (Bush, 1963). Clearly the form of [f] !
depends on the particular F(z), F(z) assumed, while / b
[log b] and [C] lack any rationale unless Fy(z), Fy(z) 0.2
are as their parent theories suppose. /
More complex treatments of bias have been put /
forward by Broadbent and by Smith. Broadbent's N
proposal (Broadbent, 1965, 1971) assumes that for o 20 veowe 20
each s and r there is a real number Age such that plr e
pir |'s) = Agr/Z 'Asr’. Log Agy is then supposed to
be a weighted average of the expected utility of r given Figure 2. Dllustrative isobias curves for Broadbent’s model.
knowledge that s has occurred and its expected utility @ gy (bu)’,’__j:';} By 1 (a);yuléz 5“21_=_5.’_“11 iy
given no information about s. Thus Bty = sy = 4, ugy =1, uyy = -3 (@); uyy = 5, 1y = 4, uyu e
s =3 (b); ———y =04, Y= 05 —mry =

log Ajj = ®ujj + (1 - )1 - Yuyj + yuy)
0<o<1

where @ is a discriminability parameter and the ujj
are unknown transforms of the ojj, to be estimate

from the data. Isobias curves for this model are shown
in Figure 2. Smith’s (1968) model assumes that each
decision in a psychophysical task may involve some
cost (formally a nonnegative real number) and that
the subject takes average cost into account in choosing
his bias. Together with some plausible assumptions
about the determination of cost and the nature of the
detection process, this is shown to predict
discontinuous isobias curves; that is, above a certain
critical level of discriminability the subject should

show negligible bias (p(r; | sp) = p(ry | sy)) even it bias
is considerable at lower levels of discriminability.
Smith’s isobias predictions are much more complex
than any described above, since a whole family of
two-parameter isobias curves pass through any (q,p).

ISOBIAS CURVES:
EXPERIMENTAL EVIDENCE

Some general points should be borne in mind
throughout this section. First: the isobias functions so
far taken seriously have arisen mostly from stationary
independent trial models of detection and
recognition. Certainly it is possible, despite the
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existence in typical data of sequential effects, that one
of these functions should describe empirical isobias
curves (for example, see Bush. Luce, & Rose, 1964).
[t is to be hoped, however, that more attention will be
given in the future to isobias functions within
dependent trials models or in models which are
careful to avoid assumptions about trial by trial events
(e.g.. Thomas & Legge, 1970). Second: existing work
assumes that isobias curves have the same form across
different subjects. difterent tasks, different ways of
varying discriminability, and different types of bias
conditions; there have been no tests of this
(optimistic) assumption. Third: a common procedure
has been to run a group of subjects at two or more
discriminability levels under fixed bias conditions,
and to compare the distribution of bias change with
some chosen null hypothesis distribution. Even if
isobias curves are identical across subjects, this is a
very dubious procedure because of the way the
proposed isobias curves are related. Thus, for
example, if the subject holds p(r,|s, constant,
calculated f# may show an increase, a decrease, or no
change. depending on the starting point and the size
of discriminability change (see Figure 1); so the fact
that 8 change is approximately symmetrical about
zero in a group of subjects does not, by itself, reveal
much about the underlying isobias function.
(Conversely, there is no reason to expect symmetry
about zero, even if [f] holds, without some specific
assumptions about variance in the unit square.)
Fourth: the dissimilarity between the proposed isobias
functions varies crucially with the level of bias and
range of discriminability involved; there is little point
in testing an isobias prediction in a region of the unit
square where dissimilarities are minimal.

[p(r; | sy)]

Treisman (1964) and Ingham (1970) have argued
for [p{r, | sy)] on the grounds that this requires less
knowledge on the part of the subject than does [f];
they suggest that everyday life provides ample
opportunity for the subject to learn to generate a given
p(rz | sy). This latter point seems dubious; the
experimenter normally takes elaborate steps to make
s, more controlled than everyday-life stimuli, and this
seems misguided unless the internal representation of
s, is commensurately altered.

[t is of course open to direct test whether
subjects can generate given false-alarm rates
when given instructions to do so. Swets, Tanner,
and Birdsall (1961) instructed four experienced
subjects to maintain p(r; |s,) within the ranges
0.0-0.07, 0.21-0.28, 0.43-0.50, 0.64-0.71, in a visual
detection task. There was no trial by trial feedback,
but at the end of each block of 50 trials they were told
obtained p(r; | sy). Averaged over 18 blocks, obtained
values were close to target values, the largest deviation

being 0.04; and this was achieved without drop in d’
relative to more normal viewing conditions. Swets
et al. do not point out, however, that errors were very
systematic. Of the 10 points which lie outside their
target ranges, nine lie below, despite one range being
bounded below at zero. The argument is presumably
that any adjustment process based on the feedback
must provide a source of variance additional to any.
involved in normal performance; therefore d’ should
fall (Thomas & Myers, 1972) unless the adjustment
process is very efficient. Against this, it seems possible
that one source of variance has been substituted for
another. (Suppose, for example, that under normal
conditions the subject adjusts bias at the end of each
block, but on the bais of p(r;) rather than p(r; | sy).
There ceases to be any simple reason to expect a d’
decrement in the Swets et al. condition.)

Direct evidence for [p(r, | s;)] was put forward by
Treisman et al. (Howarth & Treisman, 1958;
Treisman, 1964; Treisman & Howarth, 1959). They
found that given an accessory stimulus at a fixed
interval from s, subjects increased p(r, | sp) but kept
plry | sy) constant. A fundamental weakness,
however, is that p(r,|s; was low throughout the
experiments (average value 0.041); in this region [f],
[bl, [C] and Broadbent’s model each predict
approximately constant p(r, | s,) (Figures 1 and 2).
Treisman et al. give no evidence that [p(r;]|sy)]
provides a better fit than these alternatives.

Evidence against [p(r; | sy)] is to be found in some
experiments discussed in later sections and in the data
of Markowitz and Swets (1967), who obtained
six-point isobias plots from three subjects under three
values of y in an auditory detection task; p(r, | s;) was
negatively related to discriminability throughout.
Markowitz and Swets, in fact, provide the best
defined individual-subject isobias plots available.
Regrettably, their binary response, forced choice, and
rating response data suggest quite different
assumptions about Fy(z), F4(z), and so cannot be used
to test the theory dependent functions [f], [b], or [C].

[p(ry]

The curves [p(ry)] have the general form

0<y<1

1-v

k—1<—=q<k
Y q

p=k—((1 -7)7)q

The slope, ((1-y)/y), is determined by the
presentation probabilities alone; k is chosen by the
subject. If k = 1, the subject matches p(ry) to y;
otherwise p(r) Zy as k 2 1. If k is assumed to
depend on the outcome matrix and instructions, but
not on y, the model can be tested in more than one
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way: its isobias predictions can be tested as usual; in
addition, a single (q.p) is sufficient to estimate k, and
this determines the isobias functions on which all
other (q.p) must lie given other y. The first procedure
is discussed here. the second in the next section.

Parks (1966) argued for [p(r);)] on the basis of the
recognition memory data of Strong (1912). (For the
application of signal detection models to recognition
memory. see Green and Swets (1966).) Strong held y
at 0.5 and varied discriminability via the size of the
exposure set (5, 10, 25, 50, 100, 150 items). Items
were magazine advertisements. The subject respond-
ed with a 4-point confidence rating. Parks cumulated
the data to give a single p(r, | sy and p(r, | rp) for
each condition. Since the subject was not told y, Parks
writes p = k -®q, where ® represents the subject’s
estimate of ((1 -y)/y) and is assumed constant over
groups. Two of the groups were used to estimate k and
®, and this was sufficient to predict q given p for the
other groups. But since y was 0.5, and estimated k
was 0.971, the isobias curve under test consisted,
approximately, of the unit square negative diagonal
(see Figure 1). Thus the success of the prediction
argues only against [p(ry | spl and [(y/(1 - y)
(plrz | s2/plrz | sl

A similar objection applies to Thomas and Legge’s
more recent case for [p(ry)] (Thomas & Legge, 1970).
They quote the results of Swets (1959), who ran three
subjects at each of four discriminability levels in an
auditory detection task, with y throughout at 0.5.
plry) was close to y in all cases, but again this argues
against only [p(r; | s9] and [(y/( - p] -
[ptra | sp/pfira | sy))]. Thomas and Legge's support
for [p(ry)] is in part motivated by their unwillingness
to assume that the subject has the information
required to compute f, especially when he is
inexperienced and has no trial by trial feedback. It
should be noted that even if the subject does set his
bias so as to generate a target value of p(r,), that in no
way implies the isobias function [p(ry)]. since the
subject might still take task difficulty into account in
choosing his target p(ry).

[(y/(1-y) - (plr;|s))/plrz|s))]

This isobias tunction preserves the ratio of correct
to incorrect r, responses. It was recently suggested by
Healy and Jones (1973) on grounds that can only be
described as intuitive. Like the proposal just
discussed, it makes predictions about the effects of
varying y as well as about the shape of isobias curves;
only the latter are dealt with here. A crucial prediction
is that isobias curves have positive slope. This is
clearly falsified by the data of Swets (1959),
Markowitz and Swets (1967), and Ingleby (1969), for
auditory detection, and by that of Strong (1912) for
recognition memory tasks. It is falsified, for
intelligibility (word recognition) experiments, by data
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which Healy and Jones themselves quote (Clarke,
1960; Decker & Pollack, 1959; Pollack & Decker,
1958). Thus, Healy and Jones’s attempt to draw
substantive conclusions about recall on the basis of
this assumed isobias function seems misguided.

Broadbent (1971, pp. 193-196, 237-239) has
recently lent his weight to [f], drawing on data from
three different fields.

(1) Auditory Selective Attention

A crucial experiment, which has never been
performed, would be to require subjects to dis-
criminate between s; and s,, under two conditions,
first with s,, s, occurring on an unattended channel,
second with s,, s; occurring on an attended channel,
and to trace out isobias curves in each condition by
varying the objective discriminability of s; and s,; it
might then be seen directly whether the isobias curves
were of the same family (they need not be) and if so
whether they were coincidental. Unfortunately, the
existing studies (Broadbent & Gregory, 1963; Moray
& O'Brien, 1967; Treisman & Geffen, 1967) consider
only one objective discriminability level, under
attended and unattended conditions. All apply the
classical signal detection theory model and find
change in d’ without significant change in $. This, by
itself, implies nothing about isobias curves, since it is
unclear whether the data points lie on one isobias
curve or on two. Broadbent, however, argues that the
latter interpretation is in detail implausible. He
makes the crucial assumption that channel rejection,
it it atfects bias at all, must increase bias against r,.
The subject cannot then be moving between members
of [p(ry|syl; for plry|sy in fact increases given
channel rejection. Nor can he be moving between
members of [p(ry] or [C]; for this would be
compatible with unchanged # only if p(r;|sy) <
p(ry | sy (see Figure 1), which is contradicted by the
Broadbent and Gregory (1963) rating data.

The argument is weak, for three reasons. First: the
justification for Broadbent’s crucial assumption
seems obscure. It would be reasonable enough if one
were trying to account for selective attention solely in
terms of bias change. But, given that discriminability
change certainly occurs, whatever else, it needs to be
decided by experiment, not fiat, whether in addition
bias changes against r,, in favor of r, or in a direction
which depends on the initial bias level. Second: the
argument assumes that selective attention proceeds by
channel attenuation rather than by time-sharing
between channels; it seems uncertain, at present,
whether this is correct (Broadbent, 1971; Moray,
1969). Third: the data on which the argument rests
are far trom ideal. Only in the Broadbent and Gregory
(1963) experiment is there any evidence for the
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correctness of the distributional assumptions on
which f is based. In addition, Treisman and Geffen's
results are based on pooled data and estimated values
of p(r; | sy): subjects were trying to detect target (s;)
words among nontarget words. but the authors did
not count a nontarget word as an s, unless it was
phonemically similar to the target by their fairly
arbitrary definition of similarity. - Moray and
O’Brien’s data include zero false-alarm rates, which
have made necessary lower-bound estimates of f8 in
some cases.

(2) Vigilance

In the modified vigilance situation studied by
Ingleby (1969), subjects detected sinusoids in noise,
with trial by trial feedback. In some conditions,
before the warning which preceded each trial a “‘cue”
light gave probabilistic information about whether a
signal would be presented on that trial. y was always
0.5. Subjects responded with a four-category
confidence rating with differential payoff attached to
each category. Separate experiments varied objective
discriminability and the information given by the cue
light; within each experiment, a condition was run in
which the cue light was dispensed with.

Isosensitivity functions were compatible with Fy(z)
and F,(z) being cumulative normal, but with 0, =
1.250,. Calculating f# on this assumption, Ingleby
argues for [B] on three grounds. First: as
discriminability varied, the central criterion remained
on the negative diagonal. Second: criteria lay further
apart (in terms of the F, standard deviation, o,) when
they were lax than when they were strict. This would
follow if subjects maintained the criteria at a similar
distance in terms of log 3, because of the relation
between log 8 and z/0, when o0, < o;; this relation is
illustrated in Figure 3, the crucial point being that the
function is positively accelerating. Third: at low
discriminability, the cue light had a greater effect on
criteria, in terms of z/0;, than at high
discriminability, and in conditions when the cue light
was omitted criteria lay closer together in terms of
z/04 at high discriminability.

Of these three points, the first in fact argues only
against [p(rz | s9] and [(y/(1 -y) - (p(rz | s9/p(r; |
s1))]). The second fails to argue against [p(r,)], because
the relation between p(ry) and z/0, when o0; < 0, is
rather similar to that between log f and z/o,
(Figure 3). The third is potentially a stronger
argument for [ff]. Unfortunately, as Ingleby himself
points out, it is not at all clear from his data whether
the effect was in fact large enough to keep f§ constant
across discriminability. Ingleby tried to detect change
in log f using both analysis of variance and
Wilcoxon’s test; the latter, but not the former, gave a
significant result. There seems little theoretical basis
for either of the null hypotheses assumed; both

4.0
2,0
log B
0.0
-2.0
-3.0 -2,0 -1.0 0.0 1.0 2.0 3.0
5/01
1.0
0.8
0.6
p(xy)
O.4
0.2
3.0 -2,0 -0 0.0 1,0 2,0 3.0
3/01

Figure 3. The relations between log  and z/0,, and between
piry) and z/0,, under the illustrative assumption

F,)=F@)= [ . NOD dx,
1

F,(2) = F0.82 + 1.20,). For Figure 3(b), it is assumed that
y = 0.5,

depend on unstated assumptions about variance in
the unit square. This, and the disagreement between
the tests, make Broadbent’s unqualified claim that
Ingleby’s subjects kept 8 constant (Broadbent, 1971,
p- 195) seem rather overstated.

(3) Scaling

Broadbent and Gregory, in an unpublished
experiment reported briefly in Broadbent (1971,
pp- 237-239), required subjects to discriminate
among collections of ball-bearings according as they
were more or less numerous than each of three
different standard collections; there were four
possible responses at each trial. Two groups were run
with the stimuli equally distributed over the four
categories, but with the range of stimuli differing
between the groups. This allowed three values of f§ to
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be calculated for each subject (using choice theory
assumptions about F(z), Fy(z)). Discriminability did
indeed vary between groups, but the f§ values did not.
Unfortunately, however, there was no change either in
log b, C, pl(ry, p(ra | sy), or even p(ry | sy, using the
same Mann-Whitney U statistic that was used to
assess f3 change.? Thus Broadbent’s claim that the
experiment supports [f] seems very puzzling.

In summary, then, the case for [] seems most
equivocal. It should be noted that Altham (1973) has
recently assumed [f] in formulating her nonpara-
metric index of discriminability. There seems little
point in trying to avoid assumptions about
isosensitivity curves (about which there is much
-evidence) at the cost of making assumptions about
isobias curves (about which much less is known).

[log b} and [C]

Hardy and Legge (1968) argue for [C] on the basis
of an experiment which investigated the effect of
concurrent visual presentation of ‘‘emotional” and
“neutral” material on performance in an auditory
signal detection task. The basic task was to detect a
sinusoid in continuous white noise. The observation
intervals were marked by illumination of a
rectangular area containing a faint image of a word
(subjects were unaware of its presence) which was on
some trials ““‘emotional’” and on some trials ‘‘neutral.”
y was 0.5. Subjects responded on a 4-point rating
scale. Fourteen subjects were run for 64 trials, after
minimal practice (six trials). Hardy and Legge show
that if the effect of the *“*emotional”” words is assumed
to be on discriminability alone then [C] must be
postulated rather than [f]. Against this, there seems
no reason to make this assumption. Even if it is made,
it seems likely that [p(ry)] would provide much the
same sort of fit given that y was 0.5 (see Figure 1).

Smith’s Cost Model

Smith has made two attempts to find the predicted
discontinuities in isobias curves. In Smith (1969), a
recognition memory design was used: the material was
three-letter nonsense syllables, y was 0.5, and the
subjects responded *‘yes’ (rp) or ‘‘no’’ (ry), feedback
being given at the end of each list. Separate groups of
subjects were assigned to three payoff matrices, to
produce zero bias, bias towards ry, and bias towards
rs.

There was no experimental variation of
discriminability; rather, the data from the zero bias
condition were used to give a partial ordering of the
items with respect to discriminability and bias was
compared across different levels of the partial
ordering. In Smith (1970), subjects were presented
with lists of names and were required to respond
“yes™ (ry) or "'no”’ (ry) to each one according as they
thought the person concerned was or was not born
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before 1910 (s, and s, items, respectively). Again, y
was 0.5 and three payoft matrices were used, exactly
as in the previous experiment.

In each case, there was some evidence for the
predicted discontinuities, though in neither case is
there any evidence that they occurred at the particular
critical level of discriminability stipulated by the
model. Three criticisms should be noted. First: within
the psychophysical context, the data would have been
considered pre-asymptotic; the subject is being
required to establish consistent behavior to items
scattered over the full range of discriminability, and it
is quite unclear whether he can do this with such
minimal practice. Second: the stimuli were complex
and could be pertfectly identified prior to the subject’s
decision about them. It is possible, therefore, that
subjects adopt ditferent biases for different subsets of
items and that these subsets may not be random
samples with respect to discriminability. (An arbitrary
example: the subject might be biased to respond “‘no”
to items in which the letter x appears, but such items
may be more or less ditticult'than the average.) This,
too, would lead to interactions between discriminabil-
ity and bias, but for reasons quite foreign to Smith’s
model. Third: even if, as the model suggests, the
subject makes a preliminary estimate of the
discriminability of an item before choosing an
appropriate level of bias, it need not be for the reason
given by the model. An example: the subject’s own
initials are presented as a member of the combined set
in a recognition memory experiment. He reflects that
it they had been presented in the exposure set he
would almost certainly have noticed it and
remembered it very clearly, so he responds ‘‘no”
unless he is very sure that the item was presented. In
theoretical terms, he has adjusted his bias for an item
of high discriminability. But this has nothing
whatever to do with cost as it appears in Smith’s
model.

BIAS AND THE PRESENTATION
PROBABILITIES

The next two sections deal with some attempts to
describe the relation between bias and the variables
which determine bias. Clearly, if two parameteriza-
tions are related via Equation 6, not Equation 8, then
there is no possibility of their agreeing as to this
turther issue, since they must necessarily write bias as
a function of difterent variables.

This section deals with the effects of varying y when
the payoft matrix and discriminability are held fixed.
It is natural to suspect that the effects may ditter
depending on whether the subject knows y is being
varied. whether the subject knows y, and whether
feedback is presented; this is strongly borne out by the
results of Kinchla (Note 3), Tanner, Haller, and
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Atkinson (1967), and Tanner. Rauk, and Atkinson
(1970). To accommodate these results, any model
must allow p(r,) to increase or decrease as y increases,
depending on the information conditions. The models
to be considered in this section and the next
completely tail to do this. At best, theretore, they may
hold for some restricted range of conditions not yet
made explicit.

Parks (1966), Creelman and Donaldson (1968), and
Thomas and Legge (1970) assume [p(ry)] and take k in
p = k - ({1 - y)/y)q to depend on pavott but not on y.
All test the special case k = I, under which
assumption the subject matches p(ry to y (the
matching hypothesis). Parks (1966) uses his own
recognition memory data and that of Davis,
Sutherland, and Judd (1961). In both cases, y was
varied by keeping the size of the exposure set constant
while increasing the size of the confusion set. In
neither case did the subject have trial by trial
teedback. but in the Parks experiment he was clearly
told y. The fit seems satisfactory for both
experiments, but Parks ‘considers only group data.
This seems very regrettable, given the recent tinding
in the related field of probability learning that
response rates for groups are not representative of
response rates for individual subjects (Norman, 1971).
Creelman and Donaldson (1968), on the other hand,
apply the prediction to individual subjects. Two
subjects were run in a line-length recognition task
under two discriminability conditions, with y taking
11 values in the range 0.05-0.95. Payoff was fixed and
symmetric. The subjects were later run under five
levels of y with all payoff entries multiplied by 10. No
tormal test of fit is presented, but at an informal level
both subjects seem to show systematic tendencies to
give p(r, Sy as y 2 0.5 in the low discriminability,
low payott condition (Creelman & Donaldson, 1968,
Figure 2), whereas under high payoff one subject
shows p(ry) <y for all values of y. The data are very
equivocal therefore. Thomas and Legge (1970) quote
the data of Tanner, Swets, and Green (Note 4). Two
subjects were run in an auditory detection task, under
a constant symmetric payoff matrix (0y; = 0y,
032 = 0p1), with y varied through 0.1, 0.3, 0.5, 0.7,
0.9. Trial by trial teedback was always given. Each
subject was run for two sessions of 300 trials under
each y. Thomas and Legge assert that both subjects
conform to the matching hypothesis. Both subjects in
fact seem aberrant, however, but in different ways
(see Thomas & Legge, 1970, p. 68). One subject
shows large differences between conditions run under
the same y (thus there is a difference in p of 0.2, in one
case, and a difference in q of 0.2, in another). The
other subject seems consistently more biased than the
model demands (7 out of 8 points err in this
direction). Thus, the fit does not seem very
impressive.

A sccond proposal (Healy & Jones, 1973) assumes
[(y/ (1 -y)) = (ptry | s)/plra | s9))] and takes k in
(y/ (L - y)) - (plrg | s)/plry | spY) = k to depend on pay-
ofl and instructions but not on y. This equation pre-
dicts bizarre isosensitivity functions, a tact ignored by
Healy and Jones. It for y = 0.5 the subject generates
the point {qp) then ((1 -y)/y) < (q'/p) implies
plrz | sz) < p(rz |sy), which is worse than chance
performance. For example, if the subject generates
(0.4,0.6) for y = 0.5, then he must do worse than
chance for y > 0.6. Thus, against the facts (Green &
Swets, 1966). isosensitivity curves should always be
grotesquely skewed if they are traced out by varying y,
except when discriminability is negligible. It is not
surprising, therefore, that the proposal conflicts
wildly with the results of Galanter and Holman (1967)
and Tanner. Swets, and Green (Note 4), who
obtained symmetric (unskewed) isosensitivity curves
by varying y under constant payoff. The central points
of their functions may be used to estimate k, and
p(ra | sp) can then be predicted from the other
p(rz | sy). The predictions are sometimes embarrass-
ingly low (p(r; sy < plrz|sy) and sometimes
embarrasingly high (p(r;|s) > 1.0). Thus, this
proposal is clearly inadequate as it stands.

BIAS, PRESENTATION PROBABILITY,
AND PAYOFF

This section considers attempts to predict bias as a
tunction of y and the oij conjointly. As is well known,
an early approach was to assume that subjects set
their bias so as to maximize expected payoff. The
reasons for rejecting the model are equally well
known, and are discussed extensively in Green (1960),
Luce (1963), and Broadbent (1971). This review
considers two later proposals, which were prompted
by the tailure of the maximization of expected value
hypothesis. and which have not been adequately
discussed.

Thomas and Legge (1970) assume [p(ry)] and for
payott matrices with 0;; = 052 and 0,; = -0z take k in
p = k - ((1-y/y)q to be given by k =
2 " 033/(01; + 032). Because bias is a simple function
of the ojj alone, no room is left for individual
differences; this seems a little implausible. They apply
the suggestion to the data of Green and Swets (1966,
p- 90). who ran one subject over tive payoft conditions
in an auditory detection task, with y = 0.5
throughout; the tit seems satistactory. On the other
hand, they ignore the rather fuller data of Galanter
and Holman (1967), with which their proposal is
clearly incompatible. Observed and predicted values
of k are given in Table 1. The deviations are often
large and are perfectly systematic: no subject shows
sufficient bias under any condition. (The ddta have
been read off double-probability plots; hence the use
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Table 1
Observed and Predicted Values of k for the Data
of Galanter and Holman (1967)

Matrix 1 2 3 4
0, 1 A 1.5 2.5
0,, 25 1.5 1 1

Expected k 1923 1.875 125 077

Observed k
s, < 1.75 <150 > 40 > .25
s, < 1.80 < 1.60 > 50 > .35
S5 < 1.30 > 60
S < 1.40 > .70

Note—The oy are in units of 1 cent. In all matrices 0, , = -0, ,

and 0,y = —0,,.
of inequality signs. In all cases, ambiguities have been
resolved so as to tavor Thomas and Legge's
prediction; thus Table 1 gives a lower bound to the
deviations between expected and observed values.)
Problematically, discriminability is quite similar
between experiments. Galanter and Holman used
greater ratios of 04y t0 02, than the maximum used by
Green and Swets (9:1), but the former’s data for
matrices 2 and 3 show less bias than would be
predicted even if the ratio 9:1 had been used.
Broadbent’s model, summarized in the second
section of this review, has never been seriously tested.
‘It cannot apply to all detection and recognition tasks,
since it predicts that p(ry) will always increase as y
increases; as pointed out previously, this is incorrect
(Tanner, Rauk, & Atkinson, 1970). Broadbent has
suggested (personal communication) that a plausible
modification would be to replace y in the model’s
equations with y’ (say), representing the subject’s
estimate of y. Since, however, for constant y, y’ can
clearly not be the same for zero and perfect
discriminability, it becomes necessary to allow that
between these two extremes y may vary with
discriminability. Thus the isobias predictions of the
original model (Figure 1) have to be withdrawn (since
they are traced out by keeping y and the ujj constant
while varying ®) and none can be put in their place
until it is known how y’ varies as a function of y and
discriminability conjointly.

CONCLUSION

The review has failed to find any adequate
experimental foundation for current treatments of
bias. There has been a long continued tendency (e.g.,
Treisman (1964, p. 26) and Healy and Jones (1973,
passim)) to choose measures of bias on the basis of
a priori argument and intuition. This contrasts oddly
with the detection theory approach to discrimin-
ability, which advanced from a realization that a
discriminability measure could not be chosen
arbitrarily, or on the basis of intuition (as enshrined in
the traditional psychophysicist’s guessing correction).
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It is to be hoped that something of the empirical
fervor which once went into the proliferation of
isosensitivity curves may soon be transferred to
questions about bias.

The paper ends with some strategic considerations:
(i) It should be remembered that no one bias
parameter need remain invariant under change in all
the a priori sensitivity variables. We may need several
bias parameters, not one. This is so even if it is
optimistically assumed that there are no differences
between tasks, between subjects, and between types of
bias conditions. (ii) Attempts to relate bias to
presentation probability, or to presentation probabil-
ity and payoff conjointly, must presuppose an isobias
function if they are to apply to more than one
discriminability level. There seems little point,
therefore, in multiplying such attempts until the form
of isobias curves is well established. (iii) Attempts to
make inferences from the distribution of bias change
in groups of subjects should be avoided, until there is
some good evidence that isobias curves are indeed of
the same family in different subjects. (iv) The
relatively clear-cut differences which do exist between
the isobias curves so far proposed should not be
wasted. Thus [B] is unique in going to (0,0) or (1,1) as
discriminability goes to zero. [p(rp], unlike [C] or [b},
does not go to (0,1) as discriminability improves
(provided y #0.5), and unlike [p(r;|sy)] or
[(y/(1 -y) - (p(rz|s2)/p(rz | sP)] goes to (0,p),
p < 1.0 (provided y > 0.5, k <1). These examples
suggest that the failure of the last decade to resolve
disputes about bias is partly due to the inadequate
methods used rather than to the difficulty of the
problem.
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