Behavior Research Methods, Instruments, & Computers

1988, 20 (3), 289-297
METHODS

& DESIGNS

Screen control and timing routines for
the IBM microcomputer family using
a high-level language

ANDREW HEATHCOTE
Queen’s University at Kingston, Kingston, Ontario, Canada

Procedures are described for the IBM PC/AT and compatibles that measure an event’s dura-
tion with millisecond accuracy and that synchronize stimulus presentation with the vertical-retrace
signal. The software is written in Turbo Pascal (Versions 2.0, 3.0, and 4.0; Borland International,
Inc., 1984, 1985, 1987). Difficulties reflecting differences among video-controller cards are also

presented.

Most of the routine housekeeping requirements of ex-
periments requiring a subject to make a choice—selection
of stimuli, randomization of trials, and the like—can be
met by an IBM PC/AT or compatible using a high-level
language under MS-DOS. Exact timing, however, is dif-
ficult. MS-DOS does not include a standard method by
which to measure time to millisecond accuracy. Timing
procedures included in the operating system, and hence
in languages supported by the operating system, do not
provide millisecond accuracy. Moreover, MS-DOS does
not include a standard method by which to control the ex-
act onset of displays written to the screen. When material
is written to the screen, it may not appear on the screen
immediately. The lag depends on the rate at which the
video adapter refreshes the screen and on the time in the
refresh cycle at which the write command was given. The
lag can vary from O to 20 msec. If a subject’s reaction
time is measured by starting a clock immediately after
a write statement and stopping it when the subject pushes
a button, the measurement will include a random value
reflecting the lag between the nominal onset of the material
(the write statement) and its actual appearance on the
screen.

In many situations, an error of 20 msec is unimportant.
Inasmuch as most experiments involve comparisons among
conditions, a constant error of 20 msec could be ignored
without difficulty. Because the error is random, however,

The author would like to thank Victor Lee, Andrew Martin, and
Stephen Popiel for help in developing these programs. Special thanks
to Doug Mewhort and Stephen Popiel for comments on earlier drafts
of this paper, and to two anonymous reviewers for helpful suggestions.
The work was supported by a Commonwealth Fellowship to the author
and by Grant AP-318 from the Natural Sciences and Engineering
Research Council of Canada to D. J. K. Mewhort. Reprints may be ob-
tained from the author at the Department of Psychology, Queen’s Univer-
sity at Kingston, Kingston, Ontario K7L 3N6, Canada.

when latencies are averaged across subjects or trials, the
error adds variance to the data. To eliminate that vari-
ance, that is, to force the same lag on all occasions, the
user must synchronize the write operation with the video
system’s refresh cycle.

Timing

Channel 0 of the Intel 8253 16-bit timer/counter cir-
cuit is used to maintain the system’s time of day. A 16-
bit counter is incremented at a frequency determined by
the output of channel 0 (1.1931817 MHz). When the
counter reaches its maximum value (65,535), interrupt 8
is called, and the counter resets to zero. Interrupt 8 up-
dates the system’s time of day. An update normally oc-
curs every 55 msec. To increase the resolution of the time-
of-day clock, the frequency of the time-of-day interrupt
must be increased. Fortunately, the value at which the
counter initiates the timing interrupt is programmable. It
can, therefore, be decreased to obtain the resolution re-
quired.

Interrupt 8 does not terminate with a return from inter-
rupt instruction, as is usual, but invokes interrupt 1CH.
Interrupt 1CH is serviced by a single return-from-interrupt
instruction. It allows the user a point of access for his’her
own interrupt routines. When an interrupt occurs, the in-
terrupt handler looks up the starting address of the rou-
tine that services the interrupt in the interrupt-vector table.
The address in the table can be altered so that a jump will
occur to the beginning of code supplied by the user. To
create a software clock based on the time-of-day inter-
rupt, the jump address for interrupt 1CH can be changed
to point to code that increments a counter or counters.
When combined with the appropriate change in frequency
of the time-of-day interrupt, this strategy will create an
interrupt-driven software clock with the desired resolu-
tion. There is a hidden cost, however: the operating sys-
tem’s time-of-day function will be incremented at approx-

289 Copyright 1988 Psychonomic Society, Inc.

290 HEATHCOTE

imately 55 times its normal rate. To correct the increase
in the system’s time-of-day value, it must be reset after
the clock’s interrupt frequency is returned to normal.

Biihrer, Sparrer, and Weitkunat (1987) described
assembly-language routines with which to build the soft-
ware clock described above. The same clock can be built
using the extensions to Pascal included in Borland Inter-
national’s (1984, 1985, 1987) Turbo Pascal (Versions 2.0,
3.0, and 4.0). Use of Pascal avoids the need to link the
assembler code to the high-level language program con-
trolling the overall experiment. Moreover, Pascal is eas-
ier to understand than the assembler version, and it is
simpler, in that housekeeping functions—such as saving
and restoring the CPU registers when calling system
interrupts—are performed automatically. Listing 1 shows
how to build the clock in Turbo Pascal. The code for Ver-
sions 2.0 and 3.0 of Turbo Pascal is identical, but some
changes are required for Version 4.0. The changes re-
quired are included as comments in the listing.

The code shown in Listing 1 follows the strategy out-
lined earlier. The procedure Interrupt__Handler will be
executed each time interrupt LCH occurs. The Turbo Pas-
cal procedure Inline is used to enter assembler instruc-
tions (represented as hexadecimal numbers) directly into

the program. Interrupt__Handler begins by saving the cur-
rent values of the CPU registers, and then stores the ad-
dress of Turbo Pascal’s data segment in register DS. The
address is directly poked into the Inline code by the proce-
dure Timer__On, replacing the pair of dummy instruc-
tions $00/$00/. Turbo Pascal assumes that DS contains
the base address of its data segment. However, DS is not
preserved during the time-of-day interrupt. Therefore, the
correct value must be restored by Interrupt__Handler each
time it is called. The final instruction in the first call of
Inline disables all maskable interrupts. The body of
Interrupt__Handler increments an integer counter and can
be altered as required. In particular, nested integer coun-
ters permit the user to avoid the upper limit of a single
16-bit (integer) counter. Finally, Inline is used to restore
the CPU registers, to enable interrupts, and to return from
the interrupt.

Version 4.0 Turbo Pascal allows interrupt handlers to
be written easily by providing the compiler instruction
Interrupt. The instruction Interrupt is placed after a proce-
dure declaration and tells the compiler that the procedure
will be used as an interrupt handler. The compiler auto-
matically generates code to save and restore the registers
and to store the data segment address in the DS register.

LISTING 1
Timer.Inc
{ Uses VERSION 4: Functions used in this file are included
Crt; in separate units which must be linked with the
Dos: statements on the left.}
CONST
HiFast = $4; (Hi byte for 1000 Hz interrupt frequency!
LoFast = S$A9; (Lo byte for 1000 Hz interrupt frequency!
TYPE

registers = record
case integer of

0: (AX,BX,CX,DX,BP,SI,DI,DS,ES, Flags:
1: (AL,AH,BL,BH,CL,CH,DL,DH

end;

{CPU registers}

Integer);
: Byte):

{VERSION ;: This Type is already declared in the DOS unit}

VAR
Regs : registers;
SeglC,0fslC,
HM, 5CS,
Year,MD,
t : integer;

PROCEDURE INTERRUPT_HANDLER;

{Used for interrupts}

{Seg and Offset of interrupt vector 1CH}

{Time: Hour+Minute, Sec.+CentiSec.}
{Date: Year,

{General purpose ms.

Month+Day }
counter}

{Increments variable 't' when it services interrupt 1CH
(dummy interrupt normally serviced by a single IRET
to allow the user access to the clock)}

Begin
Inline($50/$53/$51/852/
$56/857/51E/506/555/
$B8/$00/$00/
$50/
S1F/
sFa);
t o= t+l;
Inline($5D/$07/$1F/$5F/S5E/
$5A/$59/$5B/$58/
$FB/
$CF);
End;

(PUSH AX, BX,CX,DX}
{PUSH 5I,01,DS,ES,BP)
{MOV AX, turbo dseg address}
(PUSH AX}

{POP DS}

{CLI}

{Increment Counter}
(poOP BP,ES,DS,DI,SI}
{POP DX, CX,BX, AX}
{STI}

{IRET}

(VERSION 4: A special procedure type is provided for writing interrupt
handlers. Registers are saved and returned and the address
of the data segment stored in DS automatically. Only the
disabling and enabling of maskable interrupts need be
carried out using the "Inline" function.

SCREEN CONTROL AND TIMING ROUTINES

LISTING 1 (Continued)

PROCEDURE INTERRUPT_HANDLER;
INTERRUPT;

Begin
Inline($FAa);
t 1= t+l;
Inline($FB};
End;}

PROCEDURE CHANGE_TIMING_FREQUENCY(HiByte,LoByte: byte);

{Changes the divisor which determines the frequency of the
time of day interrupt. When the procedure parameters are

set to 0,0 this gives the normal frequency of 18.2 Hz}

Begin
portis43] := $36: {Select Mode 3 of timer Channel 0}
port[$40] := LoByte; {Output low byte of new divisor}
port{$40] := HiByte; {Output high byte of new divisor}
End;

PROCEDURE GET_TIME_AND DATE(var Year, MonDay,HrMin,SecCentiS: Integer):

{Stores current time of day and date}

Begin
with Regs do
Begin
BX := $2A00; {Interrupt 21, function 2C}
MsDos(Regs); {Call interrupt}
Year := CX; {Store current date: years}
MonDay := DX; {Store current date: month and day}
AX := $2C00; {Interrupt 21, function 2C}
MsDos(Regs); {Call interrupt}
HrMin := CX; {Store current time: hours and minutes}
SecCentiS := DX; {Store current time: seconds and centlseconds}
Eng;
End;

PROCEDURE TIMER_ON;

{Stores the old interrupt vector for 1CH and resets it
to the address of procedure INTERRUPT_HANDLER. The
current time is then recorded and the interrupt
frequency increased to approximately 1000 Hz}

Begin

MemW[Cseg:0fs(Interrupt_Handler)+17] := Dseg;

{Store current turbo data segment address in the Interrupt_Handler
VERSION 4: the data segment address is stored by the interrupt
handler procedure. The above line of code MUST NOT be included if
the Version 4 Interrupt_Handler, described above, is used.}

with Regs do

Begin
AX := $351C; {Interrupt 21, function 35, on 1CH}
MsDos(Regs); {Gets current interrupt vector}
SeglC := ES; {Save current segment and offset}
0fs1iC := BX;
DS := Cseg: {Interrupt_Handler in code segment}

DK := Ofs(Interrupt_Handler)+7; {Offset of first executable code}
(VERSION 4: The 7 byte offset 1s no longer necessary
i.e., DX := Ofs(Interrupt_Handler);)}

AX := $261C; {Interrupt 21, functlion 25, on 1CH}
MsDos{Regs); {Set DS5:DX as interrupt vector}
End;

Get_Time_and_Date(Year, MD,HM,SCS);
Change_Timing_Frequency(HiFast,LoFast);
End;

PROCEDURE RESET_TIME;

{Resets time of day clock to correct time. Doesn't take account of
millennium leap year rule or increases in time greater than one
year}

Const
NoDays : array(l..2,1..13] of integer
= ((0,31,59,90,120,151,181,212,243,273,304,334,365),
(0,31,60,91,121,152,182,213,244,274,305,335,366));
{Total days to the beginning of the month corresponding to the
second array index. First index: 1 = normal, 2 = leap year}

Var
YType, ¥2Type: 1..2; {Year Type: 1 = normal year, 2 = leap year)
DifCS,DifS,DifMi, {Components of Diff: cs, s and min}
DifH,DifD, {Components of Diff: hrs and days}
. x,Days, {Used to calculate days/months}
HM2,8CSs2, {Fast Time: Hour+Minute, Sec.+CentiSec.}

Year2, MD2Z : Integer; {Fast Date: Year, Month+Day}

291

292 HEATHCOTE

LISTING 1 (Continued)

Hrs,Hrs2, {Number of hours}
Diff : Real; {Difference between fast time and the
time recorded by Get_Time, in hours}

Begin

Get_Time_and_Date(Year2,MD2,HM2,SCS2);

{Determine whether leap years have occurred}

If (Year mod 4) = 0 then YType := 2
else YType := 1;

If (Year2 mod 4) = 0 then Y2Type
else Y2Type := 1;

[}
[}

{Leap Year}

{Leap Year}

{Calculate the difference between the fast date/time and the date
/time recorded by the first call of Get_Time_and_Date, in hours}

Diff ;= (Year2 - Year) * NoDays(YType,13] * 24;
Hrs := (NoDays({YType Hi(MD)]*24) + (Lo(MD)*24) + Hi(HM)

+ (Lo(HM)/60) + (H1(SCS)/3600) + (Lo(SCS8)/360000.0);
Hrs2 := (NoDays[Y2Type,Hi(MD2))*24) + (Lo{MD2)*28) + Hi(HM2)

+ (Lo(HM21/60) + (H1(SCS2)/3600)
Diff := (Diff + (Hrs2 - Hrs))/54.9328;

+ (Lo(8Cs21/360000.0);

{Diff divided by the acceleration factor to give the true period
of time that has passed. Now convert into day/time scales}

DifCS := Round(Frac(Frac(Diff)*3600.0)*100.0);

DifS := Trunc{(Frac(Diff)*3600) mod 60;
DifMi := Trunc(Frac(Diff)*60);

DifH := Trunc(Diff) mod 24:

DifD := Trunc(Diff) div 24;

{Calculate correct time and reset system time accordingly}

SCS := SC5 + DifCs;

SCS := SCS + (Lo(SCS) div 100)*156;
SCS := 5CS + 256*DifS;

HM := HM + DifMi + (Hi(SCS) div 60);
SCS - (Hi(SCS) div 60)*15360;

HM + (Lo(HM) div 60)*196;

HM + DifH*256;

HM := HM - (Hi(HM) div 24)*6144;

with Regs do

Begin
AX := $2D00;
CX : ;

DX :

MsDos(Regs);

End:

:= (Hi(HM) div 24) + DifD + Lo(MD) + NoDays([YType,Hi(MD)];

{Interrupt 21, function 2D}
{Load correct time}

{Call interrupt}

{Calculate correct date and reset system date accordingly}

If Days > NoDays[YType,13) then
Begin
Year := Year + 1;
Days := Days - NoDays([YType,13):
if (Year mod 4) = 0 then ¥Type :=
else YType := 1;
End;
x := 0;

While Days > NoDays(Y¥Type,x+1l] do x := x

with Regs do
Begin
MD

:= x*256 + Days - NoDays[YType,x];

AX $2B00;
[03.¢ Year;
DX := MD;
MsDos(Regs);
End;
End;

PROCEDURE TIMER_OFF;

+ 1;

{Interrupt 21, function 2B}

{Call interrupt)

{Resets the interrupt vector for 1CH to its old value, resets
interrupt frequency and restores correct time of day)

Begin
With Regs do
Begin
AX := $251C; {Interrupt 21, Function 25, on 1CH}
DS := SeglC;
DX := OfslC;
MsDos(Regs); {Set DS:DX as interrupt vector}
End;

Change_Timing_Frequency(0,0);
Reset_Time;
End;

SCREEN CONTROL AND TIMING ROUTINES

The only functions that still have to be carried out by In-
line are the disabling and enabling of maskable interrupts.

Because most BIOS and DOS interrupts are not re-
entrant, the documentation for Versions 3.0 and 4.0
recommends against I/O, DOS calls, or dynamic memory
allocation from within an interrupt handler. However, in
testing, I found that some of these are available, particu-
larly when the Version 4.0 code is used. Screen I/0 is
allowable because interrupt 10H is re-entrant. Writing
directly to video memory should not be attempted under
Versions 2.0 and 3.0, because the system sometimes
hangs. Dynamic memory access appears to be trouble-
free under Version 4.0, although caution should be ex-
ercised. User-written procedures can be called from within
Interrupt__Handler under Version 4.0 but not under Ver-
sions 2.0 and 3.0. Excluding cases with interrupts that
are not reentrant, Turbo Pascal procedures and functions
can be called under all versions. Floating-point arithmetic
cannot be used under Versions 2.0 and 3.0 if an 8087 or
80287 coprocessor is present, as the latter’s registers are
not saved. Under Version 4.0, floating-point arithmetic
can be used. Declaration of variables local to the inter-
rupt handling procedure will cause the system to hang un-
der Versions 2.0 and 3.0, but not under Version 4.0. The
reasons, and possible solutions, are discussed below. Fi-
nally, an overriding restraint on anything carried out
within Interrupt__Handler is execution time. The execu-
tion time for Interrupt__Handler must be less than the
period between time-of-day interrupts. For example, a sin-
gle Writeln in the body of Interrupt__Handler will cause
the system to hang if the time-of-day interrupt occurs
every millisecond.

Timer__On begins by poking the base address of Turbo
Pascal’s data segment into the specially prepared loca-
tion in Interrupt__Handler. As previously detailed, this
is not necessary under Version 4.0. Indeed, it must not
be done, as it will cause the program to crash. Timer__On
then records the address of the interrupt handler that nor-
mally services interrupt 1CH and changes it to the start-
ing address of the procedure Interrupt__Handler. The new
address is 7 bytes greater than the actual offset of
Interrupt__Handler, because the compiler inserts a stan-
dard 7-byte entry code at the beginning of a procedure.
The entry instructions are superfluous when the proce-
dure is called as an interrupt, rather than by the main Pas-
cal program, and must be skipped. When the Interrupt
instruction is used under Version 4.0, no superfluous en-
try code will be inserted; hence, the new address will sim-
ply be the offset of Interrupt__Handler. If variables local
to Interrupt__Handler are declared, the size of the entry
code will be increased. The Version 4.0 compiler han-
dles such variations automatically, but under Versions 2.0
and 3.0 the appropriate adjustments to the new address
must be made. For instance, if 3 to 32 bytes of local vari-
ables are declared, an extra 3 bytes must be added to the
new address. When timing is no longer required, the nor-
mal jump address for interrupt 1CH is restored using the
procedure Timer__Off.

293

The procedure Change__Timing__Frequency alters the
value at which the 16-bit counter for channel 0 initiates
an interrupt. The value is entered as a parameter to the
procedure, broken into high- and low-byte values. To
achieve approximately millisecond resolution, the cons-
tants HiFast and LoFast are used as parameters. They
result in the occurrence of an interrupt when the counter
reaches 4A9H, a clock frequency of approximately
1000.15 Hz. When timing is no longer required, the time-
of-day interrupt is returned to its normal frequency by
calling Change__Timing_Frequency with parameters
(0,0). The appropriate calls to Change_ Timing
Frequency are made automatically by Timer_ On and
Timer__Off.

The parameter 4A9H is derived from hardware specifi-
cations. It should give the best approximation to one in-
terrupt per millisecond. The best parameter value was also
determined empirically by comparison with an external
clock. The estimate was done using an AT clone with a
6-MHz system clock and a PC clone, both at 4.77-MHz
and 8-MHz clock settings. For the AT, LoFast = A9H
gave the best results; for both settings of the PC, LoFast
= AAH was optimal. In both cases, a gain of 0.015%
occurred. Biihrer et al. (1987) used 4A9H (LoFast =
A9H) for a system using a 4.77-MHz clock. They also
noted a gain of approximately 0.015%. These conflict-
ing results indicate that calibration against an external
clock may be prudent.

The procedure Get__Time__and__ Date is called by
Timer__On to record the system time before interrupt fre-
quency is increased. Get__Time__and_ Date is again
called, from the procedure Reset__Time__and__Date, to
record the accelerated system time and date after inter-
rupt frequency is returned to normal. Reset_ Time__
and__Date determines the actual time that has elapsed be-
tween the time at which the timer was turned on and the
time at which it was turned off by dividing the difference
between the two date and time readings by a factor of ap-
proximately 55 (that is, the increase in interrupt fre-
quency). The correct time and date is then calculated, and
the system clock is reset accordingly. Although this
scheme for the restoration of the system’s date and time
is conceptually simple, the actual code is quite complex,
due to the need to take into account the irregular nature
of units of time and date and the occurrence of leap years.
The algorithm is Reset__Time__and__Date will be reli-
able as long as the increase in the date does not incre-
ment the year counter twice. Reset__Time__and_ Date
is automatically called by Timer__Off.

The final section of this paper illustrates how the
interrupt-driven software timer described above can be
integrated into a high-level language program controlling
an experiment (Listing 3). Timer__On is called to redirect
interrupt 1CH, to record the current time, and to increase
the frequency of the time-of-day interrupt. Interrupt__
Handler is not called explicitly by the program but must
be compiled with it so that it can be accessed by interrupt
1CH. Timing is accomplished by manipulating the integer

294 HEATHCOTE

variable ¢. Once the timer has been set up, ¢ will incre-
ment every millisecond. When timing is no longer re-
quired, the frequency of interrupts is reduced and inter-
rupt 1CH is redirected to its usual interrupt handler by
calling Timer__Off. This returns the operating system’s
time-of-day function to normal, and sets it to its correct
value.

Controlling Display Onset

A video display is produced by an electron-beam-
exciting screen phosphor. The phosphor must be periodi-
cally reexcited or refreshed to maintain the display as
phosphor luminance level decays with time. Typically,
a video screen is refreshed at a frequency of 60 Hz.
Hence, a new screen is written every 16.7 msec. To syn-
chronize timing with the appearance of a stimulus, it is
necessary to know the current point in the refresh cycle.
A reference point is usually gained by monitoring the ver-
tical synchronization or vertical-retrace signal. The vertical-
retrace signal occurs during each screen refresh. If tim-
ing is started when the retrace signal is detected, random
variance in the measurement of stimulus onset will be re-
moved. When a stimulus is sent to the screen, informa-
tion about it is first stored in video memory. The latter
is scanned sequentially by the video adapter during each
refresh. If the user wishes to time stimulus onset (as
described above), the stimulus information must be stored
in video memory before the critical refresh, but no part
of it may be written to the screen during the previous
refresh. One method of ensuring this is to disable the video
signal. Stimulus information can then be sent to video
memory without the stimulus’s appearing on the screen.
Subsequently, the video signal is enabled and timing is
begun when the next vertical retrace signal is detected.

Solutions to the problem of controlling visual stimulus
onset have been attempted at a number of levels. Reed
(1979) described hardware modifications to the Apple II
microcomputer to make the vertical synchronization sig-
nal available to timing software and to allow the video
signal to be disabled. Biihrer et al. (1987) detailed how
to perform the same functions for the IBM PC/XT/AT

family with assembly language routines. Listing 2 shows
how these finctions can be performed by Turbo Pascal
programs. The code is identical for Versions 2.0 and 3.0
of Turbo Pascal, but some changes are required for Ver-
sion 4.0. The changes required are included as comments
in the listing.

Three generic types of video adapters are commonly
used: the monochrome and color adapters (M/CA), the
Hercules monochrome adapter (HMA), and the extended
graphics adapter (EGA). A number of differences exist
between adapter types. The vertical retrace signal is avail-
able in a register of the video adapter. The register can
be read through a CPU port by.software. Both the M/CA
and EGA signal a vertical retrace by setting bit 3 of the
relevant register, whereas the HMA zeros bits 4 and 6.
The address of the register containing vertical retrace in-
formation varies with the hardware being used. The ap-
propriate address can be obtained from BIOS for all adap-
ter types. The video signal can be disabled and enabled
by writing the appropriate values to another video adap-
ter register, again through a CPU port. The address and
values can be obtained, for the M/CA and HMA, from
BIOS. The video signal for the EGA can be disabled by
turning off all planes of the color plane enable register.
The color plane enable register is controlled through in-
dex 12H of CPU port 3COH. The index is selected by first
enabling indexing, then reading the EGA’s feature con-
trol register, and then writing the index to port 3COH.
The address of the feature control register will be differ-
ent for monochrome and color modes. It can be deter-
mined on-line by checking the EGA’s current mode and
selecting the address accordingly.

The procedure Video__Sync__On should be called at
the start of an experiment, before trials have begun. It
will query the user as to the type of video adapter being
used and then determine all the appropriate addresses and
values. The Display procedure can then be used for syn-
chronized presentation of stimuli during trials. The Dis-
play procedure requires two parameters: the stimulus (a
string of characters) and the x and y screen coordinates
at which it will be presented. Although most video con-

LISTING 2
ScrSync.Inc.

{Uses
Crt;
Dos;

in separate

TYPE
StimType = Stringl(10];

VAR
Display_Port,
VSYNC_Port,

EGA_FCR : integer;
Enable,Disable : byte;
Adapter_Type : 1..3;

PROCEDURE VIDEO_SYNC_ON;

VERSION 4: Functions used in this file are included
units which must be linked with the
statements on the left.}

{Stimulus type definition}

{Write only port controlling video enable/disable}
{Read only port, vertical refresh information}

(EGA Feature Control Register!
(Values to write to Display_Port)
(1=MCA, 2=HMA, 3=EGA : set by user}

{Sets up variables according to type of CRT controller card
present, as indicated by the parameter Adapter Name}

CONST
BIOS_DSeg = $40;

{BIOS data segment}

SCREEN CONTROL AND TIMING ROUTINES

LISTING 2 (Continued)

Addr_6845 = $63; {Base address of 6845 registers}
Crt_Modset = $65; {Video mode register}
TYPE

Registers = record
case integer of
0: (AX,BX,CX,DX,BP,SI,DI,DS,ES,Flags: Integer);
1: (AL, AH,BL,BH,CL,CH,DL,DH: Byte);

{CPU registers}

end;
(VERSION 4: This Type is already declared in the DOS unit}

VAR
Regs : registers;
Port_6845 : Integer absolute BIOS_DSeq:Addr_6845;
Current_Mode : byte absolute BIOS_DSeqg:Crt_Modset;
{These varliables correspond to memory locations in the BIOS
which contain the address of the base port of the 6845 and
the value of the current video mode respectively!

{Used for interrupts}

295

BEGIN
Write('Video Adapter Type (1 =
readln(Adapter_Type);
Display_Port := Port_6845 + 4:
VSYNC_Port := Port_6845 + 6;

MCA, 2 = HMA, 3 = EGA) : ');

{Offset 4}
{Offset 6}

Enable Current_Mode; {Current mode = video enabled}
Disable := Current_Mede and 247; {Bit 3 = 0 disables video!}
If Adapter_Type = 3 then with Regs do {EGA}
Begin

AH := $F; {Interrupt $10, Function $0F}

intr($10,Regs);

if AL in [7,$F] then EGA_FCR

Else EGA_FCR := $3DA;
Display_Port := $3C0;
Enable := $20;

Disable := sF;
End;
clrscr;
END;

{Determine current mode}

1= $3BA {Monochrome Monitor}

{Colour Monitor}

PROCEDURE DISPLAY(stimulus: StimType; x,y: integer):

Var
Dummy : Byte;

BEGIN
if Adapter_Type = 3 then
Begin
Dummy := Port[EGA_FCRI];
Port(Display Port] := $12;
End:
port{Display Port] := Disable;

gotoxy(x,y);
write(stimulus);
if Adapter_Type = 2 then

{Used to reset EGA FCR Flip-flop}

(EGA}

{Enable Indexing}
fSelect Index 12H)

{Disable refresh}
{Beginning of stimulus}
{Store in video RAM}
{HMA: Retrace when bits}

repeat until (not(port{VSYNC_Port]) and 80) = 80 {6 and 4 down}
Else repeat until (port{VSYNC_Port! and 8) = 8; {EGA and M/CA}
{Retrace when bit 3 up}

port{Display_Port] := Enable;

{Enable refresh}

END;

trollers are fairly standard, some troublesome variations
may be found between brands. For instance, the color
graphics adapter supplied by Zenith Data Systems (Z-100
PC Series, 1985) requires write-only port 3DAH to be
set to O before any of the functions described above will
work.

A major advantage of the programs described here over
those described by Biihrer et al. (1987) is that they do
not require the character and attribute values of the ele-
ments of the display to be calculated, stored, and loaded
into video memory. Instead, the more familiar screen-
control functions supplied by the high-level language can
be used.

Synchronization with the vertical retrace removes most
random error from stimulus onset. However, there will
be a constant delay between the enabling of the screen
and the appearance of the stimulus. This will vary depend-

ing on where on the screen the stimulus is written. The
delay can be calculated using the following formula:

Delay = y position X (refresh time/25).

The y position can take on values from 0 to 24 from the
top to the bottom of the screen. Not all monitors refresh
at the rate indicated by their specifications. Refresh rate
depends on the adapter. During testing with various adap-
ters, I found that a number of 60-Hz monitors were driven
at 50 Hz. The rate can be determined empirically for an
individual system by using the timing program to deter-
mine the delay between two vertical retraces. Determin-
ing exact stimulus duration is not so easy. Stimulus dura-
tion is determined jointly by the refresh time and the decay
time of the monitor phosphor. The latter constant can be
difficult to determine for the (long-decay) phosphors used
in standard monitors, because the slope of the decay func-

296 HEATHCOTE

tion may be shallow in the critical range. One solution
is to present displays in inverse video. Because remov-
ing the display involves brightening the screen phosphor,
a relatively rapid operation, this source of error is
minimized.

A Simple Reaction Time Experiment

Listing 3 illustrates how the code described above can
be incorporated into a program running an experiment.
The experiment begins with a request for adapter type.
On each trial the user is asked to enter a target string.
The screen is cleared, and a fixation cross is presented
for 1 sec. The cross is followed by a synchronized presen-
tation of the stimulus. The user makes a two-choice re-
sponse (for instance, a lexical decision) using the key f
or g. Reaction time and response are displayed, and the
user can then request further trials.

The timing and screen control procedures are made
available to the program RT__Experiment, running un-
der Version 2.0 or 3.0, using Turbo Pascal’s include-file
feature. The code presented in Listings 1 and 2 must be
present in the files Timer.Inc and ScrSync.Inc, respec-
tively. They are included in the compilation of

RT__Experiment by the statements {$I Timer.Inc} and
{81 ScrSync.Inc}. If Version 4.0 is being used, the
include-file feature is not supported. Instead, the code in
Listings 1 and 2 must be compiled into a unit and linked
to RT_Experiment with the Uses statement.

The main body of RT__Experiment begins by setting
up the software timer and screen synchronization. This
is achieved by calling the procedures Video__Sync__On
and Timer__On. After a stimulus string is received from
the user, the cursor is turned off and a fixation cross is
written to the screen. A delay of 1 sec is achieved by zero-
ing the timer variable ¢ and then checking its value until
it reaches 1,000. Synchronized stimulus presentation is
performed by Display, and ¢ is zeroed immediately after.
The reaction time to the stimulus is recorded by reading
the value of ¢ as soon as a valid response is detected. Af-
ter the experiment is finished, the timer must be disabled
using Timer__Off. If this is not done, the system will
crash. As can be seen from the example, screen control
and timing functions are easy to include and to use in a
high-level language. They may be conveniently stored in
a program library and used routinely to extend the power
of the high-level language.

LISTING 3
Sample Experimental Program

PROGRAM RT_EXPERIMENT;

{Uses VERSION 4:

Functions used in this £file are included in a

Dos; unit which must be linked with the statements on the left.)

{$I Timer.Inc}
{s$I ScrSync.lInc}

VAR
Stimulus:
Another,
Response: char;

RT : integer;

StimType;

PROCEDURE CURSOR(Present:

boolean):

{Timing routines}

{Display routine for adapter in use}

{Stimulus from user, type defined in MCA.Inc}

{Flow control}
(Reaction time in milliseconds}

{Procedure to turn the cursor on and off}

TYPE
Registers = record
case integer of

0: (AX,BX,CX,DX,BP,SI,DI,DS,ES,Flags:

{CPU registers}

Integer);

1: (AL,AH,BL,BH,CL,CH,DL,DH: Byte);

end;
{VERSION 4: This Type is already declared in the DOS unit)

VAR
Regs : registers;
BEGIN
With Regs do
Begin
if mem{$0000:50449)
Begin

= 7 then

{Used for interrupts}

if Present then CX := $0BOC

else CX
End
Else Begin

t= $3000;

if Present then CX := $0707

else CX := $2000;

End;
AX := $0100;
intr($10, Regs);
End;
END;

BEGIN
Timer_On;
Video_Sync_On;
Repeat

{Set Timing}

{Initialize screen synchronization}

write('Enter Stimulus Word (=<10 characters): ');

readln(Stimulus);
Cursor (false);

{Cursor off}

SCREEN CONTROL AND TIMING ROUTINES

297

LISTING 3 (Continued)

clrscr:
gotoxy(40,12);
write('x');
t :=0;
repeat until t = 1000;
clrscr;
Display(Stimulus,35,12);
t :=0;
repeat

read(kbd, Response);

until Response in ['ff,'g*];

rt = t;
clrscr;
Cursor(true);

writeln('Response = ',Response, '

write('Another Trial ? ');
readln(Another);
until Another < 'y';
Timer Off;
END.

(Fixatlon point}
{Delay for 1 second}

{Synchronized stimulus}
{2ero timer}

{Wait for response}
{Record reaction time}

(Cursor on}
Reaction Time = ',RT:4,' ms');

{Reset timing}

REFERENCES

BORLAND INTERNATIONAL, INCORPORATED. (1984). Turbo Pascal Ver-
sion 2.0 Reference Manual. Scotts Valley, CA: Author.

BORLAND INTERNATIONAL, INCORPORATED. (1985). Turbo Pascal Ver-
sion 3.0 Reference Manual. Scotts Valley, CA: Author.

BORLAND INTERNATIONAL, INCORPORATED. (1987). Turbo Pascal Ver-
sion 4.0 Reference Manual. Scotts Valley: Author.

BUHRER, M., SPARRER, B., & WEITKUNAT, R. (1987). Interval timing
routines for the IBM PC/XT/AT microcomputer family. Behavior
Research Methods, Instruments, & Computers, 19, 327-334.

REED, A. V. (1979). Microcomputer display timing: Problems and so-
lutions. Behavior Research Methods & Instrumentation, 11, 572-576.

(Manuscript received November 3, 1987;
revision accepted for publication February 10, 1988.)

