
Behavior Research Methods, lnstruments, & Computers
1987, 19 (2), /23-/27

SESSION IV
RESEARCH AND TEACHING

AT COMPUTER-INTENSIVE CAMPUSES
Richard S. Lehman, Chair

The computer as a tool in instructional
computing: Students as software architects

THOMAS T. HEWETr
Drexel University, Philadelphia, Pennsylvania

The computer-rich environment that exists when every student has a computer provides a va
riety of new opportunities for instructional use of computers, including new opportunities for
the use of microcomputer application programs. After arguing that computer programming has
a limited role in instructional computing, this paper describes the assumptions, development,
and structure of a psychology course in which students make use of the microcomputer and its
application programs as a tool in software design. However, programming is not required. Rather,
the personal computer and its application programs provide an environment in which the stu
dent has the freedom to develop software design and explore course content without being con
strained by the mind-numbing minutiae involved in programming a rigid, inflexible tutee.

One often hears of the introduction or use of computers
in courses through the useof prewritten courseware pack
ages (e.g., Castellan, 1983; Collyer, 1984), statistical
analysis packages (e.g., MiniTab, SAS, SPSSx, and
BMDP), or programming exercises (e.g., Collyer, 1984;
Taylor, 1980). There is, however, another alternative: ap
plication programs that convert the computer into a use
fultool.

There are a variety of reasons for exploring the use of
application programs in instructional computing. One rea
son is a result of the impact of the machine-rich environ
ment created when every student has a personal computer.
Just as the computer-rich environment forces a new per
spective on available courseware (Hewett & Perkey, 1984)
and on courseware development (Chute, 1986; Hewett,
1986c; Perkey, 1986), it forces a new perspective on in
structional computing (Hewett, 1986c). Among the more
salient features of the new instructional computing en
vironment is the student's freedom of access to a com
puter. This ease of access creates a variety of new op
portunities for instructional use of computers, including
new opportunities for the use of microcomputer applica
tion programs (e.g., Hewett, 1985, 1986a, 1986b).

A second reason for exploring the use of application
programs in instructional computing is based upon two

Requests for reprintsshouldbeaddressed to theauthorat the Depart
ment of Psychology and Sociology, Drexel University, Philadelphia,
PA 19104.

assumptions about the useof programming exercises. The
first is that programming is not generally useful in teach
ing or learning substantive course content outside of
programming courses. The second is that when a student
is asked to develop software for a content course, most
of that student's mastery of content comes from the think
ing that goes on behind program development, rather than
from the actual implementation of the program. That is,
it is in the design of the algorithm or of the architecture
of the software that most of the learning takes place.

WHY PROGRAMMING IS NOT
GENERALLY USEFUL

To understand why having students write programs ap
pears to be useful, but is not particularly desirable in a
content-oriented course, we need to understand why
programming is sometimes thought to be valuable. Several
authors have argued for the importance of having com
puter users learn to program, but most of the presumed
benefits for students have been described by Taylor (1980)
and by Collyer (1984). For example, Taylor distinguished
between three "modes" of instructional use for com
puters: the computer as tutor, as tool, and as tutee. When
the computer is functioning as tutor, it has been
programmed by one or more' 'experts" in programming
and in the subject matter of the tutorial. The computer
becomes a tool when it has some useful application capa
bility programmed into it. A goodexample of this is word

123 Copyright 1987 Psychonomic Society, Inc.



124 HEWETI

processing, which can be used in a variety of subjects.
The computerassumes the role of tuteewhenthe user must
undertake to instruct the computer in the performance of
some task, usinga language the computer "understands."

The Benefits of Programming
Taylor (1980) argued that it is the role of the computer

as tutee that offers the greatest long-range educational
benefits. He gave three reasons for this conclusion. First,
the human tutor must understand the task before he or
she can teach it to the computer. Second, through work
with computer logic, the humantutor will learn about the
workings of computers and about the working of his or
her own mind. Third, no time or money is spent on find
ing and/or acquiring predesigned tutor software.

Collyer (1984) also argued for the utility of program
ming as a part of instructional computing. Collyer sug
gested two major advantages in having students learn to
program. The first of these advantages is that the student
learns about the computer's intended task during the on
going problemanalysis that takesplacewhilethe program
mer is trying to get the program to work. The second ad
vantage is that students develop the sense of control and
mastery that goes with successful accomplishment of a
task.

The Problem with Programming
The advantageof programming suggested by both Tay

lor (1980) and Collyer (1984) is that a student can learn
quite a lot about the task or course-eontent problem by
trying to get the computer to accomplish it or solve it.
We can grant the validity of this claim; that is not where
the problem lies. However, an assessment of the worth
of programmingas a methodof learningcontentmaterials
does require some additional context.

Programming, in and of itself, is a useful exercise. It
probably does have some of the benefits claimed for it
as an aid in understanding the mathematicalabstractions
and concepts embodied in a programming language
(papert, 1980). Furthermore, it mayevenbe a usefulthing
to do ifone believes programming exercises and an under
standingof computerlogicgeneralizeto other worthwhile
areas of human endeavor. However, for many content
areas, the argument that programming is an aid in under
standing content is similar to the argument that using a
machine to makea hammeris an aid in understanding how
to use a hammer. It may be true, but it seems a rather
cumbersome method for learning to use a hammer.

As anyone who has tried can attest, programming can
be a laborious, awkwardand time-eonsuming activity, re
quiring a lot of attention to details not relevant to solu
tion of content problems. (For example, some program
mers of my acquaintance claim that from 50% to 80%
of the work required to implementa user-oriented appli
cation or tutorial program is associatedwith handling in
put/output requirements.) Furthermore, the level of
programming sophistication required to work productively
with substantive content problems in an upper level

course, say cognitive psychology, is relatively high. In
this case, a programming project can require a student
to do extensive learning or relearning of programming
skills. This learning may be fme if one is training
programmers, but it can interfere with masteryof the psy
chology the student is supposed to be learning. Conse
quently, it is reasonableto wonderwhetherthere are ways
to achieve the presumed benefits of programming with
less pain on the part of the student.

AN ALTERNATIVE TO PROGRAMMING

In a recent paper, Hewett (1986c) proposed that
Brooks's (1975)architect-implementer model of software
development couldbe appliedto coursewaredevelopment.
Brooks argued for placing a premium on the conceptual
integrity of software design. This concern with concep
tual integrity led him to suggest that there should be a
clear separationof roles in softwaredevelopment. Liken
ing the designand completionof softwareto the construc
tion of a building, Brooks proposed that a software de
velopment project should have both an architect and an
implementer. (Somehow, "builder" seems more ap
propriate than "implementer.") The software architect,
like the architect of a building, is to be the user's agent.
"It is [the architect's] job to bring professional and tech
nical knowledge to bear in the unalloyed interest of the
user, as opposedto the interestsof the salesman,the fabri
cator, etc." (Brooks, 1975, p. 45). In this case, however,
the architectureBrooksis describingis "the completeand
detailedspecification of the user interface" (Brooks, 1975,
p. 45). The builder, or programmer, is to have creative
and inventive control over the actual implementation of
the architect's design. Thus, the builder's job is to bring
technical and construction skills to bear in developing a
clean, realistic, efficient, smoothly operating product.

In the architect-builder model, the architect of a soft
ware project, who is charged with doing the conceptual
design work, does not need, and is not expected, to do
the programming required to make the software work.
Programming is the role of the builder. One of the as
sumptions of the architect-builder model is that the ar
chitect's understanding derives from the conceptual de
sign of the project, not from the programming itself.
Another assumption of this model is that although
knowledge about programming is important, program
ming by the software architect may be undesirable, espe
cially if technical problems occupy the architect's atten
tion to the point of interfering with realization of the
architect's goals.

Adopting the architect-builder model for software de
velopmenthas some importantconsequences, not the least
of which is the conclusion that programming is not es
sential to conceptual understanding and design. Further
more, if, as suggestedby Hewett (1986c), faculty do not
have to becomeprogrammers to be coursewarearchitects,
then students do not have to becomeprogrammersto learn
course content. The learning that takes place in trying to



"teach" something to the computer can be accomplished
in ways that do not impose the limitations of program
ming. Also, the sense of control and mastery over the
machine thatprogramming mayprovide canbe developed
in a single programming course or through the use of
powerful application programs, suchas the wordproces
sor or a spreadsheet. (Withregard to the idea that work
ing with computer logic enables a human tutor to learn
about the working of his or her own mind, I must con
fessthat I haveno data, but it has notbeenmyexperience
that programmers as a group possessany uniqueor spe
cial insights into the workings of their own minds.)

THE STUDENT AS SOFfWARE ARClDTECT

Someyears ago, in response to both personal interests
and long-range plans, I undertookto developa course in
software psychology-the application of experimental and
cognitive psychology to an understanding of human
computer interaction. Startingoff with the model found
in Shneiderman (1980), I gradually modified the struc
ture and content of the course to suit my own interests
andconception of the field. Currently,thecoursefocuses
on two sets of issues-the cognitive psychology of com
puter programming and the application of cognitive psy
chologyto the designandevaluation of human-eomputer
interfaces,withgreater emphasis on the latter topic. The
to-weekcoursetypically follows a mixedlecture,discus
sion, and demonstration format, with a midtermexami
nation, a final examination, and a course project.

The Impact of Required Student Access
to Computers

Originally, whenthere was nohardwareto supportthe
course, I developed a fairly traditional lecture course,
coveringthe materialwithoutcomputers and without re
quiring programming. I had offered the course success
fully a fewtimesusinga lecture-seminar formatwhenthe
university announced a decisionto require microcompu
ters for entering freshmen. During the spring quarter of
1982-83, I shiftedthe emphasis of the softwarepsychol
ogycoursefroma literature surveyto application design.
Whilelectureson perception, learningand memory,and
problem solving werescattered throughout theclassmeet
ings, the majorfocus of thecoursewasuponhaving class
members be part of a project design team. The problem
posed to the students was this:

Ignoring limitations ofdisk size, computer memory size,
and programming difficulties, design theconceptual struc
ture, and identify thecontent needed, inoutline form, for
aninteractive disk. This must be done inthe context ofwhat
we know about perception, learning and memory, and
problem solving inhumans. The goal ofthis disk istotrain
novice users of a personal computer and to provide them
with all the information they need to be able to use the
machine and the facilities at Drexel.

Most students in the course were graduating seniors
majoring in computer science or computer systems

SOFTWARE ARCHITECT 125

management. AlI of the students had worked in private
industry for more than one period of Drexel's coopera
tiveeducation program. Theseco-opjobs typically afford
Drexelstudents a greatdealof hands-on workexperience.
Consequently, the class as a whole had a high level of
work-related experience with a varietyof computersys
tems under a varietyof conditions. Furthermore, as one
student observed at the end of the term, all of the stu
dents consistently "brought their brains to class with
them."

One product of this class was a 12-page single-spaced
topicaloutlineof the information that is either necessary
or useful in working with personalcomputers. An addi
tional productwasa 5-page set of designphilosophy prin
ciples that made explicit the class's ideas about how to
design interactive software. In the fall quarter of 1983
84, a second groupof software psychology students, using
the materials createdby theearlierclass, tackled the same
problem and further refined the topical outline and de
signphilosophy documents. Although onlythecontent for
an interactive diskwasdefined by these classes, theirwork
did bear fruit, although it emerged in muchdifferent form
than either class originally envisioned. An interactive
disk-the DrexelDisk-was ultimately produced anddis
tributed by the university. This information resource is
a student-faculty guide to microcomputing and to the
microcomputing facilities at Drexel (Hewett, Perkey, &
Wozny, 1986; Wozny, 1986).

Impact of the Architect-Builder Model
It wastheseexperiences thatfirstshowed me howmuch

could be done by designing without programming, and
the class has continued, albeit with a different focus, in
a similar vein ever since. In addition to having come
acrossBrooks's(1975) architect-builder metaphor, I real
izedthat the number of Macintosh ownersamong my stu
dents had grown, and that severalof them now had both
machines and courses in whichcoursewareand applica
tion softwarewere used. In addition, thosestudents who
did not own personal computers could easily make use
of onein the university-ereated access clusters. This meant
that I could requireindividual students to do architectural
design work for software projects.

Consequently, a major focus of the current versionof
the software psychology courseis upondeveloping an ap
preciation of psychological principles through their ap
plication to the creationof a well-thought-out designfor
an application program. Since there are generally more
students who can program the computerthan who have
good ideasaboutwhatto get the computerto do, the em
phasis in the course is upon the development of a good
idea, unencumbered by the limitations of having to actu
ally implement the idea. This emphasis also helps to en
sure that students with weak programming skillsare not
handicapped. In fact, if anything, the handicap seemsto
be on the more able programmers. These students have
a tendency to constrain or limittheir designideasto those
they think they could actually program by themselves.



126 HEWETT

The student software architectdevelops the specifica
tions for how his or her programwill interactwitha user,
ignoring the programming required to get the program
to engagein that interaction. For example, in recentterms
students have suggested and workedout preliminary de
sign architecturesfor the following: a Filevision-like ap
plication for use in keeping trackof roommate preferences
and making dormitory room assignments (Filevision is
a database program for the Macintosh that utilizes icons
and their locations to represent objects and relations in
the database); twodifferent versions of a coursescheduler
that enables the user of the program to optimize a class
schedule both withina given term and over an academic
year; a menu/mealplannerto assist in scheduling and se
quencingpreparationof a completeset of mealsover the
course of a week; and a redesignof some of the course
ware currently used in Drexel's general psychology
course.

Impact of Application Programs
It is in the development of the architectural specifica

tions for studentcourse projects that microcomputer ap
plication programs become particularly important, both
as examples and as tools. One course exercise is to cri
tique an application created at Drexel University (typi
cally the microcomputer projectdisk). Thisexercisepro
vides a focus for the discussion of design issues and
psychological principles in the early part of the course,
and helps to create a starting point, later in the course,
for discussion of the processes of evaluation and redesign
of software.

Using the Drexel Disk as the objectof this critiquehas
continuedthe involvement of students from the software
psychology classin the interactive diskconceptoriginally
worked out by earlier students. It has also contributed to
evaluation and refinement of the programand the course.
For example, the secondversionof the Drexel Disk was
done after the first version had been given a thorough
review by students in the softwarepsychology class. (A
particularlyinstructive part of this experience for me was
that this reviewandevaluation were donewithout the stu
dents' realizing thatI hadbeeninvolved withthe develop
mentof the application theywerecritiquing.) In addition,
some students have chosen to focus their design efforts
on a redesigning of the Drexel Disk, or on the develop
ment of ideas for significant new features to be addedto
future versions.

Other application programs, such as word processors
and graphicsprograms,become particularly usefulas de
sign tools. Obviously, the word processor can be used
in writing a report for the course. Of more interest is the
role of graphics programs. One importantfeature of the
softwarearchitect's role is the responsibility for develop
mentof the initialdraft versions of projectplanning docu
ments to be provided to the builder. These project plan
ning documents should contain a description of the
complete architecture of the software, focusing primar
ily on the nature and sequence of the interaction between

user and computer, and a general statementof the objec
tives of the programming work to be done. A useful tool
in this context is the development and revision of
"storyboards." Storyboarding is a technique borrowed
fromfilmmakers. The software architect usesstoryboard
ing to create a visual representation of the sequenceand
natureofuser-eomputerinteractions by providing "snap
shots" of crucial screen displays or choice points in the
interaction.

Students in the software psychology course are en
couragedto take advantage of storyboarding by allowing
them to substitute pictures of screen displays for text
descriptions of user-programinteraction. Given this en
couragement, many students incorporate the relatively
sophisticated graphics made possible by such Apple
Macintosh programsas MacPaint and MacDraw. In fact,
some course projectshave consisted almost entirely of a
sequence of screen displays threadedtogether by a brief
narrative.

The Interaction Effect
Thisenvironment alsoprovides an excellent contextfor

exploration of the meaning and application of psycholog
ical principles. For example, one discussion in the most
recentoffering of the software psychology coursefocused
on the degree of breadth and depth that should be built
intomenus whentheyare usedto controlapplication pro
grams; that is, shoulda menu tree structurehave several
shortbranches, or a few long branches?Someof the stu
dentshad had a programming course in whichthey were
toldthatshort-term-memory capacity waslimitedto seven
items, so theyshould notuse menus withmorethan seven
alternatives. This claim led to a class discussion of the
implications of a short-term-memory capacitylimitation
for the problem of choosing between menu breadth and
depth when designing a menu structure.

As the discussion developed, one studentobservedthat
the argument for limiting the number of menu alterna
tivesto sevenitemsbecause of a limitation on short-term
memorycapacitydid not seemquite right. His reasoning
was that the menualternatives are typically visibleon the
screendisplay andare notactually heldin the user's short
term memory. Another student, picking up on the idea
thatthe menualternatives are visible to the user, suggested
thateachmenualternative, beingvisible, is actually a cue
representing a "chunk" of information, and that thechunk
containseither a submenu with additional commands or
a course of action the computer takes in response to the
menu command. She also noted that any user memory
problems would appearto be related moreto theorganiza
tional basis for chunking, to the effectiveness of the cue,
andto the sizeor complexity of thechunkthan to the num
ber of visiblemenuitems. It was not long before another
student suggested that, since chunks appear to be varia
ble in size, the latter observation seemed to imply that
a fundamental issue in developing a menu structure for
a computer application program is really the finding of
a simple,coherent,easilyremembered organizational ba-



sis for chunking those portions of the command menu
structure that are not visible on the screen.

CONCLUDING REMARKS

Oneconsequence of a computer-rich environment is that
thecomputer anditspower are nolonger a scarce resource
to be jealously hoarded and sharedout on a controlled
access basis.Rather, a student or instructor whochooses
to spend a largeamount of timeexploring the complexi
ties or applications of a piece of software is able to do
soat hisor her ownconvenience, without depriving any
oneelseof access. Thisfreedom of access alsomeans that
the instructor can develop new ways of using the com
puter and its application programs as a tool for working
withthe rawmaterial outof which knowledge is created.

In a very real sense, a new opportunity and a new
challenge arecreated by thecomputer-rich environment.
Thenew opportunity liesin introducing a computer-based
component into the entire psychology curriculum, tying
together thecurriculum in newways that introduce a new
kindandlevelof experience for faculty andstudents. The
newchallenge liesin reexamining thecontents of thecur
riculum, looking for things worthdoingon, with, or by
the computer thatenablebothfaculty and students to see
and use computer technology as a tool in learning and
mastering their chosen field of endeavor.

REFERENCES

BROOKS, F. P., JR. (1975). The mythical man-month. Reading, MA:
Addison-Wesley.

SOFTWARE ARCHITECT 127

CASTELLAN, N. J., JR. (1983).Strategies for instructional computing.
Behavior Research Methods &: Instrumentation, 15, 270-279.

CHUTB, D. L. (1986). MacLaboratory. for psychology: General ex
perimental psychology with Apple's Macintosh. Behavior Research
Methods. Instruments. &: Computers, 18, 205-209.

COLLYBR, C. E. (1984). Usingcomputers in the teachingof psychol
ogy: Five things that seem to work. Teaching of Psychology, 11,
206-209.

HBWETT, T. T. (1985).Teaching studentsto modelneuralcircuitsand
neuralnetworks usingan electronic spreadsheet simulator. Behavior
Research Methods, Instruments. &: Computers, 17, 339-344.

HBWETT, T. T. (19800). The electronic spreadsheet as a tool in model
ing and simulating neural networks. Proceedings ofthe Conference
on Modeling and Simulation on Microcomputers (pp. 165-169). San
Diego: Societyfor ComputerSimulation.

HBWETT, T. T. (1986b). Usingan electronicspreadsheet simulatorto
teach neural modeling of visual phenomena. Collegiate Microcom
puter, 4, 141-151.

HBWETT, T. T. (1986c) Whenevery studenthas a computer: A new
perspective on courseware and its development. Behavior Research
Methods, Instruments. &: Computers, 18, 188-195.

HBWETT, T. T., &: PB1OO!Y, D. J. (1984). The mythical "mountain"
of software. Collegiate Microcomputer, 2, 207-210.

HBWETT, T. T., PB1OO!Y, M. N., &: WOZNY, L. (1986). TheDrexel
Disk© 2.5 [Computer program]. Philadelphia, PA: Drexel Uni
versity.

PAPBRT, S. (1980). Mindstorms: Children. computers. and powerful
ideas. New York: Basic Books.

PB1OO!Y, M. N. (1986). The effectof a machine-rich environment on
courseware development: The process and the product. Behavior
Research Methods, Instruments. &: Computers, 18, 196-209.

SHNBIDBRMAN, B. (1980). Softwarepsychology: HumonjiJdors in com
puter and information systems. Cambridge, MA: Winthrop.

TAYLOR, R. P. (1980). Thecomputer in the sdwol: Tutor, tool, tutee.
New York: Teacher's CollegePress, ColumbiaUniversity.

WOZNY, L. A. (1986,May).Painless information retrieval: Theeffect
ofgooduser interjQce ondesign. Presented at the ISthMid-YearMeet
ings of the American Society for Information Science, Portland,
OR.




