Behavior Research Methods, Instruments, & Computers
1987, 19 @2), 123-127

SESSION IV
RESEARCH AND TEACHING
AT COMPUTER-INTENSIVE CAMPUSES

Richard S. Lehman, Chair

The computer as a tool in instructional
computing: Students as software architects

THOMAS T. HEWETT
Drexel University, Philadelphia, Pennsylvania

The computer-rich environment that exists when every student has a computer provides a va-
riety of new opportunities for instructional use of computers, including new opportunities for
the use of microcomputer application programs. After arguing that computer programming has
a limited role in instructional computing, this paper describes the assumptions, development,
and structure of a psychology course in which students make use of the microcomputer and its
application programs as a tool in software design. However, programming is not required. Rather,
the personal computer and its application programs provide an environment in which the stu-
dent has the freedom to develop software design and explore course content without being con-
strained by the mind-numbing minutiae involved in programming a rigid, inflexible tutee.

One often hears of the introduction or use of computers
in courses through the use of prewritten courseware pack-
ages (e.g., Castellan, 1983; Collyer, 1984), statistical
analysis packages (e.g., MiniTab, SAS, SPSS*, and
BMDP), or programming exercises (e.g., Collyer, 1984;
Taylor, 1980). There is, however, another alternative: ap-
plication programs that convert the computer into a use-
ful tool.

There are a variety of reasons for exploring the use of
application programs in instructional computing. One rea-
son is a result of the impact of the machine-rich environ-
ment created when every student has a personal computer.
Just as the computer-rich environment forces a new per-
spective on available courseware (Hewett & Perkey, 1984)

and on courseware development (Chute, 1986; Hewett,

1986¢; Perkey, 1986), it forces a new perspective on in-
structional computing (Hewett, 1986¢). Among the more
salient features of the new instructional computing en-
vironment is the student’s freedom of access to a com-
puter. This ease of access creates a variety of new op-
portunities for instructional use of computers, including
new opportunities for the use of microcomputer applica-
tion programs (e.g., Hewett, 1985, 1986a, 1986b).

A second reason for exploring the use of application
programs in instructional computing is based upon two

Requests for reprints should be addressed to the author at the Depart-
ment of Psychology and Sociology, Drexel University, Philadelphia,
PA 19104.

123

assumptions about the use of programming exercises. The
first is that programming is not generally useful in teach-
ing or learning substantive course content outside of
programming courses. The second is that when a student
is asked to develop software for a content course, most
of that student’s mastery of content comes from the think-
ing that goes on behind program development, rather than
from the actual implementation of the program. That is,
it is in the design of the algorithm or of the architecture
of the software that most of the learning takes place.

WHY PROGRAMMING IS NOT
GENERALLY USEFUL

To understand why having students write programs ap-
pears to be useful, but is not particularly desirable in a
content-oriented course, we need to understand why
programming is sometimes thought to be valuable. Several
authors have argued for the importance of having com-
puter users learn to program, but most of the presumed
benefits for students have been described by Taylor (1980)
and by Collyer (1984). For example, Taylor distinguished
between three ‘‘modes’’ of instructional use for com-
puters: the computer as tutor, as tool, and as tutee. When
the computer is functioning as tutor, it has been
programmed by one or more *‘experts’’ in programming
and in the subject matter of the tutorial. The computer
becomes a tool when it has some useful application capa-
bility programmed into it. A good example of this is word

Copyright 1987 Psychonomic Society, Inc.

124 HEWETT

processing, which can be used in a variety of subjects.
The computer assumes the role of tutee when the user must
undertake to instruct the computer in the performance of
some task, using a language the computer ‘understands.”’

The Benefits of Progr

Taylor (1980) argued that it is the role of the computer
as tutee that offers the greatest long-range educational
benefits. He gave three reasons for this conclusion. First,
the human tutor must understand the task before he or
she can teach it to the computer. Second, through work
with computer logic, the human tutor will learn about the
workings of computers and about the working of his or
her own mind. Third, no time or money is spent on find-
ing and/or acquiring predesigned tutor software.

Collyer (1984) also argued for the utility of program-
ming as a part of instructional computing. Collyer sug-
gested two major advantages in having students learn to
program. The first of these advantages is that the student
learns about the computer’s intended task during the on-
going problem analysis that takes place while the program-
mer is trying to get the program to work. The second ad-
vantage is that students develop the sense of control and
mastery that goes with successful accomplishment of a
task.

The Problem with Programming

The advantage of programming suggested by both Tay-
lor (1980) and Collyer (1984) is that a student can learn
quite a lot about the task or course-content problem by
trying to get the computer to accomplish it or solve it.
We can grant the validity of this claim; that is not where
the problem lies. However, an assessment of the worth
of programming as a method of learning content materials
does require some additional context.

Programming, in and of itself, is a useful exercise. It
probably does have some of the benefits claimed for it
as an aid in understanding the mathematical abstractions
and concepts embodied in a programming language
(Papert, 1980). Furthermore, it may even be a useful thing
to do if one believes programming exercises and an under-
standing of computer logic generalize to other worthwhile
areas of human endeavor. However, for many content
areas, the argument that programming is an aid in under-
standing content is similar to the argument that using a
machine to make a hammer is an aid in understanding how
to use a hammer. It may be true, but it seems a rather
cumbersome method for learning to use a hammer.

As anyone who has tried can attest, programming can
be a laborious, awkward and time-consuming activity, re-
quiring a lot of attention to details not relevant to solu-
tion of content problems. (For example, some program-
mers of my acquaintance claim that from 50% to 80%
of the work required to implement a user-oriented appli-
cation or tutorial program is associated with handling in-
put/output requirements.) Furthermore, the level of
programming sophistication required to work productively
with substantive content problems in an upper level

course, say cognitive psychology, is relatlvely high. In
this case, a programming project can require a student
to do extensive learning or relearning of programming
skills. This learning may be fine if one is training
programmers, but it can interfere with mastery of the psy-
chology the student is supposed to be learning. Conse-
quently, it is reasonable to wonder whether there are ways
to achieve the presumed benefits of programming with
less pain on the part of the student.

AN ALTERNATIVE TO PROGRAMMING

In a recent paper, Hewett (1986c) proposed that
Brooks’s (1975) architect-implementer model of software
development could be applied to courseware development.
Brooks argued for placing a premium on the conceptual
integrity of software design. This concern with concep-
tual integrity led him to suggest that there should be a
clear separation of roles in software development. Liken-
ing the design and completion of software to the construc-
tion of a building, Brooks proposed that a software de-
velopment project should have both an architect and an
implementer. (Somehow, ‘‘builder”” seems more ap-
propriate than ‘‘implementer.’’) The software architect,
like the architect of a building, is to be the user’s agent.
““It is [the architect’s] job to bring professional and tech-
nical knowledge to bear in the unalloyed interest of the
user, as opposed to the interests of the salesman, the fabri-
cator, etc.’’ (Brooks, 1975, p. 45). In this case, however,
the architecture Brooks is describing is ‘‘the complete and
detailed specification of the user interface’’ (Brooks, 1975,
p. 45). The builder, or programmer, is to have creative
and inventive control over the actual implementation of
the architect’s design. Thus, the builder’s job is to bring
technical and construction skills to bear in developing a
clean, realistic, efficient, smoothly operating product.

In the architect-builder model, the architect of a soft-
ware project, who is charged with doing the conceptual
design work, does not need, and is not expected, to do
the programming required to make the software work.
Programming is the role of the builder. One of the as-
sumptions of the architect-builder model is that the ar-
chitect’s understanding derives from the conceptual de-
sign of the project, not from the programming itself.
Another assumption of this model is that although
knowledge about programming is important, program-
ming by the software architect may be undesirable, espe-
cially if technical problems occupy the architect’s atten-
tion to the point of interfering with realization of the
architect’s goals.

Adopting the architect-builder model for software de-
velopment has some important consequences, not the least
of which is the conclusion that programming is not es-
sential to conceptual understanding and design. Further-
more, if, as suggested by Hewett (1986¢), faculty do not
have to become programmers to be courseware architects,
then students do not have to become programmers to learn
course content. The learning that takes place in trying to

*‘teach’’ something to the computer can be accomplished
in ways that do not impose the limitations of program-
ming. Also, the sense of control and mastery over the
machine that programming may provide can be developed
in a single programming course or through the use of
powerful application programs, such as the word proces-
sor or a spreadsheet. (With regard to the idea that work-
ing with computer logic enables a human tutor to learn
about the working of his or her own mind, I must con-
fess that I have no data, but it has not been my experience
that programmers as a group possess any unique or spe-
cial insights into the workings of their own minds.)

THE STUDENT AS SOFTWARE ARCHITECT

Some years ago, in response to both personal interests
and long-range plans, I undertook to develop a course in
software psychology—the application of experimental and
cognitive psychology to an understanding of human-
computer interaction. Starting off with the model found
in Shneiderman (1980), I gradually modified the struc-
ture and content of the course to suit my own interests
and conception of the field. Currently, the course focuses
on two sets of issues—the cognitive psychology of com-
puter programming and the application of cognitive psy-
chology to the design and evaluation of human-computer
interfaces, with greater emphasis on the latter topic. The
10-week course typically follows a mixed lecture, discus-
sion, and demonstration format, with a midterm exami-
nation, a final examination, and a course project.

The Impact of Required Student Access
to Computers

Originally, when there was no hardware to support the
course, I developed a fairly traditional lecture course,
covering the material without computers and without re-
quiring programming. I had offered the course success-
fully a few times using a lecture-seminar format when the
university announced a decision to require microcompu-
ters for entering freshmen. During the spring quarter of
1982-83, 1 shifted the emphasis of the software psychol-
ogy course from a literature survey to application design.
While lectures on perception, learning and memory, and
problem solving were scattered throughout the class meet-
ings, the major focus of the course was upon having class
members be part of a project design team. The problem
posed to the students was this:

Ignoring limitations of disk size, computer memory size,
and programming difficulties, design the conceptual struc-
ture, and identify the content needed, in outline form, for
an interactive disk. This must be done in the context of what
we know about perception, learning and memory, and
problem solving in humans. The goal of this disk is to train
novice users of a personal computer and to provide them
with all the information they need to be able to use the
machine and the facilities at Drexel.

Most students in the course were graduating seniors
majoring in computer science or computer systems

SOFTWARE ARCHITECT 125
management. All of the students had worked in private
industry for more than one period of Drexel’s coopera-
tive education program. These co-op jobs typically afford
Drexel students a great deal of hands-on work experience.
Consequently, the class as a whole had a high level of
work-related experience with a variety of computer sys-
tems under a variety of conditions. Furthermore, as one
student observed at the end of the term, all of the stu-
dents consistently ‘‘brought their brains to class with
them.”’

One product of this class was a 12-page single-spaced
topical outline of the information that is either necessary
or useful in working with personal computers. An addi-
tional product was a 5-page set of design philosophy prin-
ciples that made explicit the class’s ideas about how to
design interactive software. In the fall quarter of 1983-
84, a second group of software psychology students, using
the materials created by the earlier class, tackled the same
problem and further refined the topical outline and de-
sign philosophy documents. Although only the content for
an interactive disk was defined by these classes, their work
did bear fruit, although it emerged in much different form
than either class originally envisioned. An interactive
disk—the Drexel Disk—was ultimately produced and dis-
tributed by the university. This information resource is
a student-faculty guide to microcomputing and to the
microcomputing facilities at Drexel (Hewett, Perkey, &
Wozny, 1986; Wozny, 1986).

Impact of the Architect-Builder Model

It was these experiences that first showed me how much
could be done by designing without programming, and
the class has continued, albeit with a different focus, in
a similar vein ever since. In addition to having come
across Brooks’s (1975) architect-builder metaphor, I real-
ized that the number of Macintosh owners among my stu-
dents had grown, and that several of them now had both
machines and courses in which courseware and applica-
tion software were used. In addition, those students who
did not own personal computers could easily make use
of one in the university-created access clusters. This meant
that I could require individual students to do architectural
design work for software projects.

Consequently, a major focus of the current version of
the software psychology course is upon developing an ap-
preciation of psychological principles through their ap-
plication to the creation of a well-thought-out design for
an application program. Since there are generally more
students who can program the computer than who have
good ideas about what to get the computer to do, the em-
phasis in the course is upon the development of a good
idea, unencumbered by the limitations of having to actu-
ally implement the idea. This emphasis also helps to en-
sure that students with weak programming skills are not
handicapped. In fact, if anything, the handicap seems to
be on the more able programmers. These students have
a tendency to constrain or limit their design ideas to those
they think they could actually program by themselves.

126 HEWETT

The student software architect develops the specifica-
tions for how his or her program will interact with a user,
ignoring the programming required to get the program
to engage in that interaction. For example, in recent terms
students have suggested and worked out preliminary de-
sign architectures for the following: a Filevision-like ap-
plication for use in keeping track of roommate preferences
and making dormitory room assignments (Filevision is
a database program for the Macintosh that utilizes icons
and their locations to represent objects and relations in
the data base); two different versions of a course scheduler
that enables the user of the program to optimize a class
schedule both within a given term and over an academic
year; a menu/meal planner to assist in scheduling and se-
quencing preparation of a complete set of meals over the
course of a week; and a redesign of some of the course-
ware currently used in Drexel’s general psychology
course.

Impact of Application Programs

It is in the development of the architectural specifica-
tions for student course projects that microcomputer ap-
plication programs become particularly important, both
as examples and as tools. One course exercise is to cri-
tique an application created at Drexel University (typi-
cally the microcomputer project disk). This exercise pro-
vides a focus for the discussion of design issues and
psychological principles in the early part of the course,
and helps to create a starting point, later in the course,
for discussion of the processes of evaluation and redesign
of software.

Using the Drexel Disk as the object of this critique has
continued the involvement of students from the software
psychology class in the interactive disk concept originally
worked out by earlier students. It has also contributed to
evaluation and refinement of the program and the course.
For example, the second version of the Drexel Disk was
done after the first version had been given a thorough
review by students in the software psychology class. (A
particularly instructive part of this experience for me was
that this review and evaluation were done without the stu-
dents’ realizing that I had been involved with the develop-
ment of the application they were critiquing.) In addition,
some students have chosen to focus their design efforts
on a redesigning of the Drexel Disk, or on the develop-
ment of ideas for significant new features to be added to
future versions.

Other application programs, such as word processors
and graphics programs, become particularly useful as de-
sign tools. Obviously, the word processor can be used
in writing a report for the course. Of more interest is the
role of graphics programs. One important feature of the
software architect’s role is the responsibility for develop-
ment of the initial draft versions of project planning docu-
ments to be provided to the builder. These project plan-
ning documents should contain a description of the
complete architecture of the software, focusing primar-
ily on the nature and sequence of the interaction between

user and computer, and a general statement of the objec-
tives of the programming work to be done. A useful tool
in this context is the development and revision of
“‘storyboards.”’ Storyboarding is a technique borrowed
from filmmakers. The software architect uses storyboard-
ing to create a visual representation of the sequence and
nature of user-computer interactions by providing ‘“snap-
shots”’ of crucial screen displays or choice points in the
interaction.

Students in the software psychology course are en-
couraged to take advantage of storyboarding by allowing
them to substitute pictures of screen displays for text
descriptions of user-program interaction. Given this en-
couragement, many students incorporate the relatively
sophisticated graphics made possible by such Apple
Macintosh programs as MacPaint and MacDraw. In fact,
some course projects have consisted almost entirely of a
sequence of screen displays threaded together by a brief
narrative.

The Interaction Effect

This environment also provides an excellent context for
exploration of the meaning and application of psycholog-
ical principles. For example, one discussion in the most
recent offering of the software psychology course focused
on the degree of breadth and depth that should be built
into menus when they are used to control application pro-
grams; that is, should a menu tree structure have several
short branches, or a few long branches? Some of the stu-
dents had had a programming course in which they were
told that short-term-memory capacity was limited to seven
items, so they should not use menus with more than seven
alternatives. This claim led to a class discussion of the
implications of a short-term-memory capacity limitation
for the problem of choosing between menu breadth and
depth when designing a menu structure.

As the discussion developed, one student observed that
the argument for limiting the number of menu alterna-
tives to seven items because of a limitation on short-term-
memory capacity did not seem quite right. His reasoning
was that the menu alternatives are typically visible on the
screen display and are not actually held in the user’s short-
terrn memory. Another student, picking up on the idea
that the menu alternatives are visible to the user, suggested
that each menu alternative, being visible, is actually a cue
representing a ‘‘chunk’’ of information, and that the chunk
contains either a submenu with additional commands or
a course of action the computer takes in response to the
menu command. She also noted that any user memory
problems would appear to be related more to the organiza-
tional basis for chunking, to the effectiveness of the cue,
and to the size or complexity of the chunk than to the num-
ber of visible menu items. It was not long before another
student suggested that, since chunks appear to be varia-
ble in size, the latter observation seemed to imply that
a fundamental issue in developing a menu structure for
a computer application program is really the finding of
a simple, coherent, easily remembered organizational ba-

sis for chunking those portions of the command menu
structure that are not visible on the screen.

CONCLUDING REMARKS

One consequence of a computer-rich environment is that
the computer and its power are no longer a scarce resource
to be jealously hoarded and shared out on a controlled-
access basis. Rather, a student or instructor who chooses
to spend a large amount of time exploring the complexi-
ties or applications of a piece of software is able to do
so at his or her own convenience, without depriving any-
one else of access. This freedom of access also means that
the instructor can develop new ways of using the com-
puter and its application programs as a tool for working
with the raw material out of which knowledge is created.

In a very real sense, a new opportunity and a new
challenge are created by the computer-rich environment.
The new opportunity lies in introducing a computer-based
component into the entire psychology curriculum, tying
together the curriculum in new ways that introduce a new
kind and level of experience for faculty and students. The
new challenge lies in reexamining the contents of the cur-
riculum, looking for things worth doing on, with, or by
the computer that enable both faculty and students to see
and use computer technology as a tool in learning and
mastering their chosen field of endeavor.

REFERENCES

Brooks, F. P., Jr. (1975). The mythical man-month. Reading, MA:
Addison-Wesley.

SOFTWARE ARCHITECT 127

CASTELLAN, N. J., Jr. (1983). Strategies for instructional computing.
Behavior Research Methods & Instrumentation, 15, 270-279.

CHUTE, D. L. (1986). MacLaboratory for psychology: General ex-
perimental psychology with Apple’s Macintosh. Behavior Research
Methods, Instruments, & Computers, 18, 205-209.

CoLLYER, C. E. (1984). Using computers in the teaching of psychol-
ogy: Five things that seem to work. Teaching of Psychology, 11,
206-209.

HewerT, T. T. (1985). Teaching students to model neural circuits and
neural networks using an electronic spreadsheet simulator. Behavior
Research Methods, Instruments, & Computers, 17, 339-344.

HewerT, T. T. (1986a). The electronic spreadsheet as a tool in model-
ing and simulating neural networks. Proceedings of the Conference
on Modeling and Simulation on Microcomputers (pp. 165-169). San
Diego: Society for Computer Simulation.

Hewert, T. T. (1986b). Using an electronic spreadsheet simulator to
teach neural modeling of visual phenomena. Collegiate Microcom-
puter, 4, 141-151.

HeweTtT, T. T. (1986c) When every student has a computer: A new
perspective on courseware and its development. Behavior Research
Methods, Instruments, & Computers, 18, 188-195.

HewerT, T. T., & PERKEY, D. J. (1984). The mythical ‘‘mountain’’
of software. Collegiate Microcomputer, 2, 207-210.

Hewert, T. T., PERkEY, M. N., & WozNY, L. (1986). The Drexel
Disk© 2.5 [Computer program]. Philadelphia, PA: Drexel Uni-
versity.

PaPERT, S. (1980). Mindstorms: Children, computers, and powerful
ideas. New York: Basic Books.

PERxEY, M. N. (1986). The effect of a machine-rich environment on
courseware development: The process and the product. Behavior
Research Methods, Instruments, & Computers, 18, 196-209.

SHNEIDERMAN, B. (1980). Softiware psychology: Human factors in com-
puter and information systems. Cambridge, MA: Winthrop.

TAYLOR, R. P. (1980). The computer in the school: Tutor, tool, tutee.
New York: Teacher’s College Press, Columbia University.

WoznNy, L. A. (1986, May). Painless information retrieval: The effect
of good user interface on design. Presented at the 15th Mid-Year Meet-
ings of the American Society for Information Science, Portland,
OR.

