
Behavior Research Methods & Instrumentation
1983,15 (4),459-464

Limitations of high-level microcomputer
languages in software designed for

psychological experimentation

JOSEPH G. DLHOPOLSKY
St. John's University, StatenIsland, New York

The execution times of microcomputer high-level-language commands can be long enough to
be of concern in experiments in which precise timing is a consideration. The problems in de­
veloping standard BASIC timing routines are addressed. A technique for using the Model III
TRS-80-real-time clock to calibrate BASIC timinig routines is described, and representative
execution times of selected commands are reported. It is concluded that high-level languages
are too slow and that execution times are too variable for critical timing in experiments. On the
other hand, machine language programs can provide the needed precision and control.

Timing with millisecond precision is a major require­
ment for microcomputers used in research. The timing
of stimulus exposures, interstimulus intervals, and re­
sponse latencies can be accomplished by a software
timer or by having the computer input signals from an
external clock. Each technique has advantages and
disadvantages. An external clock is reliable, but it is
also an additional expense and must be interfaced with
the computer. A software timer requires no additional
equipment, but it can be sensitive to tampering. More­
over, timers written in high-level languages (e.g., BASIC
or PASCAL) are too slow for millisecond precision.
This has led some researchers to rely on external timers
for critical timing. Regardless of the timer used, how­
ever, reliable event timing also depends on the execu­
tion time of program commands, whether they are
written in a high-level language or in machine language.

For purposes of this discussion, assume that an ex­
periment consists of a series of discrete trials on which a
stimulus is displayed, timed, and then masked. Also,
a latency timer starts at stimulus onset and stops when
the subject responds. Millisecond timing is required for
stimulus exposure, interstimulus interval, and response
latency: Either an external timer or a machine language
software timer may be used for this.

A detailed analysis of trial events shows that a reliable
timer is not all that is needed to assure that program
timing fits the intended specifications. With a software
timer, the following operations must be performed:
(1) display the stimulus, (2) start timing response
latency, (3) time stimulus exposure, (4) display the
mask, (5) monitor the subject's response, and (6) stop
and read the latency timer. With an external timer, the
operations are these: (1) read the clock for the start

The author's mailing address is: Department of Psychology,
St. John's University, Staten Island, New York 10301.

time, (2) display the stimulus, (3) monitor the clock for
the end of the exposure interval, (4) display the mask,
(5) monitor the subject's response, and (6) read the
elapsed time off the clock for response latency.

In both cases, the time it takes to display the stimulus
must be accounted for in determining stimulus ex­
posures and response latencies. This time will be short
when controlled by machine language, but may be sur­
prisingly long for a high-level language.Stimulus-display
time also varies with the amount of material in the
stimulus: A large stimulus consists of more data and
takes longer to display than a short one. Furthermore,
programs written in a high-level language cannot be
synchronized with the video refresh rate, making it
impossible to know when, within the l7-msec screen­
scan time, the stimulus appears on the screen. The same
problems affect displaying a stimulus mask and clearing
the screen (which is done by displaying blanks). Other
functions-reading a clock, monitoring for a keyboard or
voice response, stopping and starting a clock-have
execution times that must be considered when calibrat­
ing intervals in the experiment.

The execution times of machine language commands
are tied to the microprocessor-chip architecture and are
determined by the frequency of the microcomputer's
system clock. This information is readily available (Zaks,
1980a, 1980b). Machine language command execution
is fast, usually under 11 microsec. As long as the pro­
grammer accounts for interrupt processing, intervals
programmed in machine language may be calibrated
within microseconds of the desired interval. Further­
more, video synchronization can be accomplished
on some computers by machine language techniques
(Dlhopolsky, 1982; Grice, 1981; Merikle, Cheesman, &
Bray, 1982; Reed, 1979). These techniques allow
precise control over the appearance of stimulus displays
and response timing because they synchronize the stor­
ing of stimulus information in video random access

459 Copyright 1983 Psychonomic Society, Inc.

460 DLHOPOLSKY

memory (RAM) with the location of the screen's elec­
tron beam. Without video synchronization, response
latency data will have a random error of up to 8.3 msec
(lincoln & Lang, 1980). High-level languages, on the
other hand, do not share the precision of machine
language: Execution times are not available, except for
crude benchmark testing programs; execution is slower;
and video synchronization is not possible.

The speed and precision of machine language make it
clearly desirable for controlling experiment events.
But, it must be recognized that many programs are
written largely in BASIC or in another high-level lan­
guage. The remainder of this article addresses the vaga­
ries of BASIC that must be considered in designing
software for experimentation. Although TRS-80 BASIC
is addressed, the problems are not limited to that com­
puter and that language. They are generic to all micro­
computers and to all high-level languages.

PROBLEMS WITH BASIC STANDARDS

If the execution times of BASIC commands were
known, critical program segments could be calibrated
by summation, just as with T-states for machine lan­
guage. Unfortunately, this information is not available,
for a number of reasons. Foremost is that such informa­
tion is unnecessary for word processing, balancing
checkbooks, or saving the galaxy from invaders. Experi­
mental psychologists have needs that are more esoteric.

Other than a general lack of interest in the execution
times of BASIC commands, there are problems in de­
veloping timing standards. These are due to the plethora
of different computers and the BASIC interpreters used.
Several 8-bit microprocessors are in use today, the 6502
and Z-80 being the most popular. These microprocessors
have different machine languages and operate at dif­
ferent speeds. This affects the timing of BASIC com­
mands.

Even with computers that use the same micropro­
cessor, the timing of BASIC commands cannot be ex­
pected to be the same. The microprocessor may not
operate at the same speed in different models. For
example, there are several variations of the Z-80 micro­
processor, each with a different maximum clock speed.
The Model I, Model III, and Model 4 TRS-80s use the
Z-80 as the central processing unit (CPU). However,
the system clock speed differs in all three. Even though
the BASIC interpreters are likely to be similar, timing
differs in each.

The proprietary nature of BASIC interpreters causes
problems in arriving at standards. The secrecy surround­
ing the interpreters makes it likely that undocumented
differences exist in the BASIC ROMs of computers
produced by different manufacturers. This extends
even to different models with the same microprocessor
from the same manufacturer. Consider that the identical

CLS (clear the video screen) instruction on the Model III
takes about 36 msec to execute, whereas it takes 26 msec
on the "slower" Model I. Lacking published standards
for the execution times of high-level languages, the
programmer has no choice but to calibrate intervals in
each program before it is used for research.

CALIBRATING INTERVALS IN BASIC

In an attempt to determine the timing characteristics
of a high-level language, the computer must be able to
read real time before and after a to-be-calibrated pro­
gram segment is executed. Not all microcomputers have
internal real-time clocks that serve this purpose. The
PET/CBM and the Model III TRS-80 have such clocks.
The Model I TRS-80 has a real-time clock routine that
is available with an expansion interface. In addition,
some hardware modifications have been described for
this model (Grice, 1981;Mapou, 1982). Microcomputers
without real-time clocks-the Apple II, for example­
may use an expansion port configured to read an ex­
ternal timer (Reed, 1979). A similar technique may be
used with computers with built-in real-time clocks. The
technique described in this article was developed for the
Model III TRS-80, using its real-time clock.

The procedure for calibrating a BASIC segment is
done by editing the to-be-calibrated segment so that the
clock is read before and after the segment is executed. If
the timing of the segment is very short, it may be too
brief to register any elapsed time on the computer's
real-time clock. Therefore, an external millisecond timer
may be used in such cases (if so, the computer-timer
interface should not use electromechanical relays).
Alternatively, a software solution entails repeating the
segment many times in a FOR/NEXT loop to acquire an
average figure. The program listing in Figure 1 uses this
technique to calibrate a .1-secinterval(timedinline 120).

This program works on the Model III TRS·80, with or
without a disk-operating system. Variable A$ is set to
the starting time by the TIME$ function. Line 120 is
executed 10,000 times by the FOR/NEXT loop. Then
variable B$ is set to the time at finish. The timing of
one cycle through the 10,000 FOR/NEXT loop is de­
termined from the difference between B$ and A$
divided by 10,000. Note that the resultant time includes
the execution time of a single FOR/NEXT step, which
must be subtracted to get the actual timing ofline 120.
In the Model III TRS-80, a single loop takes 1.39 msec

108 A. - TIME. I • Read. clock
lle FOR J - 1 TO 108ee : • Sets up 1•••• repetitions
12. FOR J. - 1 TO 71 I NEXT I • Time•• 1 .ec
13. NEXT
14. B. - TIME. I • Reads time at end

Figure 1. A BASIC program that illustrates a routine for
calibration of program segments. The segment to be calibrated
is line 120.

for an integer looping variable and 2.19 msec for a
single precision variable (found by using the same
technique to measure an empty FOR/NEXT loop).
Note that A$ and B$ are string variables and cannot be
directly subtracted. The timer in line 120 is for demon­
stration only. As written, it will not accurately time
.1 sec. Each of the spaces, added here for readability,
will add .02 msec to the time it takes to complete one

1~ REM BASIC TIMING CALIBRATION
By Joseph G. Dlhopolsky, Ph.D ..
St. John~s University
Staten Island, New York 10301

20 REM Revi sed B3S 1. 17

3~ GOTOl~(/J

4~ RETURN
9" CLEAR1"".
9~ DEFSTRA-H:OEFINTI-N:OEFOBLX-Z:REM Sets VAriable types
96 CI'1D"L","BASTII'1E/CMD":REI'1 Loads machine language routines
97 DEFU5Rilz&HFFn"':REM Clock reset routine location
98 DEFU5Rl~&HFFE3:REM Clock read routine location
1"" I-lliHHHJ:REH Set.. nu.tJ.r D.f FOR:NEXT loops
181 A"-"X":Al-" 123456789"": A2-STRINGS C64,45} :RE" Set. string

variables
1~2 CLS
1"3 PRINT"Do you want hard copy?";
1(/J4 GOSUB94(/J(/J
1(/J5 CLS:GOSUB91(/J
1~6 POKE&HFFCF,IC
107 PRINT"DURATION OF BASIC INSTRUCTIONS (commands on one

program lin.)":PRINT
I(/JB J-USRe«(/J):FORO-ITOI:NEXT:J-USRI«(/J)
1"9 PRINT"Empty single precision loop:"; :GOSUB810
1 U, JUSRe <fiU : FORJ""'l TOI: NEXT: J-USRI <iU
111 PRINT"Empt.y int.l!ger loop: "; : GOSU88UI
112 PAcJ2'b+Jl/10+J0/38e:REM Correction for FOR:NEXT loop

overhead
115 PRINT
116 PRINT"R•••ining valu•• are c:or,.ec:t..d for durat.ion of 1llHHH!J

cycle inteoe,. FOR/NEXT 10op.":PRINT
12(/J J~USR(/J«(/J):FORJ=ITOI. NEXT.J-USRl«(/J)
122 PRINT"Five addition.. l sp..ce. in cDfnmand:";:60SUBBI8
125 J-USR~(~):FORJ-ITOI:CLS:NEXT,J-USRI'~)

130 PRINT"CLS: II; : GOSUBB10
14e J=USR(/J«(/J):FORJ-ITOI::NEXT:J-USRI«(/J)
150 PRINT"Additional colon:";:BOSUBB18
17~ OEFUSR3-&HFFE2:REM set. up RET loop
IBe J-USR~(~):FORJ-ITOI:J~-USR3(~):NEXT:J-USRI(e)

185 PRINT"USR3«(/J) CAll to RET:"; : GOSUB81(/J
19(/J J-USRe«(/J):FORJ-ITOI:REM
2~ NEXT:J-USRI (~)

205 PRINT"REH .. t. line end: "; : GOSU8818
21e J-USRe(~):FORJ.ITOI:REMI234~7Bge

22(/J NEXT:J-USRl«(/J)
221 PRINT"REM and 10 charact.,.. on line end: II; :GOSUBBUJ
222 J-USRIIlHliUJFORJ-1TOI

:REMI234~678geI234S67B9012345678geI234567B9~1234567B90

224 NEXT:J-USRI (e)
226 PRINT"REM .. nd 50 charact.,.. on lin. end:";:GOSUBB10
228 GOSUB9~

230 J-USR8"J) :FORJ-l TO!; PRINTJ; :NEXT:J-USRI (i'): eosUB9U"
231 CLS:PRINT"PRINTJ; (int.eger): "; : GOSUB910
232 GDSUB9~

233 J-USR(/J(e) : FORJ=1TOI :PRINTA(/J;: NEXT:J-USRI (~): GOSUB91e
234 CLS:PRINT"PRINTA8; Con. c:har..ct.r .t.r1ng):",J60SUBB18
235 GDSUB9~

236 J-USR(e) :FORJ~1TOI:PRINTAl; :NEXT: J-USRI «(/J):GOSUB91~
237 CLS: PRINT"PRINTAl; Ct.n char ..cter stri ng) : "; : GOSU8BlIJ
238 GOSUB9~

239 J-USR8(8):FORJ=lTOI:PRINTA2;:NEXT:J=USRle8):GOSUB918
24e CLS: PRINT"PRINTA2; C64 character .tri ng) : "J 1GOSUBBU'
241 GOSUB9~

242 J"U5R0U') :FORJ-l TOI :PRINTJ:NEXT:J-USRI (8): BOSUB9UJ
243 CLS:PRINT"PRINTJ (integ.,.): "; : GOSUB8UJ
244 GDSUB9~

245 J-USR(/J«(/J):FORJ-ITOI:PRINTA(/J:NEXT:J-USRI(~):60SUB91(/J

246 CLS:PRINT"PRINTA0 (one ch""acte,. .t,.inQ):";J60SUB818
247 GOSUB9~

24B J-USR8(e):FORJ-ITOI:PRINTAI:NEXT:J-USR1«(/J):60SUB91(/J
249 CLS:PRINT"PRINTAI (ten characte,. st,.ing): "; :GOSUB8UJi
2~~ GOSU89~~

251 J~USR~(~):FORJ~ITOI:PRINTA2,NEXT:J-USRI(e).GOSUB91~

252 CLS:PRINT"PRINTA2 e64 ch.,..ct.e,. st,.ing):";:GOSU9B10
253 GDSUB9~

254 J-USR~«(/J):FORJ-ITOI:PRINTa~,JI:NEXT:J-USRI(e):60SUB91~

25:5 CLS;PRINT"PRINTi)iJ,J; (intege,.): "; :60SU881iJ
256 GDSUB9~~

257 J~USRe(e):FORJ-ITOI:PRINTae.A(IJ;:NEXT:J-USRI(e):GOSUD91(/J

2:58 CLS:PRINT"PRINTH,Afl.I; (on. ch.. r-..ct.r .tring): "; :GOSUBBU'
259 GOSUB9H
260 J-lJSR8i (8) :FORJ-l TOI :PRINTa8,Al; :NEXT:J-USRI ee) : GOSUWi18
261 CLS:PRINT"PRINTa",AI; (t.n char.ct.e,. st.ring): "; : GOSUBBl"
262 GOSUB9~~

MICROCOMPUTER LANGUAGE LIMITATIONS 461

loop (in the Model III TRS-80). The looping constant
(71) in line 120 can be changed until the user is satis­
fied that the interval is being timed with reasonable ac-.
curacy. Once this is done, the calibration lines (lines 100,
110, 130, and 140) can be deleted before the program
is used for research.

Figure 2 contains the listing of a program, BASIC
TIMING CALIBRATION, that uses the described

263 J-USR0(0):FORJ-ITOI:PRINTi)0,A2;:NEXT:J-USRl(0):GOSUB91"
264 CLS:PRINTltpRINTili0,A2; e64 cha,..ct.,. .tri",~):";:BOSU8Bl"

265 GOSUB9~

266 J-USR~(e):FORJ-1TOI.PRINTa(/J,J:NEXT:J-USRI«(/J).GOSUB91(/J

267 CLS:PRINT"PRINTa0,J (int.ge,.): "; :GOSUBBI0
26B GOSUD9~

269 J=USR~(~):FORJ=ITOI.PRINTae.A(/J:NEXT:J-USRI(e).GOSUB91(/J

27fi.1 CLS:PRINT"PRINTiKl,A8 (one cha,. ..ct.,. string): "; :SOSUB8U,
271 GOSUB9~

272 J-USR~(~) :FORJ-ITOI :PRINTa~,Al: NEXT:J-USRI (e) :GOSUB91~
273 CLS:PRINT"PRINTa",Al (UJi ch.,..ct.,. st,.ing): "; :60SUB8UJ
274 GOSUB900
275 J=USRe «(/J) : FORJ~1TOI: PRINTa(/J,A2: NEXT:J-USRI (e) : GOSUB91(/J
276 CLS:PRINT"PRINTae,A2 (64 en..r.ct.,. st,.ing): "; :BOSUBBlfJi
277 GOSUB9H:JA=1
27B J-USR(/J«(/J):FORJ-ITOI:PRINTaJA,J;:NEXT.J-USRI(~):GOSUD91e

279 CLS:PRINT"PRINTaJA,J, (both int.\I.r.).",.GOSUD818
2Be GOSUB9fHJ
281 J-USRflJCfJi) :FORJ-lTal J PRINTaJA, Af.I; :NEXT:J-usRl (fI) :BOSUB'i'lf1
282 CLS:PRINT"PRINTaJA,A8; (integer .. dd,.•••, on. char.. ct.,.

st,.ing:"; : GOSUB8U'
2B3 GOSUBge(/J
284 J-USRe(~).FORJ-ITOI:PRINTaJA,AI;.NEXT:J-USRI(e):G0SUB91(/J

2~ CLS:PRINT MPRINTaJA,Al; (integer address, ten charact.,.
st.,.ing: II;:GOSUB810

2B6 60SUB9(/Je
287 J-USRe (~): FORJ-l TOI: PRINTaJA, A2; : NEXT:J-USRI (~) : GOSU891e
298 CLS:PRINT"PRINTaJA,A2; eint.eger .dd,.••• , 64 cha"act.r

st.,.ing): H; :SOSU8818
2B9 J-USR(/J«(/J):FORJ-ITOI.POKEI5368,~.NEXT,J=USRI(~)

298 PRINT"On. POkE15368,8:";JSOSUB8111J
291 JA-"
292 J-USRe ee) : FORJ-l TOI: POKE 15368 , JA: tEXT: J-USRI (e)

293 PRINT"One POKE15360,JA: "; :BOSUBBU'
294 J-USR8(~):FORJ-ITOI.POKE&H3CH,e.NEXT.J-USRI(e)

295 PRINT"POKE&H3C~,e:";:GOSUD81(/J

296 J=USR0(1IJ):FORJ-ITOI:POKE~H3C..,JA:NEXT:J-USRl(lIJ)
297 PRINT"POKE~H3CI2II2I,JA";:GOSU981liJ

29B JA-l~360IJB=(/J

299 J-USR~(e): FORJ-l TOI: POKEJA,e: NEXT:J-USRI «(/J)
3~~ PRINT"On. POKEJA'~'''I:GOSUD81e

3~1 J-USR~(8): FORJ-l TOI: POKEJA,JB: NEXT:J-USRI ,~)

3(/J2 PRINT"On. POKEJA,JB'''I'GOSUBBI(/J
383 J-usRe(e):FORJ-ITOI:A-INKEV.:NEXT:J-usRI(e)
3e4 PRINT"A-INKEV.:";:GOSUB81~

305 OUT236 , 48
386 J-USRf.IU!II) :FORJ-ITOI:OUT",e:NEXTIJ-USRl ee)
3e7 PRINT"OUT~,(/J:";:GOSUD81e

3eB J-USR8(8):FORJ-ITOI:Je-INP(e):NEXT:J-usRI(e)
3e~ PRINT"J0-INP (e) : "; : 6OSU881lii!Ji
31~ J-USRe(e).FORJ-ITOI:Je-PEEK(I5360).NEXT.J-USRI(~)

311 PRINT"J~-PEEK (1~36(/J) : "; : GOSUB81e
312 J-USR0(~):FORJ-ITOI:J8-PEEK'~FFF):NEXT:J-USRI(~)

313 PRINT"JIJi-PEEK(&HFFFF):";:605UBBII1J
314 31=1536"
315 J-USR~(~): FORJ-l TOI: J~-PEEK (J 1) : NEXT:J-USRI (~)

316 PRINT"Je-PEEK(JIl: "; :GOSUD81~

317 J-USR8(lJi):FORJ-ITOI:BOSUB48:NEXT:J-USRl(0)
31B PRINT"60SUB~ (4~ RETURN)."1.GOSUDBI8
319 J-USR0(e):FORJ-ITOI:60SUD9420,NEXT,J-USRI,8)
320 PRINT"GOSUB9420 (IHle RETURN)'"I: GOSUD818
358 DIMX(34"):JC-1~36.rJD"

3~2 J-USRe (,,) zFOAJ-l TOI =POKEJC, JDII'EXTr.:J-USRI UI')
355 PRINT"an. POkEJC,JD on t.op 04 34fHJ it... doubl. p,..cision

ar,.ay:";:GOSU881"
799 CLS:C"D"Z","OFF":END
918 Je-PEEK(SlHFFFD) :RE" Ti_ ba.e
815 Jl-PEEK(&HFFFE):RE" Seconds
B2e J2-PEEK(~FFF):REM Minut..
825 J3-~-J(/J:PRINTJ2'6+J1/1(/J+J3/3~-PA;......c ..: 6OT092ee
9fH1 CMO"Z","OFF":RETURN
~1" IFIC-ITHENC"D"Z","QN"
92e RETURN
9100 A-INKEV.
911e A-INKEV•• IFA-·..·THEN911I1ELSERETURN
92~ IFIC-ITHENGOT091~ELSEGOSU8980:R_INKEY.

921e PRINT" (P RES SAN Y KEY T 0 CON T I
N U E)";

9220 FORIe-IT03ee:A-INKEV.
923~ IFA-" "THEN\lEXT. PRINTCHR. (29) ,CHR. (3~) ; CHR. (29) ; : GOTQ9218
924" PRINTCHRSC2'i');CHRS(38);CHRSe29);:GOT0918
94"" PRINT I' eV) •• DI"" (N)o? ";
9418 BOSUnlH:IFA-"Y"THENIC-11 PRINT"V••• ",

ELSEIFA-"N"THENIC-2:PRINT"No·"IELSE941e
942e RETURN

Figure 2. Source code for BASIC TIMING CALIBRATION, a BASIC program that times and reports the execution of selected
TRS-80 BASIC commands.

462 DLHOPOLSKY

technique for timing the duration of selected BASIC
commands on the Model III TRS-80 under the TRSDOS
1.3 operating system. Becausethe program uses machine
language subroutines, high memory must be protected
in the normal fashion. When executed, the program
displays or prints out the execution times for each
command.'

In an attempt to arrive at values that are as precise
as possible, the TRS-80's TIME$ function is not used in
the program. Rather, two machine language routines are
used: one for resetting the real-time clock and the other
for reading the clock. The J=USRO(O) command calls
the clock-reset routine, which sets the clock to zero, and
J-USR1(0) reads the clock. The source code for the ma­
chine language routines is in Figure 3. It may be assembled
on disk with the me specification of BASTIME/CMD.
Alternatively, the hexadecimal object code in Column 2
of Figure 3 can be POKEd, as part of a BASIC routine,
into the memory addresses that appear as hexadecimal
codes in Column 1.

The clock-read routine is executed in 45.4 microsec
and stops the clock while it transfers the real-time
clock's time base, seconds, and minutes to nonvolatile
memory locations. In the ModelIII TRS-80, the time base
is a 33.3-msec clock that is maintained at address 4216
hexadecimal (hex) or 16918 decimal (dec). Seconds and
minutes are stored at addresses 4217 hex (16919 dec)
and 4218 hex (16920 dec), respectively.

The clock-read routine waswritten for a 48K ModelIII
TRS-80. The hexadecimal values in lines 270, 290, and
310 may be changed to lower addresses for Model III
computers that have smaller RAMs. This is done by
changing the most significant byte (MSB), which is FF,
to BF for computers with 32K of RAM or 7F for
computers with 16K. If the TRSDOS operating system
is unavailable, line 96 ofBASIC TIMINGCALffiRATION
may be deleted and the A=TIME$ function may replace
all the J=USRO(O) and J=USR1(0) statements. The
results should be reasonably close.

For use on the Model I TRS·80, the clock addres­
ses in the machine language routines must be changed.
In the real-time clock provided with Radio Shack's
expansion interface, the time base is a 25-msec clock
that is maintained at address 405E hex (16478 dec),
with seconds and minutes at 405F hex (16479 dec)
and 4060 hex (16480 dec), respectively. The BASIC
TIMING CALIBRATION program must also be re­
written to make it compatible with the Modell's
real-time clock and disk-operating system. Of special
note is line 825, which takes the elapsed time, divides
by 10,000, and subtracts the time taken by the FOR/
NEXT loop (variable PA). Since the time base is main­
tained differently in the two models, line 825 must be
changed for the Modell. In the Model III TRS-80, the
time base counts down from 30 to 1. So the elapsed
time in the time base is equal to the product of33.3 msec
and the difference of 30 and the current reading. In the
Model I TRS-80, the time base counts up from 0 to 39.
Thus, the elapsed time is the current reading multiplied
by 25 msec.

For programmers who would like to use the demon­
stration program on computers other than TRS-80
models, note line 95. This line defines ranges of vari­
ables as integers, strings, and double-precision. Specifi­
cally, all variable names beginning with the letters A
through H are arbitrarily defmed as string variables,
those from I through N as integers, and those from X
through Z as double-precision. These conventions save
programming time and computer memory, but they
are not universal. For example, the Apple II does not
allow definition of variable ranges and does not support
double-precision Variables. The standard symbols for
strings ($) and integers (%) must be appended to the
appropriate variable names for the program to transfer
to the Apple II. The means by which the real-time clock
is read and the elapsed time calculated must also be
modified.

RESULTSOF CALIBRATION ATTEMPTS

Figure 3. Machine language source code for the clock-reset
and clock-read routines used by BASIC TIMING CALmRATION.
The hexadecimal values for the object code appear in the second
column. The proper memory addresses for the object code are
listed in the first column.

Table 1 lists the values produced by the BASIC
TIMING CALIBRATION program on the author's
Model III TRS-80. These values should be considered
advisory, not standard. As can be seen from Table 1,
there is considerable variability in execution times.

Surprisingly, it takes 35.7 msec to execute a CLS
(clear the screen) instruction. This is slightly longer
than two full scans of the screen's electron beam
(16.7 msec each). In order to clear the screen, the CPU
loads blanks in all 1,024 video RAM locations. However,
the CLS instruction also carries out other functions,
since a machine language program can be written to clear
the screen in 10.6 msec (Dlhopolsky, 1982). In any
event, it is not certain when in the 35.7-msec interval
the screen begins to be cleared and when it is completed.
This makes the CLS instruction a poor choice for eras­
ing stimuli. If machine language cannot be used, it
would be better to print over the to-be-erased stimulus

IR...t. ..cDl"ld.
I R• .-1: .tnut. ••

FFD8

FFD8 F3
FFDI :sEN
FFD3 321742
FFD6 321842
FFD9 3EIE
FFDB 321642
FFDE FB
FFDF C9

.1. ICLlJCI(READ AND RESET RllUTINE FOR BASTII'E/8A8
H118 ,By Jg• ..,h S. Dlhgpol.ky, Ph.D.
Nla ,Aevi • .., 8»1.17
.138
.148 llR9 FFD8H
881:58 JUSRih CLOCK RESET
"168 DI
Min ~ A,e
"'188 LD (16919) ,A
"'198 LD Clb921J) ,A
N2H LD A,38
88218 LD (16918),A IR__t ti.. b._
.,,228 EI ; Start_ c1 ock
H238 RET • .-turon to BASIC
118248 IUSRlo READ CLOCK" STORE IN HIIIH I'EtlDRy

FFE. F3 882S8 DI ,Stop. c:loc::k
FFEI 3A1642 "268' LD A. (16918) aBet 1/38 .-c:and
FFE432FDFF "278 LD C8FFFDH),A .Stare 1/38 second
FF£7 3A1742 N28iIlI LD A, (16919) .&.t. • .cond.
FFEA 32FEFF lINlI29t1 LD t"FFEt-U ..A • StO""e second.
FFED 3A1842 1'83" LD A, (16~) J~ .inut••
FFFe 32FFFF ~1" I-D (8JFFFFH).A letor••inut••
FFF'3 FD tlfJ328 El Jst:.,-t:. 1:1ock
FFF4 C9 88338 RET JR.turn t.e BASIC
FFDe 118348 END 8FFDIIH
IHHHIHII Tot. .. l Er-t"'01""'.

MICROCOMPUTER LANGUAGE LIMITATIONS 463

BASIC FUNCTION ESTIMATED TIME

Note-J variablesare integers. AO. A1, and A2 are string variables
of 1, 10, and 64 characters. respectively. Commands marked
(a) are TRSDOS enhancements to BASIC

Table 1
Representative Data From the BASIC TIMING

CALIBRATION Program

with a string variable consisting of blank characters.
This, of course, assumes that the stimulus does not
occupy the entire screen.

The USRO(O) command calls a machine language
subroutine under TRSDOS. To test only the execution
time of the USRO(O) command, the first command in
the called routine is 201, which executes an immediate
return to BASIC. The call and return from the machine
language routine entails 4.0 msec, which must be con­
sidered whenever a machine language routine (e.g., a
millisecond timer) is called from a parent BASIC pro­
gram.

The GOSUB command can have variable execution

C"-ACTERS CORRELATION SLOPE V INTERCEPTCllP91AND

REI1 0, 10. 50 +1.8 .032 1. 79
PRINTx I, 10, 104 + ~99q .811 19.39
PRINTx; I, 10, M +1." .788 2.46
PRINTY, x I, 10, 104 +1.8 .5e6 7.51
PRINTiHiJ,x; I, 10, 104 +1 •• .~ 3.51
PAINTilJA,x. I, 10, 64 +1 •• • :5r.l 4.76

times depending on where in the program the intended
subroutine is located. The computer performs a serial
search through the object code for the line number of
the called subroutine. Subroutines early in the program
are found more quickly than those situated later. There
is a further difficulty in the GOSUB command: The
location of the line in which the GOSUB is found also
seems to have an effect on its execution time.

Remark statements are generally considered to be
"transparent" in that they carry out no program func­
tion. However, the REM (indicated as ') statement
alone has been found to add 1.8 msec to program ex­
ecution time. The length of the remark message also
extends execution time. A regression analysis of the
number of characters in the three REM statements of
BASIC TIMING CALIBRATION indicates that each
character adds an additional .032 msec to the execution
time (Table 2). This is in addition to using up 1 byte
of memory per character.

Other incidentals include extra spaces and unneeded
colons that sometimes find their way into programs
during editing. In general, each character uses 1 byte of
memory. Beyond the extra memory used, however, it
takes time for the CPU to skip over the extraneous
material. Each space adds .02 msec to execution time
and colons add .8 msec.

In cases in which the researcher decides against
machine language control of stimulus displays, a varia­
tion of the PRINT command often is used. Even when
machine language control is used for this purpose, a
ready signal or fixation point might be displayed by
BASIC during an intertrial interval. The PRINT com­
mand has more variations than any other BASIC com­
mand, and the variations have idiosyncratic execution
times.

In most cases, stimuli can be displayed as strings,
less frequently as integers, and rarely as single-precision.
When PRINTing any kind of variable, the computer
must perform a serial search through memory for the
name of the variable and its location in memory. To re­
duce this time, it is best to define numerical variables
with dummy statements early in the program. This gives
them a preferred location in the variable list and sub­
sequently cuts down on the execution time of a PRINT
command. This technique, however, is not guaranteed
to work with string variables. If a specific string variable
is redefined during the course of a program, it is unlikely
that it will be stored in the same memory location.

The time taken to display a ftxation point or ready

Table 2
Results of Regression Analysis of Length of Remark

Statements and Size of String Variables
in PRINT Statements

35.7 msec
4.8 msec (a)
1.8 msec
2.1 msec
3.4 maec
3.9 msec
5.1 msee
4.1 msec
5.4 msec
5.8 msec
2.9 m.ee (a)
4.1 msee (a)
5.1 ms.e
5.8 msec
4.1 msec (a)
2.9 msec
4.2 msec
3.7 msec
4.4 msec

18.7 msee
26.6 msec
9.8 msec

13.2 msec
9.2 maec

IfJ1.4 msec
21.4 m.ec
26.1 msec:
71.5 msec:
3.2 msec:

18.3 msec:
52.8 msec:

8.l'IJ ma.c:
12.6 msee
39.9 msee
4.8 m.ee
8.6 ma.c

35.9 _ee
5.2 msee
9.9 ma.c:

37.1 msec
.1 maec:
.8 msec

CLS
USR8UJ>
REM (alone)
REM + 10 characters
REM + 50 characters
POKE15368,8
POKE15368,JA
POKEJA,8
POKEJA,JB
POKEJC,JD
POKEIcH3CH,8
POKEIcH3C88,JA
J8cPEEK (15368)
J8=PEEK(Jl)
J8=PEEK(lcHFFFF)
OUT8,8
J8=INPH/J>
A=INKEY$
GOSUB (to low line>
GOSUB (to high line)
PRINTJ
PRINTJ;
PRINT.,8,J
PRINT.,8,J;
PRINT"JA,J;
PRINTA8
PRINTAI
PRINTA2
PRINTA8;
PRINTAI ;
PRINTA2;
PRINT.,8,A8
PRINTH,Al
PRINTH,A2
PRINTH,AfJI;
PRINT.,fJI,Al;
PRINTH,A2;
PRINTlilJA,AfJI;
PRINTli.:JA,Al;
PRINTG>JA,A2;
Five additional spaces
One unneeded colon

464 DLHOPOLSKY

signal may be shortened by selecting the appropriate
version of the PRINT command. As seen in Table 1,
the longest execution time is claimed by the simple
PRINT statement. To execute this statement, the com­
puter looks up the cursor location, prints each charac­
ter of the variable, clears the rest of the line, executes a
line feed and carriage return, and clears the next line­
26.6 msec for an integer and 21.4 msec for a single­
character string. Except for actually printing the stim­
ulus, the rest of these functions are usually unnecessary. A
simple change in the format of the command eliminates
the extraneous processes. The PRINT@O,J; command
prints an integer in 9.2 msec, whereas the PRINT@O,AO;
command prints a single-character string in 4.0 msec. In
both cases, the command provides the cursor location,
and the semicolon suppresses the line feed and erasure
of the two lines.

The display of a string variable presents a further
problem in that each additional character in the string
adds to the execution time. Table 2 shows the results
of a regression analysis of the different PRINT com­
mands with strings of character length 1, 10, and 64,
(64 is the character length of one video line in the
Models I and III TRS-80). Almost perfect correlations
indicate that the execution time for printing a string can
be accurately predicted from the string's length. An
interesting note is that the same rule applies to printing
a string variable made up of blanks, even though nothing
appears on the screen.

DISCUSSION

It is apparent that the execution times of TRS-80
BASIC commands are difficult to establish. When one
considers that the values described here are from one of
the several models of the TRS·SO and that the TRS·SO
is one of many computers available to researchers, the
task of establishing standards for high-level languages
is monumental.

A further concern is the ease with which the execu­
tion time of a program segment can be altered by
seemingly innocuous factors: a change in command
format, an intrusion of extraneous characters, the
presence of remarks, the type of variable being used
(string, integer, or floating point). In contrast, assembly
language programming requires a restricted format,
extraneous characters are impossible, remarks are
truly transparent, and variable types cannot be as­
sumed. The greater difficulty of programming in assembly
language is a virtue in this sense.

Speed of operation is another concern. The fastest
BASIC command was OUTO,O, at 2.9 msec, whereas
others ranged close to 40 msec, Of particular concern is
the dependency of the PRINT command on stimulus size.
A one-line stimulus (64 characters) took 39.9 msec to
complete. A stimulus twice as large would take. close to
80 msec. In this case, the electron beam would have re­
freshed the screen almost five times while the stimulus
was being drawn! Determining exactly when the stimulus

is "officially" displayed is a problem, and the theoret­
ical validity of such a determination is questionable.
This makes BASIC inadvisable for experiments that
require rapid stimulus displays and precise response
latencies. By machine language standards, 3-40 msec is
a snail's pace: The slowest Z-80 command is executed in
10.5 microsec on the Model III TRS-80. An added bene­
fit of machine language is the ability to establish syn­
chronization between the Z·80 execution of a stimulus
display and the location of the video screen's electron
beam. Thus, the machine language potential for pre­
cision and speed of execution allows a broader range of
experiments to be programmed on the microcomputer,
and the resultant data can be expected to have a firmer
foundation.

A good research program need not be written entirely
in assembly language. Most experiments can be divided
into two functional parts: (1) a series of trials in which
stimuli are displayed and responses are recorded, and
(2) housekeeping functions (setting up the next trial,
making permanent records of response data, display of
messages to the subject, etc.). High-level language is
suitable for housekeeping in cases in which variations in
execution times are not expected to affect the depen­
dent variable. Machine language should be used when­
ever such an effect is possible. Therefore, the standard
research program should be a hybrid program that is
written largely in a high-level language, with critical
trial events being controlled by machine language.

REFERENCES

DLHOPOL8KY, J. G. Software synchronizing of video diplays and
Z-80 processing in the Model III TRS·80. Behavior Research
Methods &I Instrumentation, 1982,14,339·344.

GRICE. G. R. Accurate reaction time research with the TRS-80
microcomputer. Behavior Research Methods &I Instrumenta­
tion, 1981, 13,674-676.

LINCOLN, C. E., & LANE, D. M. Reaction time measurement
errors resulting from the use of CRT displays. Behavior Re­
searchMethods &I Instrumentation, 1980,12,27·39.

MAPOU, R. L. Tachistoscopic timing on the TRS·BO. Behavior
Research Methodscllnstrumentation, 1982, 14, 334-338.

MERIKLE. P. M •• CHEESMAN, J., & BRAY, J. PET Flasher:
A machine language subroutine for timing visual displays and
response latencies. Behavior Research Methods cllnstrumenta·
tion, 1982,14,26-28.

REED, A. V. Microcomputer display timing: Problems and solu­
tions. Behavior Research Methods &IInstrumentation, 1979, 11,
372·373.

ZAK8, R.How to program the Z-80. Berkeley, Calif: Sybex, 1980.
ZAKS, R. Programming the 6502 (3rd ed.), Berkeley, Calif: Sybex,

1980.

NOTE

1. The author will provide a double-density floppy disk,
formatted for TRSDOS 1.3 (but not containing TRSDOS
itself), with BASIC TIMING CALIBRATION and the source
and object codes for the associated machine language routines.
The cost is $10. If you want a disk with the TRSDOS operating
system, please so state and send verification that you already
ownTRSDOS.

(Manuscript received January 27, 1983;
revision accepted for publication August 12, 1983.)

