Behavior Research Methods, Instruments, & Computers
1992, 24 (4), 554-559

— PROGRAM ABSTRACTS/ALGORITHMS —

SDIS: A sequential data interchange standard

ROGER BAKEMAN
Georgia State University, Atlanta, Georgia

and

VICENC QUERA
University of Barcelona, Barcelona, Spain

Few general-purpose computer programs are available
that analyze sequential categorical data. If there were a
sequential data interchange standard—a standard way
of representing sequential data—then it would be more
attractive to write general-purpose computer programs for
such data. Moreover, interlaboratory sharing would be
facilitated. The present paper defines such a standard,
called the sequential data interchange standard, or SDIS.
Both the SDIS data language and a parsing program for
data that follow SDIS conventions are described. The
parsing program will be made available to researchers
who wish to develop analysis programs for sequential data.

Few general-purpose computer programs are available
that analyze sequential categorical data (Bakeman & Gott-
man, 1986). Many researchers have developed their own
programs, but often these are so tailored to a particular
laboratory’s work that they are not useful to others. More-
over, different programs make quite different assumptions
about the form of the input data. Nonetheless several pro-
grams have been developed for the analysis of sequential
data (see, e.g., Arundale, 1984; Bakeman, 1983; Deni,
1977; Dodd, Bakeman, Loeber, & Wilson, 1981; Gard-
ner, 1990; Kienapple, 1987; Quera & Estany, 1984; Sack-
ett, Holm, Crowley, & Henkins, 1979; Schlundt, 1982;
Symons, Wright, & Moran, 1988; Yoder & Tapp, 1990).

If there were a standard way of representing sequen-
tial data, and if individuals who write programs were to
adhere to this standard, then laboratories could more easily
share programs. Moreover, if many laboratories used the
same format for their sequential data, then it would be
more attractive to write general-purpose computer pro-
grams for such data.

The present paper represents an attempt to define such
a standard, which we call the sequential data interchange

We would like to thank K. Kienapple, who provided useful comments
on an earlier draft, M. T. Anguera, without whom we would not have
begun this work, and D. Borkman for her excellent editorial assistance.
Requests for reprints may be sent to R. Bakemnan, Department of Psy-
chology, Georgia State University, Atlanta, GA 30303 (e-mail:
psyrab@gsuvml), or V. Quera, Departamento de Metodologia de las
Ciencias del Comportamiento, Facultad de Psicologia, Universidad de
Barcelona, 08028 Barcelona, Spain (e-mail: v.quera@ub.es).

Copyright 1992 Psychonomic Society, Inc.

standard, or SDIS. The intent is to develop natural and
easy-to-use forms—forms that will be easy to enter into
computer files and, at the same time, will make it easy
to represent aspects of the data that are important to
researchers. Currently, we are developing a general-
purpose computer program that will analyze data ex-
pressed using SDIS conventions (Bakeman & Quera,
1992). Our hope is that others will see the utility of this
standard and will develop additional analysis programs
for SDIS data. To encourage such development, we have
developed a parser for SDIS data and will make it avail-
able to other researchers.

Three sections follow. The first introduces the basic
conventions of the SDIS data language, the second de-
scribes more specialized features, and the third briefly
describes the parser program and its availability.

The SDIS Data Language: Basic Conventions

General. Information may be entered anywhere on a
line; there are no fixed columns. Elements of the data lan-
guage are separated by special characters (punctuation
such as commas and semicolons) and/or by one or more
blanks, tabs, or returns (the end of line generated by the
enter key).

Codes. Codes are formed from numbers, letters, or the
underscore character, alone or in combination. Examples
are 4, 16, K5, Sit, and MOM__8. Symbols other than the
underscore are not allowed. Uppercase and lowercase let-
ters are not treated the same, thus NURSE is not the same
code as Nurse or nurse.

Times. Times consist of one, two, or three numbers
separated by either colons or periods. This definition
generates seven possibilities, although only the first four
are likely to be used. If u represents any number and v
a number in the range 0 to 59, the possible forms are:

1. u (e.g., 8, 21, or 6034)
2. uv (e.g., 8:21)

3. uvev (e.g., 20:02:36)
4. wu(e.g., 7.981)

S. uvu

6. uu.u

7. uuv

Any number after a colon is assumed to be 1/60 of the
preceding number. Thus, 8:21 could be 8 hours 21
minutes or 8 minutes 21 seconds, whereas 20:02:36 (or
20:2:36) could be 20 hours, 2 minutes, 36 seconds. A
number 60 or greater after a colon is an error.

A simple number, the first number before a colon, or
any number after a period is assumed to be decimal. Thus,
7.981 means 7 and 981 thousandths. Decimal numbers

554

SEQUENTIAL DATA INTERCHANGE STANDARD

may represent any unit the user wishes (milliseconds, sec-
onds, hours, days, etc.), but presumably all times in a
data file represent the same units.

Precision is inferred from the first time value encoun-
tered in the data. Thus, when using the u.u form, if any
time in the file is expressed in thousandths (e.g., 7.981),
the first time given in the file must indicate three digits
after the decimal point (e¢.g., 5.000). Again, when using
the u:v form, the first time given must be, for example,
5:00, not 5. If a simple number such as 8 or 6034 were
encountered first (the u form), the parser would assume
precision at the whole integer level.

Subjects. A forward slash (/) terminates data for a sub-
ject. Subject is used in the generic sense of sampling unit,
and might refer to an individual person, an animal, a dyad,
a family, and so on.

Sessions. If a subject is observed for more than one
session, a semicolon separates sessions. A session con-
sists of a sequence of codes, perhaps with associated time
information, for which continuity can reasonably be
assumed.

Names. Names or other identifying information, en-
closed in less-than greater-than brackets (e.g., <Subject
15>), may be placed at the beginning of data for indi-
vidual subjects and sessions.

Conditions. Subjects may be assigned to conditions as
defined by a single- or multiple-factor design. If present,
design information is enclosed in parentheses and placed
before the slash for the last subject in a group. For ex-
ample, (/,2) before the terminating slash indicates that
all preceding subjects are associated with Level 1 of Fac-
tor A and Level 2 of Factor B.

Comments. Comments, enclosed in percent signs, may
be placed anywhere in the file. Unlike names, comments
need not be closed explicitly. If only one percent sign oc-
curs on a line, then it is assumed that the comment ex-
tends to the end of the line, but not beyond.

Data types. The first word entered in an SDIS data file
is either Event, State, Timed, or Interval and identifies
the type of data contained in the file as event sequential
data (ESD), state sequential data (SSD), timed event se-
quential data (TSD), or interval sequential data (ISD),
respectively (Bakeman & Gottman, 1986). It is followed
by an optional list of legitimate codes (an advanced fea-
ture described later) and a terminating semicolon.

Briefly, event sequences consist simply of coded events;
duration of individual events is not of interest. State se-
quences consist of a single stream (or several parallel
streams) of coded events, recorded in a way that preserves
timing information for each state. The states within each
stream or set are defined to be mutually exclusive and
exhaustive, hence the beginning of a new state necessar-
ily implies the end of the previous one. Timed event se-
quences allow for more complexity than the previous two
data types. Codes may represent momentary behaviors
(only frequency, and not duration, is of interest), in which
case only onset times need be recorded, or codes may rep-
resent duration behaviors, in which case both onset and
offset times would be preserved. Events need not be mutu-

555

ally exclusive; indeed, often the co-occurrence of vari-
ous events is of interest.

Interval sequences are somewhat different. They con-
sist of codes associated with successive time intervals.
Procedures that yield interval sequences are typically in-
expensive and reliable (pencil, paper, and stopwatch);
hence, this data type is often used when only approximate
time information is desired and more accurate recording
procedures are not feasible. Procedures for recording
timed event sequences, on the other hand, usually require
electronic assistance (e.g., videorecorders or micro-
computers with internal clocks). The increasing availabil-
ity of such equipment, and the greater accuracy afforded
and complexity captured, make timed event sequential
data increasingly the data type of choice for sequential
studies. Nonetheless, all four data types have advantages,
and SDIS accommodates them.

The classification of data types used here is a matter
of convenience, not logical necessity. State sequences, for
example, could be regarded as logically equivalent to
timed event sequences, but defining a separate data type
allows for some economy in expression, as described sub-
sequently.

Onset times. A comma preceding a time specification
indicates an onset time and may be used by itself or in
conjunction with a code. If ¢ represents time using any
of the permissible forms, then

4

at the beginning of a session indicates the session onset
time, whereas

c,t

indicates an onset time for the specified code. The c,¢ spec-
ification is used for momentary behaviors (TSD) and can
be used to indicate state onset times (SSD) as well.
Momentary behaviors have no offset times, whereas the
offset time for a state using this specification would be
the onset time for the next state indicated.

State durations. An equals sign preceding a time in-
dicates duration (for SSD files only). Thus,

c=t

indicates that state ¢ lasted the amount of time indicated
by r.

Multiple streams. When more than one set of mutu-
ally exclusive and exhaustive codes is applied to a ses-
sion (SSD files only), the different streams are separated
with an ampersand (&). With the c=t form, the amper-
sand signals that the next specification should begin at the
session onset time so that the next stream can overlay the
previous one. With the ¢,f form, a state onset time equal
to or less than the previous state’s onset time is usually
regarded as an error. The ampersand suspends this rule
for the next specification, again allowing the next stream
to overlay the previous one. This and other SSD specifi-
cations are shown in Figure 1.

The ampersand is also permitted with TSD files.
Momentary and duration behaviors are allowed to over-

556 BAKEMAN AND QUERA

state <«subject #1> A,0 B,2 C,S5
A,6 ,10 & X=3 Y¥Y=1 X=3 2=3;
..+« ; %last session% ... /

<#2> o0 3 eee [<#3> .../

<f4> ... (1,1) [/ «..

Figure 1. An example of state sequential data. Two streams are
shown: the first includes codes A, B, and C, and the second includes
codes X, Y, and Z. The design includes two factors. These 4 sub-
jects are assigned to Level 1 of Factor A and Level 1 of Factor B.

lap, which is an advantage of timed event sequences. Still,
codes must be entered sequentially (because this is an ef-
fective way to catch data entry errors); therefore, any on-
set time that is less than the onset time for the previous
code is usually regarded as an error. An ampersand pre-
ceding a specification allows times to be entered out of
sequence. Thus,

A,4:32 & B,4.27-4:51

would not be regarded as an error.

Offset times. Session offset times are indicated the same
way as session onset times, with a comma followed by
the time. In addition, offset times for codes are indicated
by a minus sign or hyphen preceding the time specifica-
tion. Thus,

(o $1 £

indicates that the code beginning at Time 1 lasted up to
(but not including) Time 2. This specification is used for
duration behaviors (TSD files only). If no time specifi-
cation follows the hyphen

C,t-

then the offset time is assumed to be the onset time for
the next code given. In effect, this specification renders
state sequential data files unnecessary since SSD can be
converted to TSD by adding a hyphen to all state onset
times. However, for users whose data consist solely of
states, adding hyphens to all onset times complicates data
entry and increases the size of the file; we have therefore
preserved SSD as a separate type. Moreover, SSD, and
only SSD, allows the c=¢ form.

Inclusive offset times. By default, duration is computed
exclusive of stop time. Thus, the duration for a session
that started at 8 and ended at 43 would be 35 units, and
the duration for a code that started at 1:56 and ended at
2:02 would be 6 units (1:56, 1:57, 1:58, 1:59, 2:00, and
2:01). A right parenthesis after the time specification in-

dicates that duration should include and not exclude the
stop time. For example,

,43);

indicates a session that started at 8, ended at 43 inclu-
sive, and so lasted 36 units, whereas

A,1:56-2:02)

indicates that Code A lasted 7 time units.

Timed context codes. Some behaviors may last a long
time, and so it may be convenient to indicate onset and
offset times at separate points in the data file (TSD files
only). This is especially useful for contextual or situational
information that spans an entire session. A plus or minus
sign preceding the time specification is used to indicate
an onset or offset time, respectively. Thus,

,8 ... codes ...

c,+h
and
c,-t,
or
C,-1)

indicate that code ¢ began at Time 1 and lasted up to
Time 2, exclusive or inclusive, respectively. If no match-
ing offset time is encountered before the end-of-session
semicolon (or the end-of-subject slash for the subject’s
last session), the offset time for such codes becomes the
session offset time; thus, context codes turned on at the
beginning of a session are automatically turned off at the
end. Similarly, if there is no earlier matching onset time
for an offset specification, the onset time for such codes
becomes the session onset time. These and other TSD
specifications are shown in Figure 2.

Interval duration. Interval sequences (ISD) are quite
different from event, state, and timed event sequences.
Rather than recording events and the times they occur,

| ¥

U
I
i
T

|x|

L

-

B——»>

1 |
1 T T 1
7:12 7:13 7:14 7:15 7:16 7:17

]
T

State <1st subject> C,7:12-7:14
X,7:13 A,+7:13 B,7:13-
D,7:15-7:16) Y,7:16 2,7:17

% end of session % ;

«s. % ond of 1st case % / ...

Figure 2. An example of timed event sequential data. Duration
codes are A, B, C, and D; momentary codes are X, Y, and Z. Session
onset and offset times are 7:12 and 7:18 by default.

SEQUENTIAL DATA INTERCHANGE STANDARD

the presence of events is recorded at specified time inter-
vals, and so the recording interval or duration becomes
an essential part of the definition of an ISD file (for addi-
tional discussion of what can become a complex topic,
see Altmann, 1974; Quera, 1990; Suen & Ary, 1989).
The interval duration follows an equals sign (like a state
duration). This specification appears immediately after the
word Interval at the start of an ISD file. For example,

Interval =10 . ..

indicates that an interval duration of 10 time units is in
effect for this particular ISD file.

Intervals. Commas indicate interval boundaries (only
for ISD). For example,

AB A, AC X

places codes A and B in Interval 1, A in Interval 2, 4 and
C in Interval 3, no codes in Interval 4, and X in Inter-
val 5. The same code or codes, or lack of codes, may
characterize several successive intervals, in which case
the codes need not be repeated. Instead, the number of
identical intervals can be indicated with an asterisk fol-
lowed by a number, which signifies that all codes in the
present interval characterize not just the present interval
but the number of intervals instead. For example,

AX *3, B, 2, Y;
and

AX, AX, AX, B, , ,Y;

are equivalent. No other codes can follow the *n specifi-
cation. If present, it must be the last piece of information
for the interval. It applies to all codes in the interval ex-
cept context codes (see next paragraph).

Interval context codes. Some codes may characterize
all or most of the intervals in a session and so, rather than
entering those codes in all of the relevant intervals, it may
be more convenient to indicate an onset and an offset in-
terval. Similar to the conventions used for timed context
codes, a plus or minus sign following a code indicates
onset or offset, respectively. Thus,

c+
and
c-
or
c)

indicate that ¢ is coded for all intervals beginning with
the interval in which the ¢+ appears and continuing up
to, but not including, the interval in which the c- appears
(exclusive form), or up to and including the interval in
which the c-) appears (inclusive form); ¢) may be used
as a shorter version of c-). Any ¢+ specification that lacks
a matching c- is assumed to last until the end-of-session

557

Interval <«<id = 02651>
% a.m. observation session
+ X+, A D #2, #2, BC,
BDY, , €C; ...

% end of 1st case & /

Figure 3. An example of interval sequential data. X is a context
code, which is turned off automatically at the end of session.

semicolon (or the end-of-subject slash for the subject’s
last session); likewise, any c- specification that lacks a
matching c+ one is assumed to begin at the start of the
session. These and other ISD specifications are shown in
Figure 3.

The SDIS Data Language: Advanced Features

Legitimate codes. By default, any code encountered
in the data file is regarded as legitimate, which means that
if Jump were intended, jump or Jupm would be regarded
as a new code instead of a data entry error. However,
a list of legitimate codes can be entered in the data file
immediately after the Event, State, Timed, or Interval
declaration that normally begins the file and before the
terminating semicolon. If present, this list may span more
than one line. Codes that constitute a mutually exclusive
and exhaustive set may be enclosed in parentheses. Any
codes encountered in the data that are not on the list will
generate an error message.

Interval sampling. Different sampling strategies can
be used to collect interval sequences (ISD), and these
strategies can have implications for a variety of computa-
tions. Three types of sampling are defined. (1) Momentary
(also called instantaneous): as with a snapshot, the ob-
server records the state of affairs as of a single, essen-
tially instantaneous point in time. (2) Partial interval (also
called zero-one): the observer notes whether or not speci-
fied behaviors occurred at some point during the inter-
val. Behaviors that occurred only once or several times
are coded as present. (3) Whole interval. the observer
notes whether or not specified behaviors occurred dur-
ing the entire interval. Behaviors that did not occur or
did not occupy the entire interval are coded as absent.

Sampling strategy must be specified if the user plans
to use analysis programs that take it into account. The
default is momentary. For example, Interval =10 indi-
cates an interval duration of 10 time units with momen-

558 BAKEMAN AND QUERA

tary sampling. Partial and whole interval sampling are in-
dicated with a single quote and a double quote after the
interval duration, respectively.

Observing and recording subintervals (ISD only).
Sometimes observers using partial or whole interval sam-
pling, especially those who rely on pencil-and-paper re-
cording procedures, may divide the interval into an ob-
serving period and a recording period. If this is the case,
and if analysis programs that take this distinction into ac-
count are used, then the subintervals must be specified.
Like an undivided interval duration, durations for the ob-
serving and recording intervals follow an equals sign, ex-
cept that the subintervals are separated by a period. Thus,

=x.y

indicates an observing subinterval of x time units and a
recording subinterval of y time units. The duration for
the entire interval is the sum of the durations for the two
subintervals.

Absolute session onset times. Normally, all times in
a session are regarded as relative to the session onset time,
thus if the session onset time is 8:00, 8:03 occurs at Time
Unit 4, 3 units after the onset time. Under some circum-
stances, it may be convenient if onset and offset times for
codes are relative to zero, while session onset and offset
times reflect, perhaps, the actual time of day. This is ac-
complished with an asterisk after the session onset time
(,t%). Except for the session offset time, all other times
would be relative to an assumed session onset time of zero.

Defaults for session onset and offset times. Strictly
speaking, defaults for session onset and offset times are
not part of the SDIS language. Still, they are usage con-
ventions worth stating.

Onset and offset times are optional for ESD files. If
rates are to be computed later, they would need to be pro-
vided, or they might be given for documentation purposes.
No defaults are defined.

For SSD files, defaults depend on the form. If the c=¢
form is used, the session onset time defaults to zero and
the offset time is determined from the accumulated state
durations. Explicit onset and offset times might be pro-
vided if the user wanted to document the actual time of
day the observations occurred. If the ¢,z form is used, the
session onset time defaults to the onset for the first state;
normally, an explicit onset time would not be given.
Usually, an explicit offset time would be provided; if none
were, it would default to one greater than the onset time
for the last state.

Onset and offset times are usually provided for TSD
files. If no onset time is given, it defaults to the onset time
for the first code. Similarly, if no offset time is given,
it defaults to one greater than the offset time for the last
code.

SDIS Parser
A parsing program for data files that follow SDIS con-
ventions has been developed. This program checks SDIS

data files for syntactical correctness and translates them
into a format more suitable for subsequent analysis pro-
grams, Translation is optional; the user can just check data
files without translating them. The program also produces
a summary file.

The current version of the SDIS parser (Version 1.0)
converts data into MADAP+ format. This is the sequen-
tial format used by the analysis programs included in the
(forthcoming) MADAP+ package, which represents an
upgrade of MADAP (Micro Analytic Data Analysis Pack-
age; Kienapple, 1987). Future versions of the parser will
convert SDIS data into other formats as well. In
MADAP+ format, every row represents a behavioral
change; columns represent time of transition, behaviors
that were occurring before the transition (they are coded
as bits in a word), and design conditions, subject, and ses-
sion that correspond to that transition time. The parser
is written in Turbo C Version 2.0 and runs on any XT-
or AT-compatible computer with MS-DOS Version 2.0
or greater, preferably with a hard disk.

Availability. The program and source code are avail-
able from the authors. To receive a copy of the parsing
program, mail a formatted floppy disk (IBM compatible,
3.5 or 5.25, preferably double-density, DD) with a self-
addressed return mailer, stamped if within the same coun-
try, to either author. Enclose a note stating that you will
use the parser only for noncommercial purposes, that you
will not give copies to others, and that you understand
that it is not guaranteed free of error.

REFERENCES

ALTMANN, J. (1974). Observational study of behaviour: Sampling meth-
ods. Behaviour, 49, 227-267.

ARUNDALE, R. B. (1984). SAMPLE and TEST: Two FORTRAN IV
programs for analysis of discrete-state, time-varying data using first-
order Markov-chain techniques. Behavior Research Methods, Instru-
ments, & Computers, 16, 335-336.

BakeMaN, R. (1983). Computing lag sequential statistics: The ELAG
program. Behavior Research Methods & Instruments, 15, 530-535.

BAKEMAN, R., & GOTTMAN, J. M. (1986). Observing interaction: An
introduction to sequential analysis. New York: Cambridge Univer-
sity Press.

BAKEMAN, R., & QUERA, V. (1992). Analyzing interaction: A general
program for sequential analysis. Manuscript in preparation.

DenI, R. (1977). BASIC-PLUS programs for Sackett’s lag sequential
analysis. Behavior Research Methods & Instruments, 9, 383-384.

Doop, P. W. D., BAKEMAN, R., LOEBER, R., & WiLsoN, S. C. (1981).
JOINT and SEQU: FORTRAN routines for the analysis of observa-
tional data. Behavior Research Methods & Instruments, 13, 686-687.

GARDNER, W. {1990). CONTIME: Continuous-time analysis of paral-
lel streams of behavior. Muitivariate Behavioral Research, 25,
205-206.

KieNAPPLE, K. (1987). Micro-analytic data analysis package. Behavior
Research Methods, Instruments, & Computers, 19, 335-337.

QUERA, V. (1990). A generalized technique to estimate frequency and
duration in time sampling. Behavioral Assessment, 12, 409-424.

QUERA, V., & EsTANY, E. (1984). ANSEC: A BASIC package for lag
sequential analysis of observational data. Behavior Research Meth-
ods, Instruments, & Computers, 16, 303-306.

SackeTT, G. P., HoLm, R., CrROWLEY, C., & HENKINS, A. (1979).
A FORTRAN program for lag sequential analysis of contingency and
cyclicity in behavioral interaction data. Behavior Research Methods
& Instruments, 11, 366-378.

SEQUENTIAL DATA INTERCHANGE STANDARD 559

ScHLUNDT, D. G. (1982). Two PASCAL programs for managing ob- gram. Behavior Research Methods, Instruments, & Computers, 20,
servational data bases and for performing multivariate information 343-346.
analysis and log-linear contingency table analysis of sequential and YODER, P.J., & Tapp, J. T. (1990). SATS: Sequential analysis of tran-
nonsequential data. Behavior Research Methods & Instruments, 14, scripts system. Behavior Research Methods, Instruments, & Com-
351-352. puters, 22, 339-343,

SueN, HK., & Ary, D. (1989). Analyzing quantitative behavioral data.
Hillsdale, NJ: Erlbaum.

SyMons, D. K., WRIGHT, R. D., & MoraN, G. (1988). Computing (Manuscript received November 1, 1991;
lag sequential statistics on dyadic time interval data: The TLAG pro- revision accepted for publication June 5, 1992.)

Fifth Annual International Conference of
The Society for the Advancement of Socio-Economics (SASE)
New York City
March 26-28, 1993

Call for Papers

The Fifth Annual International Conference of the Society for the Advancement of Socio-
Economics (SASE) will be held in New York City, March 26-28, 1993. The theme of the confer-
ence is Incentives and Values as Foundations of Social Order.

John Kenneth Galbraith (Harvard Univesity) and Robert Heilbroner (New School for Social
Research) are among the featured speakers.

Specific topics will include Markets and Democracy in Eastern Europe and Latin America,
War and Conversion, Health Care, Ethics, Decision Making, Endogenous Growth, The Environ-
ment, Risk Taking, Micro and Macro Socio-Economics, and Gender Issues in the Workplace.

SASE is a group of academic scholars, policy makers, and business people devoted to the de-
velopment of new theoretical and methodological frameworks which explain economic and more
general choice behavior. Premised upon the belief that economic behavior is not an isolated, ab-
stract phenomenon, socio-economics draws upon the disciplines of psychology, sociology, politi-
cal science, philosophy, and history in an attempt to recognize the complexity of human decision-
making processes, and to locate economic behavior within a philosophical, historical, institutional,
and ethical context.

Those interested in presenting a paper, organizing a session, or learning more about SASE
should write to 714H Gelman Library, 2130 H Street NW, Washington, DC 20052 (phone, 202-
944-8167; FAX, 202-994-1639).

