Behavior Research Methods, Instruments, & Computers
1991, 23 (3), 430-436

Independent control of dual video
subsystems on the IBM PC and compatibles

KEVIN J. HAWLEY
University of Utah, Salt Lake City, Utah

Two methods for generating video output on multiple video monitors are described. The first
method involves splitting the signal from a single video adaptor card so that multiple video mon-
itors may be attached. Although this method is simple and relatively cost-effective, it is limited
to adaptors that produce only digital video signals, thus precluding the use of VGA systems and
composite displays. The second method involves the installation and programming of dual video
adaptors: Two sample programs, which control a secondary adaptor by means of either BIOS rou-
tines or direct commands via C code, are described. Although more complex, this second method
allows output to each display to be controlled independently. Furthermore, output to one screen
may consist of graphics information while cutput to the second screen consists of text. Together,
both methods can be used to create an experimental system composed of multiple data-collection
stations and an independent experimenter console.

With most experimental generation and data-collection
programs for the IBM PC and compatibles, a single video
subsystem is employed for the presentation of visual
stimuli (e.g., CEDATS—Eamon, 1982; APT PC—
Poltrock & Foltz, 1988; MEL—Schneider, 1988).! In
general, this limitation precludes the use of the video mon-
itor for other tasks such as the output of diagnostic mes-
sages to the experimenter. During the course of an ex-
perimental session, however, it is often desirable to
monitor the progress of a subject through the experimen-
tal task. Current methods for monitoring a subject’s per-
formance in these situations range from the installation
of microphones, videocameras, or one-way mirrors in
subject testing areas to the stationing of an experimental
assistant either behind or beside the subject during the ex-
perimental session. These methods are awkward and
imprecise at best, and they may bias a subject’s responses.
An alternative solution involves the use of multiple video
monitors with the experimental system. Although
multiple-display capability is built in to the Macintosh II
series of computers, this capability can also be achieved
on IBM PC computers and fully compatible clones. In
this paper, I will describe two methods for using a single
IBM PC to control multiple video outputs.

The first method for achieving video output to more
than one video monitor involves splitting the output sig-

This work was supported in part by a University of Utah Graduate
Research Fellowship to the author and by an Air Force Office of Scien-
tific Research grant (89-0275) to William Johnston at the University
of Utah. I would like to thank Thayne Cooper of Unisys Corporation
for his tutelage in understanding some of the mysteries of IBM video
subsystems, as well as Bill Johnston, Jim Farnham, and two anonymous
reviewers for their comments on earlier drafts of this article. Correspon-
dence should be addressed to Kevin Hawley, Department of Psychol-
ogy, University of Utah, Salt Lake City, UT 84112.

Copyright 1991 Psychonomic Society, Inc.

nal from the video adaptor. This allows more than one
video monitor to be connected to a single video adaptor
card, thus producing an exact replica of the information
being displayed to a subject. The advantage of this method
is that it is simple (signal splitters, or Y connectors, can
be purchased or assembled from components available at
most electronics shops) and relatively cost-effective (only
the additional monitor need be purchased). Furthermore,
several monitors can potentially be driven by a single
adaptor card, allowing several subjects to view a stimu-
lus display independently, with no loss of resolution.”

However, there are two important disadvantages to this
method. First, since all of the information that appears
on one screen also appears on the other, there is no way
to generate custom messages or output for the ex-
perimenter that will not also be seen by the subject. Thus,
although this method provides a convenient way either
to display the same stimuli to multiple subjects or to sim-
ply monitor a subject’s progress through an experimen-
tal task, it does not allow the system to display informa-
tion that an experimenter may wish to keep from the
subject’s eyes. Second, the loss of signal strength that
results from the attachment of multiple video monitors
to a single video adaptor means that this method can only
be used with adaptors that generate digital video signals.
Since digitally driven monitors need only recognize the
presence or absence of a video signal, the loss of signal
strength that occurs when the output from the adaptor card
is split does not affect video output until the signal strength
drops below some minimum (e.g., 1 mV). In contrast,
in video systems in which analog signals are employed,
the strength of the signal is typically used to determine
the color and intensity of a video character. Attenuation
of these signals can lead to changes in these display
characteristics. Since composite video displays, as well
as VGA and MCGA adaptors, all employ analog video

430

Table 1
Allowable Combinations of Video Subsystems
on the IBM PC and Compatibles

MDA CGA MCGA EGA VGA
MDA X X X X
CGA X X
MCGA X X X
EGA X X X
VGA X x

Note—Although commercially available, the MCGA is generally em-
ployed only in the PS/2 Models 25 and 30.

signals, this method is not suitable for these types of sub-
systems.

A second method for achieving video output to more
than one monitor involves the installation and program-
ming of dual video adaptors. Not only does this method
allow for the independent control of information displayed
on the attached monitors, but the type of information
presented (i.e., graphics vs. text) can be independent. Fur-
thermore, since the video output signals generated by the
installed adaptor cards are not altered en route to the mon-
itor, the use of composite displays or VGA and MCGA
cards is not precluded. In the section that follows, I will
describe the logic underlying such a system and provide
program listings (written in Turbo C Version 1.5) for in-
dependently controlling two video adaptors. For exposi-
tory purposes, in the present paper I will focus on achiev-
ing dual video output with a monochrome display adaptor
(MDA) in conjunction with a graphics adaptor (e.g.,
CGA, EGA, or VGA). However, in principle it is possi-
ble to combine several other types of displays within a
single system by using the described techniques. A list-
ing of feasible combinations for the most common video
adaptors is provided in Table 1. Information for program-
ming these other types of video adaptors can be found
in the Programmer's Guide to PC & PS/2 Video Systems
(Wilton, 1987).

PROGRAMMING A VIDEO ADAPTOR

Hardware Parameters and BIOS Routines
Independent output to dual video subsystems is made
possible by the different 1/0 ports and video buffer map-
pings used by the MDA and standard graphics adaptors.
Specifically, the MDA’s port addresses range from 3BOh
through 3BFh, and its video buffer (i.e., the area of com-
puter memory where the information being displayed on
the screen is actually held) is contained between
B000:0000 and B0O0O:FFFF.* In contrast, the I/O ports
for graphics adaptors range from 3DOh through 3DFh,
and their video buffers start at B800:0000 when they are
used in text mode. These differences mean that program
instructions can be written to the MDA without affecting
the state of the graphics card. Furthermore, since there
is no overlap in their video buffers, information can be
written to one adaptor without its appearing on the other.
When the IBM PC is initially booted, a default video
subsystem and mode are defined by internal switch set-

DUAL VIDEO MONITORS 431

tings on the motherboard. In most cases, these default set-
tings instruct the system to use the highest available text
mode on the installed adaptors (e.g., 80 X 25 full-color
text on CGA, EGA, and VGA systems). A record of the
default video subsystem and its display mode is stored in
a global variable at 0040:0010 (called EQUIP__FLAG in
IBM’s technical manuals). To make use of a secondary
video subsystem, one must initialize the secondary adap-
tor into some video mode, and one must write output des-
tined for that subsystem to the appropriate video buffer.
There are two ways to do this. The first involves using
BIOS video routines to select the active video controller
and its display mode (for the second way, see the next
section below). An example of how to use these routines
to switch video output between the MDA and CGA is
provided in Listing 1. All video BIOS routines are ac-
cessed by loading their function number into register AH
and then executing interrupt 10h. In Turbo C, this can
be done by using either the int86() or int86x() functions.*
Output can be switched between the MDA and a graphics
card by changing the active video subsystem information
stored in EQUIP_FLAG and executing the BIOS func-
tion that sets the video mode (function Oh). In Listing 1,
these tasks are performed by the function SetMode().

The advantage to using BIOS routines to select the ac-
tive video controller is that these routines tend to be highly
portable; programs written for one machine will usually
run on another. There are several disadvantages, however.
First, BIOS routines tend to be relatively siow. As a result,
the use of these routines can substantially decrease per-
formance, particularly for programs displaying graphics
images or producing animation effects. Second, chang-
ing the video mode by using function Oh clears the dis-
play buffer, thus erasing the contents of the screen, each
time it is called. On EGA and VGA systems, this can be
avoided by setting bit 7 in register AL before calling in-
terrupt 10h. However, for other systems this limitation
can prove unacceptable. Third, since some video adap-
tor cards are capable of emulating the MDA (e.g., EGA
and VGA systems), the use of BIOS commands to change
the video mode may not always result in a transfer of con-
trol to the alternate video card. The exact outcome tends
to vary with the manufacturer of the video system.
Detailed information regarding the use of BIOS routines
in general, and the video functions in particular, can be
found in /BM ROM BIOS (Duncan, 1988) and Program-
mer’s Guide to PC & PS/2 Video Systems (Wilton, 1987),
respectively.

Direct Programming via C Functions

The second way to initialize a secondary video adaptor
and redirect output to its video buffer is to initialize and
write to the adaptor directly. This method is employed
in the PsyExper experimental generation system (Hawley,
1991). Two functions for accomplishing this by using an
MDA are described in Listing 2. The first of these func-
tions, InitMono(), programs the MDA’s CRT controller
(CRTC) to output data in 80 X 25 monochrome text mode
(in practice, this is the only mode availabie on the MDA,

432 HAWLEY

and the result is equivalent to using the BIOS commands
described in Listing 1, except that the alternate adaptor
card is not disabled). This is accomplished by loading the
value 29h into the MDA’s Mode Control register, which
is located at 3B8h. This value instructs the controller to
enable the adaptor, turn on the screen, and enable the
blinking attribute for displayed characters by setting bits
0, 3, and 5, respectively. The remaining commands con-
sist of pairs of outportb() calls, the first of which speci-
fies the particular CRTC register to be written to, and
the second of which contains the actual value to be placed
in that register. In all, 16 different registers are written
to, defining the height and width of the screen, the loca-
tion of the video buffer, and the timing parameters
described by a single screen refresh cycle.

The second function in Listing 2, mvtomono(), writes
a string of characters to a particular x-,y- coordinate of
the monochrome screen. The function works by creating
a pointer to the start of the MDA’s video buffer
(B000:0000),> computing an offset into that buffer defined
by the x-,y- screen coordinates, and then moving the in-
dividual characters of the string that is to be displayed
to their proper locations. When used in conjunction with
InitMono(), this function allows independent output to
the monochrome screen while standard Turbo C output
functions are used to display information on the graphics
screen.

There are several advantages to using such functions.
First, since the secondary adaptor is initialized without
BIOS commands, two independent adaptors can be ac-
tive simultaneously. Second, since the video buffers are
not cleared with every switch between displays, the con-
tents of one screen will not be erased when information
needs to be written to the second. Third, since the MDA
is initialized without disturbing the state of the primary
adaptor, the mode for the primary adaptor can be estab-
lished and controlled independently, through the use of
standard C functions. One implication of this is that out-
put on the primary adaptor can be set to either text or
graphics mode without disturbing the MDA. Examples
‘of this are provided in Listing 3. As noted above, although
the examples given here assume the use of an MDA as
the secondary video subsystem, the techniques described
by these functions can be used for other video subsystem
combinations as well.

There are a few disadvantages to this last technique.
First, since functions such as InitMono() are written for
particular video adaptors, a programmer must either write
initialization functions for all types of adaptors that may
be used, or verify that the adaptors contained on the ex-
ecuting system can be handled by the existing functions.
In the present examples, the MDA has been employed
partially because it is relatively inexpensive to add as a
secondary video subsystem, but also because it can only
be programmed in one mode, thus ensuring its correct
functioning when it is installed with a compatible primary
system (see Table 1). Second, although there is no over-

lap in the video buffers of the MDA and other graphics
cards when the latter are employed in text mode, this is
not necessarily true when graphics modes are used. In
general, although the CGA and MCGA subsystems re-
tain their functional separation from the MDA in graphics
mode, the same is not true of EGA and VGA subsystems.
In the latter cases, the location of the video buffer is con-
tained between A000:0000 and B800:7FFF. These loca-
tions overlap those employed by the MDA. To avoid any
conflict, it is necessary to avoid writing any information
destined for display on the graphics subsystem to the area
of RAM used by the MDA. Since the information con-
stituting one full graphics display rarely occupies all of
video RAM, it is usually possible to segregate output to
the two subsystems. In general, segregating output be-
tween the two systems means never writing to the video
page defined by the address boundaries B000:0000
through BO0O:FFFF when an EGA or VGA system is in
graphics mode. At worst, this limitation means that video
paging cannot be employed when either the EGA or the
VGA is set in its highest graphics mode.

Summary and Conclusions

In the present paper, I have described two general tech-
niques for achieving multiple video outputs with a single
IBM PC or compatible. The first of these methods in-
volves splitting the output signal from a single video adap-
tor between two attached monitors. Although this method
allows the generation of multiple displays that contain
identical information, the individual displays cannot be
customized. The second method involves the installation
and programming of dual video adaptors. I have described
two ways of programming, involving the use of either
BIOS functions or direct commands to the video adap-
tor. Although the BIOS functions tend to be more porta-
ble, the enhanced flexibility provided by the direct
programming commands seems to make them a better
choice for independent control of the video output on a
secondary video subsystem.

Finally, although this paper has primarily been focused
on techniques for generating flexible video output to mul-
tiple monitors, it should be noted that these techniques
can be combined to create a multiple-subject testing sta-
tion without the need for purchasing an expensive net-
working system and its corresponding controller. Specif-
ically, while splitting the output from a single adaptor can
be used to create several identical subject display screens,
the reprogramming of a secondary adaptor can be used
to create an independent experimenter’s console. Alter-
natively, instead of an independent experimenter’s con-
sole, the second technique can be used to create an inter-
active testing station in which the responses of 1 subject
are used to independently alter the information displayed
to a 2nd subject. In short, the techniques above, either
singly or in combination, provide a high degree of flexi-
bility in the control of the output of visually presented
stimuli during an experiment.

REFERENCES

Duncan, R. (1988). IBM ROM BIOS. Redmond, WA: Microsoft Press.

EaMmoN, D. B. (1982). CEDATS: A cognitive experimental design and
testing system. Behavior Research Methods, Instruments, & Com-
puters, 14, 142-145.

HawtEy, K. J. (1991). PsyExper: Another experimental generation sys-
tem for the IBM PC. Behavior Research Methods, Instruments, &
Computers, 23, 155-159.

PoLTROCK, S. E., & FoLTZ, G. S. (1988). APT PC and APT II: Ex-
periment development systems for the IBM PC and Apple II. Behavior
Research Methods, Instruments, & Computers, 20, 201-205.

SCHNEIDER, W. (1988). Micro Experimental Laboratory: An integrated
system for IBM PC compatibles. Behavior Research Methods, Instru-
ments, & Computers, 20, 206-217.

WILTON, R. (1987). Programmer's guide 1o PC & PS/2 video systems.
Redmond, WA: Microsoft Press.

NOTES

1. All assessments of commercially available packages were made
on the basis of the information contained in the published summaries
of these systems. Although the author is unaware of any updates to these
systems along the lines discussed in the present paper, the interested
reader should refer to the manuals for these packages for more infor-
mation about their capabilities and limitations.

2. The exact number of monitors that may be attached to a single adap-
tor card varies with the strength of the signal generated by the card and
the minimal signal strength required by the monitor. As a rule, although

DUAL VIDEO MONITORS 433

most video adaptors generate signals of about | V (peak to peak), video
monitors will typically respond to much weaker signals (e.g., 1 mV).
Thus, it is usually possible to drive at least two monitors with most com-
mercially available adaptor cards and monitors. It is important to note
that video signals may be substantially attenuated when they are trans-
mitted over long distances (i.e., over video cables longer than 40-50 ft).
With an adaptor card generating a 1-V signal and a monitor requiring
a 1-mV signal, the maximum cable length at which the monitor will
still respond is approximately 140 ft. However, when this signal is split,
this distance drops to approximately 70 ft; with 4 monitors, it is 35 ft,
and so forth. Since most commercial vendors do not sell cables longer
than 12 ft, the loss of signal strength due to cable resistance is usually
negligible. Nevertheless, when one uses monitors that require large peak
signals, signal degradation due to cable length may become a signifi-
cant factor.

3. All port addresses and input values are given in hexidecimal (base
16) notation. All RAM addresses are specified as a segment:offset
number.

4. Although all of the functions described in this paper are present
in Turbo C Version 1.5, one may have to substitute function names if
one uses a different compiler. For example, the Turbo C outportb()

" function (which writes a single byte to an I/O port) would have to be

changed to outp() under Microsoft C.

5. Care must be taken to ensure that the starting address defined in
the variable scnptr agrees with the starting buffer addresses defined in
registers OCh and ODh in the function InitMono(). Mismatches between
these two references will cause the characters of the string that is to
be displayed to appear at a location other than those defined by the x,y
screen coordinates.

Listing 1

/* code to toggle video output between MDA */

/* and CGA using BIOS video routines

*/

#define CGAmode 0x03 /* mode # for 80 x 25 full color text */
#define MDAmode Ox07 /* mode # for 80 x 25 monochrome text */
#define CGAbits 0x20 /* sets bit 5 of Equip_Flag 80x25 color*/
#define MDAbits 0x30 /* sets bits 4 & 5 - monochrome */
#define ClrBits Oxcf /* clears bits 4&5 before setting ./
#define Equip_Flag Ox00400010 /* location of Equip_Flag variable */
#include <dos.h>
#include <stdio.h>
main()

/* direct video output to the MDA %/

SetMode (MDAmode) ;

printf("This should appear on the monochrome screen\n");

/* direct video output to the CGA
SetMode (CGAmode) ;

*/

printf("and this should appear on the CGA screen\n"):

register variables used to call */

/* interrputs */

holds values from Equip_Flag */
pointer to Equip_Flag */

direct pointer to Equip_Flag */

}
/Q’”'..Q"“"'i.I.".l”..Q””D"QQQ.QQI...l'./
SetMode (mode)
int mode;

union REGS in,out; /*

int E_Vals, /*

flgptr; /

flgptr = {(int *)Equip Flag; /*

E Vals = *flgptr; /*

store values */

434

HAWLEY

/* test if bits 4 & 5 set (i.e., monochrome active) and if new */
/* mode is not monochrome */
if (((E_Vals & MDAbits) == MDAbits) && (mode !=7)
{
E Vals = {E Vals & ClrBits); /* clear bits 4 & 5 */
flgptr = (E_Vals | CGAbits); / activate graphics card */
else
{
E Vals = (E Vals & ClrBits); /* clear bits 4 & 5 */
flgptr = (E_Vals | MDA bits); / activate monochrome card*/
}
in.h.al = mode; /* load video mode in AL */
in.h.ah = 0x00; /* load function #0h in AH */
int86(0x10,&in,&out}; /* execute interrupt #1Ch */
} /* end SetMode() */
Listing 2
#define scnstr Oxb0000000 /* RAM address for MDA buffer */
InitMono()
{
int i; /* loop counter */
int *scnptr; /* pointer to video buffer */
scnptr = (int *) scnstr; /* set pointer to location of video */
/* RAM */
outportb{0x3b8,0x29); /* set video controller to enable */
/* the adaptor, turn on the screen, %/
* and enable blinking */
/QQ&.G&'QQQ.Q'OQ initialize MDA control registers L2222 22 22 2l s dd) Q/
outportb(0x3bk4,0x0); /* set horizontal total */
outportb{0x3b5,97);
outportb(0x3bl,0x1); /* set horizontal displayed ®/
outportb(0x3b5,80);
outportb(0x3bl,0x2); /* set horizontal sync position */
outportb{0x3b5,82);
outportb{0x3bl,0x3); /* set horizontal sync width */
outportb(0x3b5,15);
outportb (0x3bl,0xh); /* set vertical total */
outportb(0x3b5,25);
outportb (0x3bl,0x5) ; /* set vertical total adjust */
outportb{0x3b5,6);
outportb{0x3bl,0x6) ; /* set vertical displayed */
outportb(0x3b5,25);
outportb (0x3b4,0x7); /* set vertical sync position */
outportb{0x3b5,25);
outportb (0x3bl,0x8) ; /* set interlace mode */
outportb(0x3b5,2); ‘
outportb (0x3bl,0x9); /* set max scan line address */
outportb(0x3b5,13); _ ’
outportb (0x3bl,0Oxa); /* set cursor start address */
outportb(0x3b5,11);
outportb (0x3bl,0xb) ; /* set cursor end address */
outportb(0x3b5,12);
outportb(0x3b4,0xc); /* next 2 calls set high & low */
outportb(0x3b5,0); /* addresses for video buffer. */
outportb (0x3bl4,0xd) ; /* These MUST agree w/the address %/

outportb(0x3b5,0);

/* defined in scnstr.

DUAL VIDEO MONITORS 435

outportb(0x3b4,0xe) ; /* Last 2 calls define the size of */
outportb(0x3b5,0); /* the cursor. Here the cursor is */
outportb{0x3bY,0xf}; /* turned off. */

outportb{0x3b5,0);

for (i=0; i < 8*1024; i++)

{
scnptr=0x720; / clear screen to spaces */
scnptr++;
}
} /* end InitMono() */

/QI....GQQC'..'.Q'QQQ....Q.'....".'.....Q.......Q""./

mvtomono(strng,row,col)

char strng[]; /* input character string */
int row,col; /* x,y screen coordinates */
{
int i; /* loop counter */
int *scnptr; /* pointer to video buffer */
scnptr = {int *) scnstr; /* set pointer to video buffer */
i = (row ®* 80) + col; /* compute offset */
scnptr = scnptr + i; /* move pointer */

for (i=0; strng[i] !=0; 1++) /* move strng to video buffer and %/
scnptr++={strngfi] | 0x700); / set attributes for each character*/

Listing 3
/* following programs use InitMono() and mvtomono() to display */
/* data on either a CGA or MDA screen, where the CGA is in */
/* either text or graphics mode */

/* Program 1: set CGA in text mode */

#include <stdio.h>
#include <dos.h>

main()
{

InitMono(}; /* call only once at start of prog. */

printf("This should appear on the color/graphics screen\n");
mvtomono{"and this should appear on the monochrome screen...",12,3);

}

/l’*‘*l*ﬁl{lﬂ*ﬂ*’i’*l“ﬂl*ﬁQl'G’l&}l...lGQi'.’QQQ}.Qli’.".""i!&."ﬁ./

/* Program 2: set CGA in graphics mode */

#include <stdio.h>
#include <dos.h>
#include <graphics.h>

main()

{
int g_driver =1; /* load CGA drivers */
g mode = U; /* 640 x 200 b/w graphics mode */

436

HAWLEY

InitMono(); /* initialize monochrome screen */
initgraph(&g_driver,&g_mode) ; /* set CGA in graphics mode */
outtextxy(3,5,"This should appear on the color/graphics screen");
mvtomono("and this should appear on the monochrome screen...",12,3);
closegraph(); /* return CGA to previous mode */

(Manuscript received January 16, 1991;
revision accepted for publication April 12, 1991.)

