Behavior Research Methods & Instrumentation
1982, Vol. 14(5), 475-481

APL functions for interactive data analysis:
Preparation of data files

SELBY EVANS, JERRY D. NEIDEFFER, and LYNN GILFILLAN
Texas Christian University, Fort Worth, Texas 76129

APL functions to support preparation of data files are presented: a function to manage
the entry of raw data, functions to display the entered data in formats convenient for checking,
a function to support correction of errors, a function to organize the data into tables and file
them, and a user interface function that provides menu selection of the data preparation
functions. General-purpose support functions to assist in file use and in menu selection are

also provided.

Behavioral research often requires substantial amounts
of data. Frequently, the data are accumulated over a
period of time and require analyses by several different
procedures. Under these circumstances, APL’s tradi-
tional method of storing data in saved work spaces
becomes inconvenient. Direct entry into a file offers
advantages. Since the entries are not retained in the
work space, there is practically no limit to the amount
of data that can be entered. The data are better pro-
tected from user and computer errors. With functions
designed to simplify the entry operations, data entry can
be turned over to clerical personnel. Data analysis
functions can be written to assume standard file conven-
tions (Evans, Neideffer, & Gage, 1981) that let the user
move freely from one analytic procedure to another.

This report presents a system to support file-oriented
data entry. The system allows for data entry with detec-
tion of errors in the number of entries, display of filed
data, error correction, and organization of data into
tables in a labeled file for analysis by functions such as
PRINAN (Evans et al., 1981) and GRAPHICS (Evans,
Neideffer, & Gage, 1980). The system is menu driven;
that is, it presents a list of options to the user and
interprets the user’s response as a selection from the list
or menu. Menu selection relies on recognition rather
than recall, so that it is easier for the inexperienced user.

Several general-purpose support functions are also
presented, providing amenities to simplify the use of
the other functions. With these functions, most data
entry can be done without the use of APL symbols
and without knowledge of APL beyond that needed to
load a work space. Data entry and correction can be
done on terminals that do not display APL characters
and can be done by clerical personnel with little instruc-
tion.

The system operates under the control of FILEDATA,
a user interface function to be described in more detail
later. The interface function presents a menu of options,
executes the user’s request, and presents the menu again.
In the present system, the options on the menu are
functions. This design simplifies the interface function

Copyright 1982 Psychonomic Society, Inc.

475

and makes it easier to use the same option with more
than one interface function. The design requires that the
menu functions match the conventions of the interface
functions. In the present case, these conventions require
that the menu function be niladic, be named with no
more than four letters, and use the global variable CL
as a transfer variable carrying a list of file component
numbers obtained from the user by the interface func-
tion. APL programmers will note that new options can
be added to the present system by observing these con-
ventions.

The system runs on a Sigma 9 under the CP-V operat-
ing system. It also runs under CP-6, offered on some
Honeywell computers. Points that might need special
attention in transfer to other systems are noted in the
text or in the accompanying figures.

OVERVIEW: USER DOCUMENTATION

To provide an overview of the system from the user’s
standpoint, we present a description in the form of user
documentation for the function FILEDATA and its
menu. This kind of documentation is provided on-line
as a menu option. Functions to support on-line docu-
mentation will be given in a later report. The documen-
tation assumes that the system has been stored in the
work space ENTRY with an automatic start of FILE-
DATA on loading. The documentation also assumes a
basic knowledge of APL file systems and enough famil-
iarity with APL to load a work space. The system is
operated with the computer set to use APL characters,
even if the terminal does not have them. If the terminal
has only the ASCII character set, the messages from the
computer will be in lowercase and the user should type
commands in lowercase.

Instructions for Data Entry

To use the data entry system, load the work space
ENTRY. It will respond, “FILE:” Type the name of the
file you want to put the data in. You can use any mix-
ture of letters and numbers to name the file, up to about

0005-7878/82/050475-07800.95/0

476 EVANS, NEIDEFFER, AND GILFILLAN
eight characters. It is good practice to use four to seven
characters and to see that the first three characters are
enough to distinguish the file from all other files in your
account.

If data are to be added to an existing file, type the
name of the file. Or hit “return” if you need to be
reminded of the file name, and you will get a list of all
the files in your account. When the menu is presented,
this list can also be obtained by typing FLST.

If the file already exists, the system will access it
and report the number of components (i.e., the number
of data rows) in it. If it is a new file, the system will
create it and report zero components.

The system will then present a menu of options for
you to select from: END, FLST, ENTE, FIXD, RSHO,
CSHO, TBLE, LABL.

Type the option you want. If you make a typographi-
cal error, the system will either guess which option you
want or present the menu again. After the system
completes work on the selected option, the menu will
again be presented, unless the option is one that implies
your task is complete.

ENTE helps you enter data, one row at a time. A row
would nommally represent some reasonable grouping
of data, such as the responses from one subject in one
experimental condition or the responses of one subject
on a questionnaire. It is a good idea to start each row
with an ID number in Column 1. Although the remain-
ing columns can be used for data, it is generally best
to reserve one or more of these initial columns for data
identification. For example, a set-designating number
standing for an identifying property of the data row,
such as an experimental condition or demographic
property, is frequently placed in Column 2.

If you have multiple observations on the same sub-
jects, a good practice is to use ID numbers that dis-
tinguish the data rows but retain the subject identity,
for example, 101, 102, 103 for subjects in Condition 1
and 201, 20?7 203 for the same subjects in Condition 2.
If you plan to organize the data into several tables, this
organization can be made easier by including a table
indicator column with an integer indicating the table
in which the row belongs. Normally, you will want to
form tables representing homogeneous data sets, that is,
representing separate experimental conditions or subject
characteristics. The set-designating column mentioned
above can also be the table indicator column, if desired,
or two different columns can be used. These two prac-
tices make it easy to form tables and have the subjects
in corresponding rows across tables.

If the file is new, ENTE will ask for the number of
entries per row. If there are already entries in the file,
the number of entries in the first row will be reported.
In either case, ENTE will monitor new rows for con-
formity to this number.

ENTE will then advise, “TO STOP ENTERING,
TYPE END:” Type the data, spacing between each
number: 23 9.5 907.2 10. If you have negative numbers,
precede each negative number with the uppercase 2,

which appears in APL as the flying minus. It is not
necessary to complete the row on one line. Each time
you hit “return,” ENTE will check the number of
entries. If the row has the correct number of entries,
it will be filed. Otherwise, the system will allow you to
continue entering data, file the row as is, or cancel
the row and type it in again.

At the completion of each data row, ENTE asks for
more data. If you type END, ENTE will end the process
by giving you a list of any components filed with the
wrong number of entries. That list is also stored under
the name ERRORS for use with other menu options,
FIXD, CSHO, and RSHO.

CSHO and RSHO display components in a convenient
format. When one of these is selected, the system asks
“LIST COMPONENTS OR ALL:” You can list com-
ponent numbers or type ALL to show the entire file. To
list a series of numbers, expressions such as 9 to 22 or
17 to 35, 50 to 60 can be used. The system interprets
these expressions the same way as the user does. If
ENTE has stored something in ERRORS, ERRORS can
be typed to show the components listed there.

The difference between CSHO and RSHO is in the
arrangement of the display. RSHO presents the file
components as rows of a table. CSHO presents the
components as columns. The arrangement that best
suits your purpose can be selected. CSHO, for example,
is convenient for displaying questionnaire data.

RSHO will ask for a format that tells it how to space
the columns and handle decimal points. Here, the
FORTRAN formatting rules can be used. If the user is
not familiar with these rules, he/she can generally use
16 for integer data or F8.2 for data with decimal frac-
tions.

FIXD allows you to fix errors in the data. As with
CSHO and RSHO, you will be asked to list components.
You can list component numbers, type ALL, or type
ERRORS if ENTE has stored something under that
name. FIXD will then get each component in turn,
present the component number and the first entry
to identify it, and let you make corrections by string
replacement. The function will ask, “REPLACE WHAT:”
Enter a unique string of numbers including the error.
The function will then ask for the replacement; type in
the correct string. If the first string is not unique, the
function will offer to replace all instances, but it will
make no change without your approval.

When you type END, the function will let you show
the revised component and return to fixing if you wish.
Or you can have the revision filed and go to the next
component you asked to fix.

TBLE, another menu option, organizes a file contain-
ing data rows as components to form a new file in which
selected components are rows of tables. The name of the
new file is formed by putting the letter P in front of the
original data file name. This trick makes it easier for you
to return to the same tabled file if all tabling is not done
at one time.

TBLE allows for the selection of components for

tables in two ways. Manual selection lets you specify the
component numbers of the rows to be included in a
given table. You are asked to list the desired components
or ALL. If you choose the manual selection, respond
to this request with a list of component numbers to be
used to form the first table. Then return to TBLE and
repeat the process for each additional table.

Alternatively, the system will select components for
you, using a table indicator column established when
you entered the data. To use this option, enter ALL
when asked to list components. TBLE will later ask
you to enter the column number for sets or NONE.
For manual selection, enter NONE. For automatic
selection, enter the column number of the table indi-
cator column you established. The function will display
the number of rows identified by each different integer
in the table indicator column. (This process may take
several minutes if the file is large and the computer is
busy.) The function will then ask for set numbers to
select the components to be included in the first table.
You may list one or more set numbers for each table.
The step will be repeated for additional tables until all
set numbers have been used.

TBLE will also ask if you want it to round the data
to integers. Integer form saves space and processing
time. If the data are integers, it is good practice to
accept this offer.

In selecting components to form a table, TBLE will
report any components with the wrong number of
entries and exclude them from the table. It will also
reorder the rows of the table so that the numbers in
Column 1 are in ascending order.

When tabling is finished, TBLE will offer to label the
file. You should label the file only after you have
deposited all tables and are ready to start analyzing
the data. The label process adds three components at
the end of the file. The first carries the title, which the
user is asked to supply. The title is two lines of text
used by processing functions to title the output. The
second is a scale table giving the approximate data ranges
for each column; the scale table is used by plotting
functions to see that a given column is plotted to the
same scale regardless of the table it comes from. The
third component is a table of contents carrying standard
names for the columns and data tables in the file. If you
are familiar with APL, you can change these names to
apply specifically to your data. (The table of contents
is an array. Be careful to leave Column 1 of the array
blank.)

LABL offers the same labeling process as does TBLE,
but under the assumption that tabling has already
been completed. LABL is needed if you do not label
the tabled file at the time you finish tabling. Since
LABL operates on the tabled file, it needs a special
step. Load a new copy of ENTRY. When it asks for the
file name, give the name of your tabled file, the one
formed by TBLE.

APL FUNCTIONS 477

COLeIV/CLet 1234567890 (/0L

LES, BE PATIERT'
"L

'I3'APMTi301007125)," -
«T,0«tC2pT«M) /JAFL

FILE:'

LTLT INTRO:.

4L, TRELWK«STRATR« Qo Te o DCwALL =V BLM« (DAFL«{T="' ')/T)FATIE\B

LR OMY e ok 19T L (WET V) /NN

e/ PeW) - |- 1et /MET
.U DOES NOT COMPUTE')+Qui

Wt T 10=pK /Y SIDE L2, " TU APMT oK
' OTE=',,'F4.2'8PMT CTR},IT

SY0 FAPE 1')/'RO OUTPUT FILE'
1:/'PUSH RET'

2 AMONADIC e IS THE EXECUTE FUNCTICN
A

& IS CARRIAGE RETURN
4 ALFMT 1S TIFMT [N SOME SYSTEMS USING (I FOR SYSTEM VARIABLES.

Figure 1. APL code for support functions FLST, TY, INTR,
TO, BOP, and END. Comment lines on END apply to all func-
tions in this report.

SUPPORT FUNCTIONS

The following support functions provide amenities
that simplify the use of APL functions, especially for
inexperienced users. APL code for these functions is
given in Figure 1. These functions use several functions
described in previous reports: REPLACES (Evans,
Gage, Neideffer, 1980), LABL, FLAST, and FAPE
(Evans, Neideffer, & Gage, 1980), and FATIE (Evans
etal., 1981). The commonly available file functions,
FREAD and FREPLACE, are also used. These are
described under the names quad-FREAD and quad-
FREPLACE by Gilman and Rose (1976).

Z < FLST

FLST gives a list of the files in the user’s current
account. It is a simplified version of the commonly
available function FLIB or quad-FLIB, as described by
Gilman and Rose (1976). FLST is simple because it
requires no right argument and generaily assumes that
the listing of files is for the current account. FLST is
intended to be called by some other function, FILE-
DATA in the present case, that provides a value in the
variable CL. Unless CL contains character digits, FLST
gives a list of the files in the user’s current account.
This use is illustrated in the functions given later in this
report.

If Cl contains character digits, FLST treats the
contents of CL as an account number and gives the list

478 EVANS, NEIDEFFER, AND GILFILLAN

of files in that account. Although the functions in the
present report do not make use of this feature, func-
tions to be given in a later report will do so.

Programmers should note that FLST drops the first
11 columns from the result of FLIB. In CP-V APL,
these columns contain the account number, which is not
needed and would interfere with some uses of the result.
The location of the account number may differ in other
systems, and FLST could be revised accordingly.

FLST gets the user’s current account number by
invoking the I-beam 29 function. This function is avail-
able in processors compatible with APL/360. Processors
using quad variables and functions, as illustrated in
Gilman and Rose (1976), would probably provide the
account number in the system variable, quad-Al. These
processors may also accept the I-beam function. The
result from either source may vary with systems and
may have to be adjusted to meet the requirements for
the right argument of FLIB.

Depending on the host operating system, the standard
forms of the account number may be either numerical or
character data. For example, CP-V uses letters in its
account numbers, requiring a character representation
in APL. In adapting FLST to a system with account
numbers in numerical form, the test to recognize the
contents of CL as an account number would have to be
changed. The test might be based on the magnitude of
the account number. In our functions, no other use of
CL is likely to result in numbers greater than 10,000.

TY

TY provides a standard and convenient procedure
for accessing a main file. It is invoked by a user inter-
face function designed to operate on a file. TY requests
the name of the file. The user can enter a file name or
hit “retumn.” If the user enters a file name, TY creates
the file, if necessary, makes the tie to the number 1,
stores the file name in the global variable DAFL, and
stores the date in the global variable DT, making these
items available for use by other functions.

If the user hits “return” without entering a file name,
TY checks to see if there is a previous file name stored
in DAFL. If so, it makes the tie again and displays the
name of the file. From the user’s standpoint, the work
space remembers what file was in use. If several func-
tions using TY are in the same work space, the user can
move from function to function without having to
reenter the file name.

If a new copy of the work space has been loaded,
assuming it was initialized by PARAM (Evans et al.,
1981), DAFL will be an empty vector. In that case, the
user can hit “return” without entering a file name and
obtain a list of the files in the current account. After
presenting the list, TY again asks for the file name. In
this case, it compares the entry with the actual list,
corrects any minor typographical errors, and makes the
tie. If TY cannot recognize the file name, it will again
ask for a file name rather than create a new file.

Since TY routinely appears at the beginning of all
processing functions, the last line is used to set several
global variables that control other parts of the system.
Some of the variables are used in functions already
presented; others are used in functions to be presented
in later reports.

TY uses the I-beam 25 function to obtain the date.
The comments on I-beam 29 in connection with FLST
apply to this function also. In processors using quad
variables, the date would probably be provided by the
system variable quad-TS. TY expects the result to be a
six digit number of the form MMDDYY and applies a
decode operation to break it up for formatting. The
result from quad-TS would probably be in a different
form and require minor revision of the code at this
point.

P<MINTRW

INTR is a simple pattern recognition function to
handle typing errors in menu or list selection. It com-
pares a series of letters in the right argument, W, with an
array in the left argument, M, carrying permitted entries
as rows. If the entry matches a permitted entry, INTR
delivers in P the row number of the permitted entry. If
an exact match is not found, INTR measures the differ-
ence between the entry and each permitted entry,
weighting agreement on first letter 2 points and agree-
ment on the presence of any letters (regardless of loca-
tion) 1 point each. A difference in length is weighted
negatively.

If there is a single entry with the closest match and
if the positive features outweigh the difference in
length, INTR produces as a result the row number of
that entry. This value can be used (see TY and FILE-
DATA, elsewhere in this report) to select a permitted
entry. If no acceptable match is obtained or if more than
one entry gives the same match, INTR reports that it
cannot recognize the input and delivers an empty
vector as its result. The calling program can test for an
empty vector and return to the entry request.

The features and decision criteria for INTR were
suggested by informal examination of recorded typo-
graphical errors made by users of menu-driven programs.
No doubt, INTR could be improved by a more system-
atic investigation of error patterns. The assistance pro-
vided by the present version, however, seems to be
welcomed by our users.

K<ITOJ

TO assists users in creating lists of numbers such as
might be needed to select column numbers or file
components for a table. TO creates the consecutive
integers from its left argument, I, through its right
argument, J, delivering the result in K. Thus the user
can respond to a request for component numbers with
an expression such as 8 to 12. The expression is inter-
preted as the numbers 8, 9, 10, 11, and 12.

Both arguments can contain multiple elements.
TO treats this condition as a request to embed its string
of consecutive integers at the point at which TO was
inserted in the larger string. The integers generated
range from the last element of the left argument to the
first element of the right argument. Because of this
feature, TO can be incorporated into a series of numbers
without the parentheses that APL would otherwise
require. The user can enter 13 4,7 TO 15,18 19,25 TO
30, 34. The list will be interpreted as people would
interpret it. The commas are optional.

BOPO

A revision of the previously presented output func-
tion, BOP (Evans, Gage, & Neideffer, 1980), is given
here because one of the added features is required to
accommodate functions presented later in this report.
As described previously, BOP is a general-purpose output
function for character vectors carrying the results of
data analysis. It presents the character data delivered in
O, putting certain identifying information as a header
on each unit of output to insure adequate identification.

BOP normally pauses for a carriage return before
delivering output, so that the user can make any needed
adjustments at the terminal before accepting the output.
This pause and the output to the terminal can be sup-
pressed at any time by typing NO in response to the
request for a carriage return. The suppression of output
continues until the global variable TYPE is reset to 1.
In the group given here, TYPE is reset by TY each time
the main function is invoked.

As in the previous version, BOP limits each unit of
output to the width specified in the work space param-
eter, OWD. Output wider than this value is separated
into two or more parts. The present version provides for
easier collation of these parts by labeling them “SIDE 1,”
“SIDE 2,” and so on. The present version also limits
the number of lines in a unit of output to 52, not count-
ing the header. Successive units are produced as required.
This modification improves the handling and identifica-
tion of a long series of rows, as may be produced by data
display functions presented later in this report. For
CRT terminals, users may prefer to change Lines 1 and 2
of BOP to limit the number of lines to 20 or 25.

The contents of the header have also been modified
to present the name of the processing function, the file
name (stored in DAFL by TY), and the side identifica-
tion, if needed, on the first line. The name of the pro-
cessing function must be stored in the variable delta-
WK by the function that handles the menu. This feature
is used in conjunction with a text processing function
that summarizes a file by giving the first line of each
component. With the key information on the first line,
the list of first lines serves as a table of contents for the
output file.

BOP also does its part to insure that each unit of
output carries information about parameter settings,
time of processing, and study title. Lines 12 and 13 put
several global variables at the head of the output. These

APL FUNCTIONS 479
are CTR, DT, STR, delta-TR, and TB. In our system,
CTR is a work space parameter that specifies a threshold
for suppressing the display of small correlations. TB
normally carries the study identification obtained
from one of the components of a labeled file. The
use of these variables is illustrated by Evans, Gage, and
Neideffer (1980).

DT carries the date, specified by TY as described
earlier in this report. STR is intended to carry a report
of the set numbers and set column if set selection was
operating at the time of processing. Set selection is
illustrated by Evans et al. (1981). Delta-TR is intended
to carry a report of table numbers identifying the data
tables used in processing. In our system, STR and
delta-TR are set by menu functions that also aid the
user in set and table selection. These functions will be
presented in a future report.

TB, delta-WK, STR, and delta-TR are set to empty
vectors by TY. Thus, functions that have no reason to
define them need not define them. This resetting also
insures that values stored in the variables by previous
functions cannot be carried over to appear as spurious
labeling on new output.

Unlike the previous version, this version of BOP
does not require an output file, The global variable
OPFILE, which normally carries the name of the output
file, can be an empty vector. In that case, BOP does not
attempt to file the output but reports the absence of an
output file. This feature accommodates novice users who
forget to empty the output file until it fills the space
allocated for the account.

END

END provides a recognizable menu item for ending
a menu-driven function such as FILEDATA. As pre-
sented here, END merely ends the function. Program-
mers may adapt it to the needs of a particular installa-
tion, however, by inserting instructions to be presented
to the user before ending the function or by inserting
a system command such as JOFF if the APL interpreter
permits the execution of system commands. If data
entry is done by inexperienced users, the message
DON’T FORGET TO SIGN OFF might be sent. For
more experienced users, the message might be TO
RESTART, INVOKE FILEDATA.

FUNCTIONS FOR DATA PREPARATION

This set of data preparation functions includes a user
interface function, FILEDATA, with processing func-
tions to provide for data entry, display, correction, and
organization into tables. User interactions with this
function and its menu options are described in the
earlier section on user documentation.

FILEDATA

FILEDATA is a user interface function that inte-
grates all the data preparation functions into a single
process. FILEDATA obtains the name of a file, pre-

480 EVANS, NEIDEFFER, AND GILFILLAN
9 FILEDATAZALL :TiCL3JBL
1 TY:' COMPONENTS'
2 NONE+CL+10
3 MR, ' ' JBL«8 Lo'END FLSTENTERSHOCSHOFIXDTBLELABL'
4 *MNUx10=pT+JBL INTR AWK«D
5 »EXxi4>T
& "LIST COMPONENTS OR ALL'
7 cLe, 0
8 FX:e,JBLLT;!
9 ALL+AFLAST 1
10 >MNY
v
9 ENTE Q3ENDCiFERE L ;CANCEL ;FILE DR
1 FILE€F«'F' [QpCANCEL+C+'C!
2 *0Lx102L+FLAST L
3 YHOW MANY ENTKIES PER ROW (COMP):!
b G0, 8«0
5 OL:,kepFREA™ 1 1" ENTJRIES PER ROW {(COMF)'
6 GO ER+E+END1 0
7 'TO STOP ENTENING, TYPE ERD QR E!
8 EN:L+1,Q+""
9 *¥Dx10=pD+,0

10 CK:+FI*1R=D+pQ+Q.D

11 'ENTRIES: ':iDi{R>D)}/' CONTINUE OR';
12 »T14CK,(VFC =14D€0) /FI L EN

13 FI:+EN,Ef<EK,(R%0Q)/L+Q FAPE 1

14 ND:'ERRORS IN ';,ERRORS+ER:(0=0EK)/A,' STORED IW ERRORS

TYPE FILE OR CANCEL:'

0 AUHO;Q:ViG

1 'ENTER FORMAT (EG. I4 GR F8.2):

2 G+0pQ<l

3 TBe'COMPS '

W FSiGeG. b, (,"TW AFMT 14CL),"|",,Q APMT FREAD 1,14CL
S »FSx10<pCL+1CL

& BCP G

T +PSx10<0CL,6+10

CSHO3DLC3 VP

'FORMAT: (EG, I5,F8.2)"

Fa

ST:De0 CpCe(TelnloCl)ItCL

GC:De((D)0, 14pVeF AFMT V,FREAD 1,V<11C)4D
DeD, (140D}, 1¥pV) 4V

+GCx10<0Ce14C

De,a8,D013),8,,'-",[118,8,1 04D

BOP D

*ETx 1 0<oCL+THCL

N A IS

<

Figure 2. APL code for data preparation functions FILE-
DATA, ENTE, RSHO, and CSHO.

sents a menu, accepts a requested operation with correc-
tion of minor typographical errors, obtains the user’s
choice of component numbers if applicable, executes
the operation, and presents the menu again. APL code
for this function and for the data entry and display
functions is given in Figure 2.

ENTE

ENTE supports data entry. It is intended to create
file components that will be combined as rows of a
table by TBLE, described later in this report. The data
values are entered in the evaluated quad mode, allowing
the APL interpreter to check the input for proper form
as a list of numbers. If an error is detected at this point,
APL reports the error and gives immediate opportunity
for correction. ENTE itself checks the entry for con-
formity to the specified number of elements per row,
as described in the user documentation. As each row is
completed, ENTE appends it as a new file component.
If ENTE is reinitiated for work with a partially com-
pleted file, it continues appending where it left off.

RSHO and CSHO

RSHO and CSHO display the contents of a file, such
as that produced by ENTE, in which the components
are numerical vectors. When one of these is invoked,
FILEDATA requests a list of the components to be
displayed. (The list is transferred via the global variable
CL.) The response can be any APL expression. The
components to be displayed need not be of the same
length. RSHO requests a format specification, to be
given in the same notation used for FORTRAN formats.

This format allows the user to choose integer or floating-
point output and to determine the number of characters
allocated to each number. RSHO presents each com-
ponent as a row, with the component number in front.
CSHO presents each component as a column, headed
by the component number. CSHO breaks up the com-
ponents to display no more than 14 components/
page. With an IS format, the result will be 70 characters
wide. Since the output is handled by BOP, results too
wide or too long for good presentation on the terminal
are separated into parts.

FIXD

FIXD supports correction of data filed as numerical
vectors. Components are selected as described for
RSHO. APL code for FIXD and the tabling function to
be described next is given in Figure 3.

TBLE

TBLE permits the user to convert files in which the
components are numerical vectors into files organized
into tables, labeled and ready for processing by func-
tions such as PRINAN (Evans et al., 1981), GRAPHICS
(Evans, Neideffer, & Gage, 1980), and others to be
presented in this series. The components of the raw
data file become rows of the tables.

When TBLE is invoked, it invents a new file name
by putting the letter P in front of the name of the raw
data file. With the aid of FATIE (Evans et al., 1981),
TBLE creates a file under the new name, if necessary,
and ties to it. (The name of the raw data file must be
less than the maximum length permitted by the system.)
This file receives the tables as they are formed and is
intended to become the processing file.

Programmers should note that in forming the name
for the new file, TBLE takes the contents of DAFL up

PIXD:Q:TXT;ERD:E

‘TG STOP PIXING A COMP, TYPE ERD OR E',E«END+10
PX:'COMP.';14CL:" STARTS 'i24TXT3Np' ' ;0TXT+FREAD 1,14CL:' ELEMENTS®
RP:'REPLACE WHAT:'

+PTx10=pQ+,0

"BY WHAT:'

+RP,000+0 REPLACES Q

PT:,oTXT;' ELEMERTS - SHOW?'
+PLx10=zp()e ('Y ' =240]) /TXT

+RPx1'Y' =140, 0« NORE? '

FL:TYIT PREPLACE 1,14CL

+PXx1 0¢pCL+14CL

rowEANNEDN - O

-
-

0 TBLEQ:iC:TiViPiRN;:S

1 140Q+(TS«0,0FREAD 1 1)p0:' ELEMENTS PER ROW, TABLES IN'

2 e (O0eRSP+*P' (T1+L/DAFL\ . ')tDAPL)PATIE 2;' COMPS'

3 *ULx10:=T

4 *YLx10=pl«(' '21pPREAD 2,T}/'LABLED FILE, CAN''T ADD TABLES'
5

13

7

8

UL:RR«'Y'=140,0c ' ROUND TO INTEGERS?'
‘ENTER COLUMN NUMBER FOR SETS OR NONE'
+GEx107pV+5+C+,0

9 ' SET FPREQ.',P+10

10 GA:+BPx1C>pS«FREAD,1,14CL

11 pep,slcCl

12 BP:+GA*10<0CL*1+CL

13 Pe1,14{Vx"10V«P(4P))/ 0P

14 TIE'APMP(S+VITD),[1.51(147,14pP)-7

15 AT:'SETS: ';S:A,'ERTER SETS POR TABLE, OR NONE'

16 +NDx10=o¥«,0

17 +ATx10%p0« (0=pCL+(PeV)/1pP}/ EMPTY SET
18 GE:+SKx10=p0« (0#p0¢ (PS{2]2pC ,FREAD 1,14CL)/14CL) /' WRONG LENGTH
19 Q+Q.[L)e(RN/TL. 5+), "0

20 SK:+GEx10<pCL+14CL

21 8:(eQ):" TABLE IN '.RSF," 'iQL4QL;11;1FaPE 2
22 +ATx10<p5e(~SeV) /5, ,QeT5p0
23 ND:+0x1'Y' =14, 0« ' LABEL?"
24 'YQUR PRINARY DATA FILE IS NOW ',DAFL<HSF
25 CpDAPL PATIE:LS
26 LABL

v

Figure 3. APL code for data preparation functions FIXD
and TBLE.

to, but not including, the first occasion of period or
blank. These are standard separators between file names
and account numbers in CP-V. A separator and account
number appear in DAFL only if the raw data file is in
an account other than the user’s current account. If
present, these must be removed to cause FATIE to
create the new file. For a system in which other sep-
arators are used, Line 2 of TBLE would need to be
changed to include the other separator in the character
vector. Substitution in or addition to this vector can be
made without other changes in the function.

Before filing a table, TBLE reorders the row to put
Column 1 in ascending order. This ordering is the point
of peak space requirements for the functions in this
group. For systems limited to the traditional 32-KB
work spaces, programmers may want to sacrifice this
feature. The reordering is done at Line 21 in forming
the left argument of FAPE. The reordering code can be
replaced by Q without other consequence to the func-
tion. In general, however, if a table is too large to be
reordered, it will also be too large to be processed by
functions such as PRINAN in the same work-space limits.

As part of the labeling operation, TBLE sets the
global variable DAFL to carry the name of the labeled
file. This action is done on the assumption that the next
operation will be some analysis of the labeled file. In
our system, all processing is done in the same work
space, with processing groups being brought in and
erased under the control of a master function. With
this arrangement, the values of global variables such as
DAFL remain available to control new functions as
they are brought into the work space.

APL FUNCTIONS 481

SUMMARY AND DISCUSSION

The functions presented here provide for efficient
entry and organization of data sets comparable in size
to those that are commonly processed with data analysis
packages. Future reports will describe functions that
can analyze data sets of this size, that is, data sets with
essentially no restriction on the number of cases. Most
of these analyses can be done in the traditional 32-KB
work space, provided the number of variables is not
too large and the number of rows in each table is limited
to 30 or 40. These functions provide many of the
advantages of a standardized data analysis system while
retaining the advantages of operating in the APL envi-
ronment.

REFERENCES

Evans, 8., Gagg, F. H,, & Ne1DEFFER, J. D. APL programs
for interactive data analysis; Correlation and data entry. Behav-
ior Research Methods & Instrumentation, 1980, 12, 372-375.

Evans, S., NEDEFFER, J. D., & Gagg, F. H. APL functions
for interactive data analysis: Graphics and labels. Behavior
Research Methods & Instrumentation, 1980, 12, 541-545.

Evans, S., NEIDEFFER, J. D., & Gagg, F. H. APL functions
for interactive data analysis: Principal components analysis.
Behavior Research Methods & Instrumentation, 1981, 13,
657-666.

GiLmaN, L., & Rose, A. J. APL: An interactive approach.
New York: Wiley, 1976.

(Received for publication February 8, 1982;
revision accepted August 9, 1982.)

