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Detecting a target letter in briefly presented arrays:
A confidence rating analysis in terms
of a weighted additive effects model"

R. A. KINCHLA and C. E. COLLYER
Princeton University, Princeton, New Jersey 08540

A visual experiment is reported in which as rated their "confidence" that briefly presented four-letter
arrays contained one or more target-letter Fs. Their responses are interpreted as the product of a
weighted "additive" combination of partial or "noisy" subjective representations of the four letters in
each array.

An O's report that he "saw" a specific target letter in
a briefly presented letter array can be interpreted in
various ways. One conception is that the perceptual
processing ("coding") of the individual letters is
essentially "all-or-none," so that the response reflects
either a "true detection" or a "pure guess." Another
conception is that each letter may be partially processed
so that the response is a sort of statistical decision based
on partially processed or "noisy" subjective
representations of each letter. The "all-ot-none"
conception, which was quite influential during the early
research on this problem, did not encourage the use of
"confidence rating" responses in letter-detection tasks,
since the 0 ostensibly has only two levels of confidence,
"completely certain" or "just guessing." (Rating
responses have been used in an attempt to distinguish

. "high-confidence" and "guessing" responses; e.g.,
Wolford, Wessel, & Estes, 1968.) On the other hand, the
use of confidence ratings is quite consistent with the
"statistical decision" point of view (e.g., Green & Swets,
1966). This paper presents the results of a study in
which Os indicated their "confidence" that a
tachistoscopically presented array of four letters
contained one or more target-letter Fs, A statistical
decision model for multiple "noisy" observations
(Kinchla, 1969, 1974) is used to interpret the data.

Before proceeding further, it will be useful to
introduce some notation for describing the type of
letter-detection task we shall consider. An n-element
(n-letter) array will be denoted by A, and each of the
constituent elements by ei> i = 1, 2, ••• , n. Each Element
ei will be said to have a "value," Vi, of one if ei is a
"target" element, or a value of zero ifit isn't (Vi =0,1).
An O's task is to distinguish between arrays containing
only nontarget elements, termed Ao arrays, and those
containing at least one target element, termed A I arrays.
He does this by making a confidence rating R equal to 1,
2, 3, or 4 each time an unknown array is presented, with
larger values of R indicating progressively more
confidence that the array contained some targets; i.e.,
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that it was an AI rather than an Ao array.
In some instances, it will be useful to distinguish the

specific ordering of the t target and not nontarget
elements in an array, A. Since there are exactly (~)
possible orderings of these elements, a specific ordered
array can be denoted by (A)j with j = 1, 2, ... (~).

Furthermore, Vij can denote the value of Element ei in
Array (A)j.

THEORY

The quantitative model to be utilized in the analysis
can be interpreted as a "reductive coding process"-a
series of coding operations designed to isolate those
aspects of one's sensory activity relevant to a particular
decision. This theoretical process is developed in detail
elsewhere (Kinchla, 1974) and will be only briefly
summarized here to provide a conceptual framework for
the more abstract assumptions of the model. In general,
one could consider four successive coding operations
leading to an O's response: an elementary coding, which
isolates (segments, chunks, groups) ongoing sensory
activity into n "sensory samples" denoted by xj , X2,
.•• , Xn , where Xi is that component of the sensory
activity influenced by Element ei; a similarity coding,
which assigns a measure, Si, to each Xi characterizing its
similarity to sensory samples typically evoked by each
possible value of ei (something like a likelihood ratio); a
cumulative coding, which integrates the n similarity
codings into a summary code denoted by y; and finally,
a response coding which translates the cumulative code,
y, into a value of the response variable, R.

For. our present purposes, we shall consider only the
latter three coding operations (similarity, cumulative,
and response coding). Elementary coding would be an
important consideration in experiments which employed
highly variable display formats or unpracticed Os; for
example, an 0 might have difficulty in "segmenting" an
array when he didn't know whether it contained four
small letters or one large one. However, in the present
experiment, letter arrays had a fixed format (a 2 by 2
matrix of four letters) and the Os were highly practiced.
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it will also be Gaussian with an expected value and
variance defined as follows

Thus, we shall assume that the efficiency of elementary
coding was essentially "asymptotic" and relatively
constant from trial to trial.

The Model
The assumptions of the model can be summarized in

the following three statements: (I) Each similarity and
coding, Sil is a Gaussian random variable with variance a
and an expected value determined by the value of ei.
(II) The cumulative coding, y, is defined as

E(y I (A}j) =~WiVij
i

Var(y I (A}j) = a~wi2.
i

(1)

(2)

where each Wi is nonnegative and

where Vij denotes the value of Element ei in Array W j.
The probability of a confidence rating greater than r,

given a particular ordered array, P(R>r I (A}j), is simply
the probabilitythat the y value evoked by that array is
greater than ~r for r equal to 1,2, or 3. Note that in this
case y is the sum of n independent Gaussian random
variables

P(R > r I t) = ~P«A}j)P(R > r I (A}j)
j

(3)

or, if the (~ ) orderings of the t target and n-t nontarget
elements are equally likely,

where in each case the parameters of gory) are those
defined in Eqs. 1 and 2. l

While we have defined the probability of a rating
response greater than some value (R > r), the
probabilities of specific responses (R = r) can be deflned
either by selecting the appropriate limits of integration
in Eq. 4a or simply as

whose expected values equal Vij (0 or 1), and which each
have variance a. Thus, it follows that

where gj(Y) is a Gaussian density function on y with
. parameters E(y I (A}j) and Var(y I (A}j) (Eqs. 1 and 2).

The probability of a confidence rating greater than r,
given simply the number of targets in the array,
P(R > r I t), must be defined somewhat differently, since
the distribution of y in this case is not necessarily
Gaussian (y is a mixture rather than a convolution of the
various Gaussian distributions evoked by the different
(A}j). However, an expression for P(R > r I t) can be
written as a function of P(R > r I Aj) and the
probabilities of each ordered array, P«A}j):

(III) The confidence response, R, will have a value
greater than r if y exceeds a "judgmental criterion," ~r,

whose value is a positive monotone function of r for r =
1,2, or 3.

Note that although the .expected values of Si are
conditional on the values of eil there is some "noise" or
variability in the similarity coding, denoted by a. It is
this "perceptual noise" which limits the Os' ability to
discriminate between A, and Ao arrays.

This model differs from the one presented in Kinchla
(1969, 1974) in an assumption of a weighted cumulative
coding; an unweighted integration rule was employed in
the earlier model. The more general assumption that an
o may "weight" one part of an array more than another
in determining his response is one way of introducing an
"attentional" mechanism into the perceptual process. It
is similar to the "weighted information integration"
rules considered in Anderson (1968). It will be shown
that certain aspects of an O's performance are relatively
independent of this weighting assumption, whereas other
are not.

Properties of the Model
The following derivations are facilitated by letting the

expected value of 8;., given ei, E(Si I ei), equal Vi (0 or 1).
This simply represents a convenient choice of origin and
unit for 8;, and does not determine any testable
properties of the model. Furthermore, since many
properties of the model have been derived elsewhere
(e.g., Kinchla, 1969, 1974), only those derivations
unique to the weighted cumulative coding assumption
will be developed in detail here.

First of all, it will be useful to consider the
distribution of y, given an ordered array (A}j which will
be denoted gj(y), for j = 1, 2, ••• (~). Since y is the sum
of n Gaussian random variables
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• ~1
P(R :: riO, Theoretical P(R :: r It) Based on the Equal Weighting Model in Parentheses, and Parameter Estimates for Each Observer

o S.A. o M.R.

2 3 4 2 3 4

.65 .24 .07 .04 .42 .31 .18 .09
(.63) (.30) (.06) (.01) (.34) (.31) (.27) (.08)

.32 .50 .14 .04 .08 .21 .45 .26
(.37) (.41) (.20) (.02) (.18) (.27) (.36) (.19)

.18 .43 .33 .06 .07 .16 .42 .36
(.16) (.39) (.36) (.09) (.08) (.19) (.38) (.35)

.05 .26 .50 .20 .04 .11 .35 .51
(.05) (.25) (.46) (.24) (.03) (.10) (.33) (.54)

.02 .09 .38 .51 .02 .10 .28 .61
(.01) (.11) (.40) (.48) (.01) (.04) (.22) (.73)

0.56 0.97
0.13 -0.20
0.55 0.20
1.03 0.69

o

2

3

4

o R.Y.

r= 1 2 3 4

.45 .26 .16 .13
(.44) (.27) (.24) (.05)

.24 .24 .31 .21
(.22) (.25) (.38) (.15)

.07 .18 .38 .37
(.09) (.16) (.42) (.33)

.02 .09 .38 .51
(.03) (.07) (.34) (.56)

.01 .03 .32 .65
(.01) (.Q2) (.20) (.77)

0.67
0.06
0.23
0.70

P(R = 1) = 1 - P(R > 1)

P(R =2) =P(R > 1) - P(R > 2)

P(R =3) =P(R > 2) - P(R > 3)

P(R =4) =P(R > 3).

(5a)

(5b)

(5c)

(5d)

THE EXPERIMENT

Three Os evaluated four-letter (2 by 2) arrays for the
presence of a target letter, F. Of principle interest was
how the number of target letters in each array, t equal to
0, 1, 2, 3, or 4, would influence their confidence rating,
R.

In general, then, in order to calculate specific response
probabilities, it is necessary to specify at least n + 1
theoretical parameters: the "coding noise," a, a
"judgmental criterion," 13r, and any n - 1 of the n
"weighting parameters," Wi (since ~Wi = 1). It will be
useful to consider a simpler form of this general model
in which each Wi is assumed to be equal; i.e., Wi = lin
for k = 1, 2, "', n. This will be referred to as the "equal
weighting model" and has only the theoretical
parameters, a and 13r. In this special case, the Gaussian
distributions of y values evoked by each (A)j are
identical, with parameters (by Eq. 1)

E(y I W j ) = ~WiVij

= (1/n)~vij

= tl«

and (by Eq. 2)

Var(y I W j ) = a~wi2
i

=aln,

for j = 1, 2, •.• (~ ).

(6)

(7)

Method
Apparatus and Procedure. The stimuli were presented on a

rapid-decay cathode ray tube (CRT) driven by a DEC PDP-12
computer. Each letter was defined by a specific subset of a 4 by
6 array of points, as is conventional on computers of this type.
The luminance characteristics of each letter were basically the
same as those described in Shiffrin and Gardner (1972). Each 0
was seated in a darkened acoustical testing chamber and viewed
the' CRT from about 20 in. Each trial began with a l-sec
illumination of a fixation point in the center of the CRT,
followed by a 12-msec illumination of the four-letter array,
followed by a 2-sec illumination of a masking field. This masking
field consisted of the full 4 by 6 point pattern from which each
letter was defined. The letters were positioned in the corners of
an imaginary square centered on the fixation point. Each letter
subtended .75 deg vertically, .5 deg horizontally, and was
centered about 1.2 deg from the fixation point. The 0 made one
of four pushbu tton responses while the masking field was on: R
equaled 1 ("lowest confidence target present"), 2, 3, or 4
("highest confidence"), with the 0 instructed to "try to use each
category about equally often." Eachtrial concluded with a .5-sec
"feedback" period during which the previously presented
four-letter array was reilluminated. This was followed by a dark
.5-sec intertrial period.

Each 0 was tested for 15 360-trial sessions, or a total of 5,400
trials (not counting 8 prior practice days).

Arrays in which t equaled 0, 1,2,3, or 4 occurred with equal
frequency in a randomly determined sequence within each block
of trials. The (t) target Fs were positioned at random within each
array along with (4-t) other nontarget letters chosen randomly
from the remaining consonants (excluding y).

The stimulus presentation schedule was chosen to provide
equal amounts of data at each t value. This meant that the
occurrence of a target in one position was not independent of it.,
occurrence at another on anyone trial, although targets diu
occur equally often at each position over an entire session. To



Fig. 1. Observed and predicted cumulative response
probabilities as a function of t for the equal weighting model,

Code
<A>j VI v2 v3 V4 o R.Y. OS.A. o M.H.

A 0000 .29 (.29) .11 (.05) .27 (.64)

B 0001 .32 (.34) .18 (.15) .66 (.70)
C 0010 .73 (.66) .15 (.18) .70 (.67)
D 0100 .38 (.39) .18 (.14) .74 (.74.)
E 1000 .65 (.69) .22 (.23) .77 (.77)

F 0011 .68 (.71) .36 (.39) .56 (.73)
G 0101 .46 (.44) .30 (.32) .81 (.79)
H 0110 .76 (.75) .38 (.37) .78 (.76)
I 1001 .81 (.74) .46 (.46) .82 (.82)
J 1010 .88 (.93) .50 (.50) .83 (.80)
K 1100 .87 (.77) .41 (.43) .84 (.85)

L 0111 .83 (.80) .62 (.61) .82 (.81)
M 1011 .92 (.95) .73 (.74) .84 (.84)
N 1101 .86 (.82) .66 (.68) .89 (.88)
0 1110 .95 (.96) .78 (.72) .86 (.86)
P 1111 .97 (.97) .89 (.89) .88 (.90)

Parameter Estimates
WI .43 .32 .42
w2 .11 .20 .30
w3 .40 .26 .09
w4 .06 .22 .19
Ct .41 .35 1.09
{J2 .23 .58 .39

estimates for each of the three Os. These are presented
in Table 2 and Fig. 2. Note that there is only one
ordering for t equal 0 or 1, four orderings for t equal 1
or 3, and six orderings for t equal 2. A chi-square
analysis indicated a statistically significant (p < .001)
variation in response tendencies as a function of target
location for all three Os. The data points in Fig. 2
indicate how variation in response tendencies within a
particular value of t was substantial for Os RY. and
S.A., and almost negligible for 0 M.H. except for one
point (Array F, which contained two targets in
thebottom row).

Theoretical Analysis and Discussion
We shall first interpret the data in terms of the equal

weighting model, since it is both simple and
representative of a class of models which depict the 0 as
being equally influenced by each element in an array.
The extent to which this model accounts for the
variation in P(R > r ] t) was evaluated by selecting those
values of a, ~1, ~2, and ~3 which minimized the
chi-square statistics based on the observed proportions in
Table 1 and those predicted by Eqs. 3,4,6, and 7. These
"theoretical" values of P(R > r I t) are presented
numerically in Table 1, along with the "optimal"
parameter estimates, and as solid curves in Fig. 1. While
there is a statistically significant (p < .01) residual
variance in each O's data, the model clearly accounts for
the major share of variation in each performance. All
three Os demonstrated similar levels of discriminability
(a was about the same for each) but somewhat different

Table 2
Observed Values of P(R > 2 I< A > j) for Each Observer

and Predicted Values in Parentheses

o
1

2

3

4
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1.0
08S. R.Y.

.8

.6
PIR> r )

.4

.2

0

OBS. SA
1.0

.8

.6
PIR > r)

.4

.2

0

OBS. M.H.
1.0

.8

.6
PI R>rl r

.4 16

• 2 •
.2 30

0
0 2 4

t

have obtained such "independence" would have required, for
example, P(vi =1) = .5 for all four positions on each trial, with t
then equal to 0 through 4, respectively, on .06, .25, .38, .25, and
.06 of the trials. Thus, virtually no data would be obtained for
the t equals 0 or 4 conditions (similar problems arise with other
schedules of this type). While the schedule we employed was
more satisfactory in this respect, it might be argued that the
preceding "independence" schedule would be even more likely
to induce an "additive" integration of information, i.e.,

Results
The proportions of each rating response given each

value of t, P(R= r I t), are presented numerically for
each 0, in Table 1 and as data points in Fig. 1, with each
proportion based on approximately 1,080 stimulus
presentations. A chi-square analysis indicated a
statistically significant (p < .001) effect of t for each 0,
with each proportion positively related to t.

Response tendencies as a function of where the t
targets were placed within the array were examined by
calculating the proportion of responsesin the two higher
confidence categories (R> 2) for each of the 16 ordered
arrays, i.e., P(R > 2 1(A)j) for each j at each value of t,
This particular partition of the rating responses was
chosen in order to obtain maximally stable probability



judgmental criteria (fir)' They all tended to use the
higher confidence responses more than the lower,
despite our instructions to "use them equally often."
This, of course, could be expected, since the "feedback"
they received after each trial clearly indicated that
"no-target" (Ao) arrays were seldom presented.

While the preceding analysis appears to support the
"equal weighting model," a different picture emerges if
one considers the data in Fig. 2. If each ordering of t
target and not nontargets was perceptually equivalent,
then P(R> 2 I (A}j) would be the same for each (A}j
containing t targets. Both the chi-square analysis cited
earlier and visual inspection of Fig. 2 indicates that there
was considerable variation in response tendencies as a
function of target placement, particularly for Os R.Y.
and S.A.

The general model was fitted to the data presented in
Table 2 and Fig. 2 by selecting values of a, ~2, WI, W2,

and W3 (this implies W4 since ~Wi = 1), which
minimized the discrepancies (as measured by a
chi-square statistic) between peR > 2 IW j) and those
predicted by Eq.3. These parameter estimates along
with the predicted values ofP(R > 2 I t) are presented in
Table 2. The solid points in Fig. 2 (which are connected
within a particular t value) indicate the degree to which
the more general "unequal weighting" model accounts
for each O's performance. The model is most successful
with Os R.Y. and S.A., where it reduced the residual
variance about the predicted values by 80% and 30%,
respectively, compared to the predictions of the equally
weighted model; note that peR > 2 I (A}j) equals
PeR > 2 I t) for each (A}j in the equally weighted model.
Each of these Os appeared to "weight" the two elements
on the left of the array much more than the other
elements in determining their response (their values of
WI and W3 are much larger than W2 and W4 in Table 2).
The model did equally well .for 0 M.H. except for the
two discrepant values of peR > 2 I (A}j), which are
apparent in Fig. 2 (Arrays A and F). These correspond
to arrays which contained no targets (A), which she
seemed to be unusually accurate in classifying, and an
array containing only two targets in the bottom row (F).
However, her response tendencies, given other arrays
containing two targets in the bottom row (L, M, and P),
are entirely consistent with the model. Thus, given the
total pattern of data from all three Os, only the unsually
accurate classification of no-target (t = 0) arrays by
o M.H. seems worth noting. While it could represent a
meaningful departure from the theoretical perceptual
process, it could also be an idiosyncratic feature of one
O's performance, an 0 whose noise level (a) was
appreciably larger than that of the other two Os.

One implication of our analysis is that statistics such
as P(R> r I t) plotted in Fig. 1 are relatively insensitive
to the effects of differential "weighting"; the values of
P(R> 2 I t) predicted by the unequal weighting model
[these are available from Table 2 as the average
peR > 2 I (A}j) for each t] do not provide a significantly
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Fig. 2. :'Weighting" analysis for two Os. Points and lines
indicate P(p > 2) and P(R > 2), respectively. Letter codes
identify configurations of target (1) and nontarget (0) letters, as
indicated on the right.

better fit to the observed values ofP(R > 21 t) (the data
points in Fig. 1) than does the equal weighting model; in
fact, they are virtually identical. Thus, some caution
should be observed in evaluating data where
performance is solely dependent on the number of
targets in the array. Only an analysiswhich considers an
O's responses to particular arrangements of target and
nontargets would be sensitive to the effects evident in
Fig. 2, effects which seem to require something like the
model proposed here, in which Os differentially
"weight" the information obtained from various
elements in the array.

CONCLUSION

The major implication of our analysis is that the
simple model we have employed provides a reasonable
interpretation of confidence rating data in this sort of
letter-detection task. Our assumption of a "weighted
integration" rule,

is one way of interpreting the variation in an O's



122 KINCHLAAND COLLYER

response tendencies produced by the positioning of
targets in the array. There are, of course, a number of
alternative possibilities one could explore. The Os may
have obtained more information from one part of the
array than the other; e.g., the "noise" parameter might
not have been equal for each Si' Positional variations in
sensitivity or acuity could be produced by biased
orientation, nonhomogeneity in retinal structure (see
Estes & Wolford, 1971), or by "attentional" mechanisms
at the level of elementary coding (such as those
suggested by the 8 i parameters in Rumelhart's 1970
model). The analysis presented here is not intended as a
test of such alternatives, merely a demonstration of one
theoretical approach. A distinction between variations in
the amount of sensory information obtained from
various parts of an array, as opposed to differentially
weighting ("paying more or less attention to") the
information from each part, requires explicit models of
each process. The present model is an attempt to
characterize a differential weighting process.

It seems particularly significant that one could view
our experiment as a factorial design with the value of
each element defining a factor; i.e., we evaluated an O's
response tendencies, given each combination of these
four factors (each combination of Vi, v-i, V3, and V4).

Characterized in this way, our analysis is an example of
"conjoint" (Krantz, Luce, Suppes, & Tversky, 1971) or
"functional" (Anderson, 1968) measurement: we
essentially asked if a specific transformation of the
response probabilities (the value of a normal deviate
exceeded with that probability) would demonstrate an
additive effect of the four stimulus factors. This follows
from the assumption that the response is an "additive"
function of four Gaussian random variables,

y == ~WiSi'
i

While a complete development of this point is beyond
the scope of the present paper, it is mentioned here to
indicate the rather general nature of our analysis. In fact,
most "signal detection" or "Thurstonian" models lead
to analyses of this sort, although this is not generally
recognized; e.g., "ROC" plots are a way of
demonstrating the "additivity" of "signal intensity" and
"instructional" ("response biasing") factors. An
excellent discussion of this issue is presented in
Anderson (1972).
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