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The timing patterns of figural reversals were measured, using a stimulus figure usually seen in one of
two well-defined forms. The figure was a three-dimensional surface formed by denting a flat piece of
Plasticene with a table tennis ball. The surface thus formed could be seen as dented or as bubbly.
Transitions between the two forms were clear and abrupt and could not be voluntarily controlled by
even a practiced O. The timing distributions of reversals, for four Os who worked for five sessions of
36 min each, were found to be incompatible with theories based on satiation-like effects; neither did
they conform with a simple random-walk model, A random-walk model based on a finite majority
decision device with memory was found to describe the data better than either. Data from 20 90-min
observation periods for each of two Os were analyzed in detail according to this model, and it was found
that the gross behavioral changes that sometimes occurred from period to period could usually be
accounted for by a change of exactly one unit in one or another of the three parameters of the majority
detector. The mathematical description of the model is given in a separate appendix to the paper.

The phenomenon of the reversing figure has had a
long history (e.g., Boring, 1942). The Necker cube and
Schroeder staircase have found their way into almost
every introductory psychology text. In spite of the
familiarity of reversing figures, the mechanism
underlying such figural reversals is not clear. Often the
reversal is described as due to some form of fatigue in
which the “strength” of the perception of one form
declines over time, permitting a possible alternative form
to emerge and replace the declining percept. After a
while, this alternate also fatigues, and the newly
recovered - original percept is able to replace it.
Repetitions of this alternation of satiation and recovery
lead to the continuing sequence of figural reversals. We
use the terms “satiation’ and “fatigue” interchangeably
without intending any explicit physiological connotation
for either term. A comprehensive statement of this type
of theory is given by Orbach et al (1963).

In an experiment studying the time pattern of changes
in ambiguous figure perception in several modes, Taylor
and Henning (1963a) found that the classical Necker
cube, as well as all the other tested figures, give rise not
to two different perceptual forms, but to many. The
conclusion drawn from these results was that the
articulation of the figure permitted many different
possibilities and that over time various percepts would
emerge unless they had been suppressed by prior
suggestion. Taylor and Henning (1963b) had previously
found suggestion to be effective in altering the range of
forms perceived in the verbal transformation effect, and
in the case of the Necker cube, the suggestion to which
psychology students are exposed in their training is quite
probably enough to restrict them to perception of only
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the two cube orientations. In the absence of such
suggestion, one of the naive Ss used by Taylor and
Henning (1963a) saw 22 different forms of the Necker
cube in 10 min, and some other Ss saw nearly as many.
Ammons etal (1959) had previously noted the
possibility of many forms in the Necker cube figure.

Inspection of the orders of report for the different
forms suggested that alterations in the percept were
unlikely to be due to a fatigue-like process. If fatigue
were responsible for the elimination of a percept, then
that percept should not recur until all the other forms
which had thus far been perceived had had another turn.
If, for instance, three different forms were in the
repertoire, they should usually be seen in cyclic order,
thus: ABCABCABC ... The A form would still be
“fatigued” when the B form had satiated below the level
at which C should be seen. In fact, the changes in
percept were more commonly in pairs:
ABABCBCBCACA ... Furthermore, as new forms
entered the repertoire, the earlier forms (which
presumably were originally easier to perceive) neither
dropped out nor retained their original prominance.
They might recur in their turn, participating usually in
pairwise alternations with other forms in the repertoire.
The coarseness ‘of timing and the difficulty - of
identifying all the forms reported by the Ss precluded
formal analysis of these data, but provided the impetus
for the present study.

Considerable time was spent searching for some figure
which would give rise to three, and only three, different
percepts. Such a figure could permit a direct test of the
ratio of alternations to cycles in the order of report. No
such figure was found, since all figures that secemed to
lead to three percepts led also to further forms. We did
find forms that seemed to lead to only two alternatives,
other changes being only rarely seen. With such
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Fig. 1, Hypothetical switching rate (a) and mortality curve (b)
for a fatigue model (solid curves) and for typical measurements
(dashed curves) of the reversing figure effect. The upper curves
(a) show the switching rate,.ie., the probability of a switch
occurring in a given small time interval, as a functionof time
since the last reversal of the percept. The lower curves (b) show
on a.log scale the probability that no reversal has yet occurred as
a function of time since the last switch, These are mortality
curves, and the rate curves give their slopes, which for the fatigue
models, must be always increasing as a function of time but
when measured experimentally are not.

two-phase figures, we could not investigate the fatigue
effect through the order in which forms were seen, but
the timing of changes offered another avenue of
approach.

Timing of Perceptual Alternations

The ordinary form of the fatigue hypothesis of figural
alternation is that each possible percept has a “figural
strength” that changes over time. The figural strength of
the currently overt percept decreases, while that of any
alternate possibilities increases. When the figural strength
of a covert percept exceeds that of the current percept
by a sufficient amount, then the covert percept becomes
current, and the current one becomes covert. The figural
strength of the newly current percept then begins to
decline, and that of the old one, now covert, begins to
increase. The statistics of the reversal timings depend on
the consistency of the rates of increase and decrease in
the figural strengths of the percepts.

Consider first the case in which the figural strength of
the overt percept declines exponentially towards zero,
while that of the suppressed percept rises exponentially
toward some asymptotic value related to the accuracy
with which the stimulation represents that percept.
After the first reversal, subsequent reversals should occur
at precisely predictable instants. The duration of a phase
would depend only on the relative rates of increase and

decrease of the two figural strengths and on the value of
the threshold difference required between the two
strengths before a reversal occurred.

Real reversals are not predictable. They are
stochastically determined. If a fatigue model is to be
viable, some uncertainty must be introduced into it. This
can be done in at least two ways. One is to assume that
the rate of fatigue is variable, as is the rate of recovery
from fatigue. The second is to assume that while the
fatigue and recovery rates are fixed, the reversal occurs
only with a given probability if the covert percept’s
figural strength exceeds that of the current percept by a
given amount. Of course, both forms of uncertainty may
be wedded in a single fatigue model.

A useful way of visualizing the actual behavior of the
switching process is to plot the probability of a change
in the next At (the switching rate) as a function of time
since the last switch. This function, which we call the
“switching rate function,” but which is sometimes
known as the “hazard function” among other names, is
defined as (dF/dt)[1/(1 —F)], where F is the
probability that a reversal occurs before time t.
According to either manner of introducing uncertainty
into the fatigue model, the switching rate function rises
with increasing t, as in Fig. la. Depending on the
parameters of the fatigue process, the rate function may
have an ever increasing slope or a slope which increases
and then decreases with time; but regardless of the
behavior of its slope, the overall switching rate must
increase with time since the last switch.

A second function, known as a “mortality curve” is
directly related to the switching rate function, and can
be obtained directly from experimental data. If F is the
probability that a reversal occurs before time t, as
before, then the mortality curve is given by plotting
log (1 — F) against t. The switching rate function is the
negative of the slope of the mortality curve.
Accordingly, for any fatigue model of the types
considered here, the mortality curve must have an ever
increasing downward slope, like the solid curve in
Fig. 1b.

This line of reasoning has been followed by Martin
(1967, 1971), who has reported data that look like the
dashed curves in Figs. la and 1b. These results are
incompatible with fatigue theories. Borsellino et al
(1972), on the other hand, have found by trial and error
that a two-parameter gamma distribution often provides
a reasonable fit to the reversal periods of a Necker cube.
Fox and his associates (Fox & Herrmann, 1967; Blake,
Fox, & McIntyre, 1971) have shown similar statistics to
govern the alternations of binocular rivalry. In the
present experiment, we report further data which, like
Martin’s, seem to be incompatible with fatigue models of
figural reversal.

METHOD

A figure usually seen in one of only two forms was



Fig. 2. A photograph of a surface of the
kind used in the experiment.

constructed by flattening a sheet of gray Plasticene and -

randomly denting it with a table tennis ball, making so many
dents that none of the original flat surface remained. A
photograph of such a surface is shown in Fig. 2. The surface
appears either bubbly or dented over the whole region. Very
rarely does part appear bubbly and part dented. As is common
with such figures, the direction of lighting affects the initial
percept, but at least with the Plasticene it does not seem to
affect the reversals between dented and bubbly forms. The
changes can be seen almost as easily when looking at the actual
Plasticene sheet as when looking at a photograph. The stimulus
figure has the further advantage that the reversals seem to be
very resistant to voluntary techniques of induction. After a
minute or two of observation, Os accustomed to being able to
reverse other ambiguous figures almost at will found themselves
unable to influence the reversals of the bubbles and dents, even
by the use of various tricks, such as blinking, fixation shifts, or
the interposition of other objects.

In the first experiment, the Plasticene sheet was viewed
directly and binocularly by the O through a hole in top of a box
about 18 in. deep. An 8-in.-diam circular aperture in a mask just
above the Plasticene defined the field of view. A hidden
horizontal 40-W Lumiline light illuminated the surface of the
Plasticene from the side below the mask, avoiding the bias
toward bubbles or dents which might be anticipated from top or
bottom lighting. Even so, almost all Os saw the bubble form
when first shown the display. This was unexpected, since the
actual three-dimensional dented surface, not a flat photograph,
was being observed. Apart from the flluminated surface of the
Plasticene, the room was darkened. No fixation point was used,
and the Os were encouraged to allow their viewpoint to rove
over the surface. Blinking was uncontrolled and unrecorded.

The O held a microswitch comfortably in one hand. She was
to press the switch when she was seeing dents and to release it
when she was seeing bubbles. The timings were recorded on
paper tape, which was continuously being punched at
10 characters/sec. The initial percept of “bubble” was real, and
not an artifact due to the switch having been open when the
stimulus was first seen.

Four female Os observed for 36 min on each of 5 consecutive
days. For two Os, the viewing time consisted of 36 1-min
observation periods with 15-sec intermissions, while for the
other two, there were four 9-min observations with 3-min
intermissions. The Os were housewives in their 30s, paid for their
participation.
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RESULTS

The results were analyzed in two stages. In the first
stage, the simple statistics about rates of reversal and
numbers of reversals per minute were calculated in the
manner common for reversing figure studies. These data
exhibit certain features which are interesting in their
own right. In the second stage, the distributions of
timing intervals between reversals were examined and
compared with predictions from a model whose
properties were analyzed by KDA. The analysis is
described in Appendix A1 to this paper. We present first
an orthodox analysis of the data, followed by a brief
description of the model and some of the timing-interval
data fitted by the model.

First-Stage (Orthodox) Analysis

Figure 3 shows the number of transitions per minute
for each 9-min period for each of the four Os. Os M and
B were run for 9-min periods with 3-min breaks, while E
and K were run for 36-§ingle-minute periods with Y-min
breaks. For E and-K, therefore, the split into 9-min
periods is arbitrary and is done only for convenient
comparison with the data of M and B. One may regard E
and K as having practice “distributed” on the short time
scale of a few minutes, but “massed” on the scale of the
day’s run, whereas M and B have “massed” practice on
the 9-min time scale but “distributed” practice over the
day.

The four Os show characteristic differences. K showed
no reversals whatever until the 18th minute of the 2nd
day, but thereafter rapidly increased the reversal rate
block by block until the 4th day. In the Sth day, she
started rapidly and slowed as the day proceeded. E, on
the other hand, began from the middle of the 2nd day to
slow down during the day’s run, while increasing her
overall rate from day to day. It seems likely, though not



Fig. 3. The number of figural reversals per
minute for each 9-min period of the

experiment for each 0. M and B were run in
9 min blocks with 3-min rests, E and K in
1 min blocks with ¥%-min rests.
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statistically defensible from these data, that Os on a
semicontinuous schedule like the one given E and K
would show a decline in switching rate during a run,
followed by an increase after a break. This kind of
effect, common in verbal learning studies when massed
practice is compared with distributed, was found by
Mountjoy (1961) for the size of a repeatedly tested
Mueller-Lyer illusion. Ammons etal (1959) have
explicitly used a Hullian learning model to describe
Necker cube reversal effects, and have predicted similar
differences between massed and distributed practice.
Experimentally, they found a slight decline in reversal
rate during the last half of a single 15-min observation
period.
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Os M and B, who were given continuous 9-min runs
with a break between observation periods, show rises in
the transition rate from block to block during each day.
M shows rate increases from day to day, while B shows
little or no overall change in rate.

The minute-by-minute rates for the first 9 min of each
day are shown in Fig. 4. For Os M and B, the data for
each of the four 9-min blocks within a day were
sufficiently similar to permit averaging, and these
averaged minute-by-minute rates are also shown. These
data show more clearly than the overall block averages
the different effects of massing as against distributing
practice. For O M, in particular, massing leads to a steep
decline in rate over the progress of the block, except on
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Fig. 4. Minute-by-minute fluctuation

rates for the first 9 min of each day, and for
_l the averaged 9-min block in the case of M
and B.
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the 1st day. For E and K, however, the relatively more
distributed observation intervals retard the onset of the
rate decline evident in Fig. 3 beyond the end of the first
block. O B again shows little effect after the 1st day, and
the small effect she does show is opposed to the strong
effects shown by M. Hence, it is again improper to
generalize too far from these data; the individual Os are
too different.

Transition Timing Results

We now consider transitions from the bubble form to
the dent form separately from the dent to bubble
transitions. The Os were less idiosyncratic in these
aspects of their data, which form the primary reason for
this study. As primary data, we report the probability
that a percept of bubble lasts longer than T sec, and the
corresponding probability for a percept of dent. The
percentage of percepts that had not switched to the
other form by T sec in plotted on a logarithmic scale as a
function of T. These “mortality curves,” averaged over
all runs, are plotted for each O in Fig. 5. The log scale
for the mortality permits interpretation of the negative
of the slope as the rate at which switching occurs, since a
constant distance down the ordinate represents a
constant proportion of the percepts that had not
switched at the beginning of the interval being scanned.
For example, it is possible, using these curves, to
determine the rate at which the percept of bubble is
switching for O M at such a time that only 25% of the
original percepts are left. The rate is approximately 10%
(of the remaining percepts) per % sec. We have chosen a
Y sec as an arbitrary but convenient time unit for these

TIME SINCE SWITCH INTO PHASE (SEC)

rate analyses, and use it consistently in the present
paper. Note that we ar¢ measuring a slope, so that the
actual time unit is irrelevant except as a scale factor. The
actual dimensionality of the slope measures is sec™1,
and a switching rate of 10% per % sec can be read as
40 sec™1,

The rate of switching derived from the mortality
curves is shown in Fig. 6 for each O as a function of the
proportion of initial percepts remaining unswitched.
Note that in Fig. 6, time is not the abscissa, and hence
Fig. 6 is a version of the switching rate function
compressed nonlinearly horizontally. The rate is
uniformly low for the first 5% of switches. This period
represents the latency evident in the morality curves.
According to the response data, an O tends to maintain
his percepts for at least % sec. This latency may be real,
or it may possibly represent a responsc lag indicating
inability to release and press the switch faster. In either
case, the rate thereafter increases to a level which
remains steady or may even decrease for the longer
switching intervals.

We did not test for interinterval sequential
correlations. Both Martin (1971) and Borsellino et al
(1972) have sought and failed to find such correlations,
and it is fairly safe to assume that they are absent in the
present experiment as well.

The slope provides the critical test of fatigue-like
theories of figural reversal, including the Ammons ct al
(1959) learning model in which reactive inhibition takes
the place of fatigue. Differential fatigue theories
must predict that the rate functions should increase
monotonically. They should never show a region in
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mortality curves of Fig. 5. The rates have
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which the rate decreases as the time since a switch
increases. Satiation or fatigue must increase with time,
and increasing fatigue means increasing probability that
the current percept will be replaced by its competitor.
The data presented here are not compatible with any
obvious model that incorporates fatigue or satiation as a
major component. Martin (1967, 1971) came to the
same conclusion. We show later that fatigue can be
incorporated in a viable model, but not in a way that
attributes the reversals directly to the fatigue of the
form currently perceived.

The daily learning data can be reanalyzed from the
viewpoint of the rate functions. The average switching
rate was determined from the rate function for each
separate 9-min block of data, ignoring the first and last
points of the individual rate functions. These averaged
rates are shown separately for bubbles and for dents in

Fig. 7, which shows a very strange phenomenon for
which we have no ready explanation. Most of the
changes in switching rates seem to occur in the dent
phase, while the bubble phase rate does not change
much from day to day. Between blocks within a day, the
bubble phase for Os M and E does show small rate
changes that parallel the changes in their overall
transition rates (Fig. 3). But the divergence between the
two phases is much more dramatic; the rate at which the
dent percept changes to the bubble phase increases over
days, strongly so for E, M, and K. Note that switching
rate is related to, but is not identical with the transition
rates measured in the orthodox analysis.

The differences between the rates for the two phases
are more clearly shown in Fig. 8, in which the daily
average rates are shown for the four Os together, the
bubble phase in the first panel, the dent phase in the
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- average was determined by discarding the
1 first and last 5% interval of switches and
- averaging the rate for the middle 90%. The
number of switches per minute cannot be
recovered from these data, since the latency
interval, if any, is ignored. Bubbles are solid
lines, dents are dotted.




PATTERNS OF FIGURE REVERSAL 15
X
sor SUBJECTS T 7]
2 € Xeewene o
S 90— M o—o + N
“ K m—a
-1 30| B o~—oe 1 ]
&
Fig. 8. Daily average switching rates for °
the four Os shown together, to indicate the ¥ | 4 N
lawful relationships among them and the ¥
remarkable equality over both Os and days z
in the switching rate out of the bubble e
phase. g ok i i
j
z
o
z 3 T n
o
E
BUBBLES DENTS
oLt I ! | i I | ! I |
] 2 3 4 5 i 2 3 4 5

second. A remarkable feature is the equality of the
bubble rates across the four Os and over days. Even O K,
who showed no reversals in the first day and a half,
attained the same bubble rate from her very first block
of changes. The increase in dent rates is clear, as is its
lawful nature. We were later unable to repeat this facet
of the results using a television display instead of the
direct observation of the Plasticene, and cannot offer
any further suggestions. Other aspects of the data were
replicable with the TV display.

A STOCHASTIC MODEL

At first sight, the data seem to be reasonably well in
agreement with a purely random process, in which, after
a short latency period, a switch is as likely to happen at
any one moment as at any other. Martin (1967, 1971)
used such a (pseudo-Poisson) model. If the latency
period is itself somewhat variable, the characteristic
mortality curve would consist of an initial flat portion
curving smoothly into a linear tail. For several cases,
however, the fit is rather bad. Furthermore, this model
carries no indication of what significance might be
attached to the consistent difference between the rate
data of the two phases.

A related model that seems to have some heuristic and
descriptive value was suggested by analogy with
-Selfridge’s Pandemonium (Selfridge, 1959).
Pandemonium is a device containing many “demons,”
each of which has the job of identifying a specific input
pattern. They all shout, and the one that shouts loudest
at any moment wins. The Pandemonium-decision device
decides that the pattern is the one claimed by the
loudest demon. In our version, each demon may choose
either of two patterns, bubbles or dents. This is
something of a perversion of Pandemonium, since
Selfridge’s demons are restricted to one decision, which
they make with more or less fervour. Our demons are
equally authoritative whichever decision they make, but
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can freely and instantaneously switch from one state to
the other. The overall decision of the pattern-recognition
device depends on which decision it has recently been
making, so that it tends to be conservative. More demons
are needed to change a decision than are needed
subsequently to maintain it.

To change the metaphor, we label the demons as
“cells,” without presuming them to reflect individual
neural cells, although we believe them to correspond to
neural feature detectors at some hierarchic level. The
decision device contains r cells, N, of them in Statea
and Ny, = r — N, of them in State b. The whole device is
said to be in State N,, defined by the number of cells in
State a. Each cell switches states according to a Poisson
process with Rate k, so that the probability that it has
not switched state by time t is given by e~¥*, The device
output is defined by two boundaries. If N, (the number
of cells in State a, or the device’s state number) is less
than or equal to the lower boundary, n, then the device
output is B. If the state number, N, is greater than or
equal to the upper boundary, n + m, the device output is
A. If the state number lies between the two boundaries,
in a “hysteresis zone” of width m, then the device
output remains whatever it last was. As an example, the
operation of such .a device, with r =20 cells, a lowgr
boundary n = 10, and a hysteresis zone with m = 2 is
shown in Fig. 9. As time progresses, the output, which
was initially in State A, switches to State B when N,
declines to 10, reverts to State A when its state number
increases to 12, and so forth. The times it is in State A
are denoted by t,, and similarly tg denotes the times it
is in State B. Only the overt output of “State A” or
“State B” for the whole device is accessible to the
perceiver.

Certain properties of the model are apparent from
inspection. It will exhibit latency in changing its
decision, because of the hysteresis zone. If the hysteresis
zone is not central, then the distributions of durations of
the two states will not be the same. In the example
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20
r =20
n =10
A m=?2 Fig. 9. A possible sequence of states in a
15 20-cell decision device with two possible

state

time

given, transitions out of State A will be more likely to
occur quickly than will transitions out of State B, since
it takes 12 cells in the a state to force an “A” decision,
whereas 10 cells suffice for the “B” decision.

Calculating the actual distributions of times that the
decision stays “A” or “B” is complicated. An analysis
was derived by KDA and is the subject of Appendix Al
of this paper. Using this analysis, the distributions were

output states, “A” and “B.” If the number
of cells reporting “A” is 12 or greater, the
device decides “A.” If it is 10 or less, the
device decides “B.” And if it is exactly 11,
the decision remains whatever it had been.
This device is said to have a lower boundary
at 10, an upper boundary at 12, and a
hysteresis zone width of 2. In the figure, the
periods for which the device decides “A™
are denoted t, and for “B,” tg.

determined for a wide range of values of r, n, and m,
which are the parameters that determine the shapes of
the mortality curves. The cell switching rate, k,
determines their time scale. The effects on the mortality
curves and derived rate functions of varying n and m are
shown for a 20-cell device in Fig. 10. The upper panels
show the mortality curves, the lower the rate functions.
Within each panel, a curve for bubbles is paired with a
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. Fig. 10. Mortality curves (upper panels) and rate functions (lower panels) for decision devices with 20 cells (r = 20) and
different positions of the hysteresis zone (n is the lower bound and m the width of the hysteresis zone.) For each device size,
one set of boundary parameters is as close to symmetrical as possible, and the others deviate from symmetry to show how the
differences in the rates for the two phases may be accounted for. Time has been normalized to the unit of cell switching rate
(k). The panels have different values of the hysteresis zone, 1 unit for the left pair, 4 units in the middle, and 7 units on the
right. The different curves represent different degrees of symmetry, the solid lines being maximally symmetric, the dashed
being 1 unit down and the dot-dashed 2 units down from that position.



Fig. 11. Mortality curves from the

model fitted to each 9-min block of data
from O B. The parameters used in the fit
are shown in the panel. The parameters
are listed in order (r, n, m). Each panel
is 7% sec wide.
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corresponding one for dents. All the time scales have
been normalized in terms of k. Across the panels from
left to right, the curves are shown for increasing
hysteresis zone width, and within each panel the
parameter is the placement of the lower boundary, n,
with three values chosen so that the upper boundary is
(i) as close as possible to being symmetrically placed,
(ii) one unit, and (iii) two units below symmetry. The
divergence with departure from symmetry between the
bubble state and the dent state is clear in both the
mortality curves and the rate functions.

Notable features include the fact that the rate
functions decline monotonically when there is no
hysteresis (for m = 1). Quick switches are likely, and the
device shows no latency, since the first cell to switch
might return the device to the original state; but if the
first cell switch after a device decision change is such as
to confirm the new decision, then a longer period must

‘»\_;_bubbles . model

elapse before the decision can be reversed. Such an
effect is barely discernible with hysteresis zone widths of
m = 4 or greater. In _these cases, an initial latency is
followed by a period of almost constant, though always
decreasing, switching rate. For all values of m except
unity, the switching functions show an initial rise
followed by a long decline.

The variations in the mortality curves with r, m, and n
are quite wide. However, there exist families of values of
r, m, and n which give very similar mortality curves. In
fitting the experimental data, the smallest satisfactory
value of r was chosen to prescribe which member of the
family was fitted to the data. This selection was done by
a technique described in Appendix A2.

Curve fitting was a long procedure, involving
considerable computer time and some small exercise of
personal judgment in deciding which values of the
parameters to test. For this reason, the data from only
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Fig. 12. Mortality curves from the model fitted to data from O E.

two Os were fitted. These were B, who showed very
little variation over the 5 days of the experiment, and E,
who showed the largest day-to-day variation and the
largest divergence between the bubble phase and the
dent phase (Figs. 7 and 8). The fitted mortality curves
for each 9-min block of each day are shown for B in
Fig. 11 and for E in Fig. 12. The fitting parameters are
shown in each panel. Note that a single selection of
parameters must fit the mortality curves for the two
phases at once.

Most of the dual fits shown in Figs. 11 and 12 are
reasonably close. We have no statistical estimate of the
quality of the fits, because successive data points within
any one graph are not independent and we know of no
appropriate statistical technique. O B (Fig. 11) shows

more erratic deviations than does O E (Fig. 12), which is
somewhat surprising in view of B’s day-to-day stability.
For neither O are there any systematic types of error,
such as excess curvature, wrong tail shape, or excess
latency.

The interesting feature of the parameter values used
to fit the curves is their trial-to-trial and day-to-day
stability in the face of considerable variation in the gross
parameters of the mortality curves. These trial-to-trial
shifts in the parameter values are shown graphically in
Fig. 13. The abrupt changes in the mortality curves
derived from the raw data are accommodated in all cases
but one by a shift of no more than one unit in any
parameter, such as the positions of either or both of the
boundaries of the hysteresis zone or the total number of
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Fig. 13. Schematic depiction of the decision device parameter values used in fitting the mortality curves of Figs. 11 and 12.
The number of cells is shown by the outer boundaries, the hysteresis zone by the shaded portion. The rate parameter, k, is
shown below the appropriate device description. O B above, O E below. Notice the small size of the block-to-block changes in
the parameter values used to fit the appreciable behavioral changes shown by the mortality curves.

cells. The sole exception is the shift of 1% units in the
upper boundary for O E between the end of Day 4 and
the start of Day 5. The constancy of all the parameters
except k (the cell switching rate, which tends to increase
over time) is in marked contrast to the variability shown
by any direct representation of the data, and suggests
that the model may have more than mere face validity.
Its ability to accommodate marked shifts in behavior is
particularly well demonstrated in the abrupt change
shown by OB between the third and fourth run of
Day 4, where the previous discrepancy between the
bubble phase and the dent phase suddenly disappears.
This appreciable behavioral change is handled in the
model simply by moving the whole hysteresis zone up a
single unit.

This stability of the model parameters leads us to
believe that the model has more than mere “fitting”
validity. If some such model actually represents the
mechanism of the figural reversals, then we can say that
O B devotes exactly 26 feature detectors to the problem,
whereas O E devotes sometimes 32 and sometimes 33.

DISCUSSION

The data seem to contradict any theory which bases
the reversal pattern of these ambiguous figures on the
relative fatigue of two “figure processes.” Neither do we
observe the regular fluctuation of state probability
found by Kiinnapas.(1965), although it is possible that
mortality curves of our type, when convolved and
averaged, might predict his data. The data suggest that
once a figure begins its perceptual alterations, the
pattern of changes is governed by a stochastic process.
On the other hand, the data are not relevant to the
question of what happens during the initial latency
period. Fatigue or satiation may well play a role in
bringing the figure to a state in which reversals might
begin. I. P. Howard (1961) has studied this initial
process in detail, and his results strongly support the
hypothesis that satiation is implicated. Such an initial
fatigue process is entirely compatible with the stochastic
model, as we now discuss.
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Fig. 14. Patterns of fatigue or satiation,
(a) One form fatigues until its figural
strength is less than that of a second form.
The two forms alternate and fatigue

2 together until their common strength is less
than that of a third form, which then joins
in the perceptual fluctuations. (b) The same,
except that the strongest third form is
below the asymptotic level of figural
strength reached by the two alternating
forms.
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The model presented seems to be fairly satisfactory as
a description of the reversal behavior of a figure with
two well-defined and balanced phases. In nature, such
figures must be rare, although perceptual fluctuations
with prolonged observation of a simple stimulus array
are so common as to be almost ubiquitous. To be useful,
the model must be extended to the case of unbalanced
alternatives and to figures having many perceptual
possibilities.

According to the basic model used in this analysis, the
individual cells have a fixed apriori probability of
making either one decision or the other. The
computations assume this probability to be 0.5, which
would be the case for a perfectly balanced stimulus
pattern, If, however, for some stimulus pattern, it were
far from 0.5, the majority of cells would almost always
be on the same side of the decision boundary, and
fluctuations would hardly ever be observed. In
contradiction to this prediction, almost any articulated
figure does undergo frequent fluctuations of one kind or
another if it is observed long enough, Sakurabayashi
(1953) has found fluctuations of organization for many
varieties of line patterns, and the verbal transformation
effect (e.g., Warren, 1961, 1968; Taylor & Henning,
1963b) seems to occur for any repeating verbal pattern.
If the model is to accommodate these facts, then the
assumption of a fixed a priori probability for each
possible cell state must be dropped. Satiation may be
invoked to alter the individual cell probabilities over the
early phases of viewing.

Experiments in which the latency to the first reversal
was timed under many conditions seem clearly to
indicate the existence of something formally like the
postulated fatigue effect (I. P. Howard, 1961). This can
readily be brought into a more complete stochastic
model of the reversal process by suggesting that each cell
of the device is individually susceptible to fatigue,
satiation, retroactive inhibition, or what have you.
Initially, rather than being balanced between the two

alternatives, an individual cell now is assumed to give a
particular response with some probability greater than
that of any other response. As the cell fatigues, the
probability of that response declines, until it reaches
that of the next most likely interpretation. In this
statement, “probability” should be equated with what is
often called “figural strength.” At this point, the
situation is as described in the simple model, with
reversals for each celi determined by a random process,
possibly Poisson. Satiation, according to this view, does
not drive the figural reversals, but it permits them to

occur.
According to the cellular fatigue model, so long as a

single response is maintained by a cell, it fatigues, but
when the response is superseded, it recovers. However,
this recovery is presumed to be slow compared to the
usual time until its next reversal, and the two cellular
responses, now alternating stochastically, continue to
fatigue together until their common figural strength
reaches that of a third possible form, if one exists
(Fig. 14a). If the recovery rate is presumed to be
proportional to the depth of fatigue as compared to the
initial strength of the given form, then there will be a
fatigue level in which recovery of a response during an
“off” period compensates for the increased fatigue
during the “on” period, as shown in Fig. 14b. If such a
state of asymptotic fatigue occurs, then no third form
may arise, and alternations will remain restricted to two
forms. This analysis suggests that all stimulus
configurations should eventually lead to perceptual
fluctuations between at least two forms, but not all
should lead to a third form.

Generalization of the model to three or more possible
forms is conceptually easy but computationally very
difficult (other than by direct simulation, which is
expensive). The situation for three forms is depicted in
Fig. 15. If the number of celis in the three states,
denoted by the position of a point within the defining
triangle, is sufficiently biased to favor one form over the



Fig. 15. The random process model applied to a
situation with three possible forms. Number of cells
in each state is denoted by the distance of the point
from each side of the triangle. At anapex, all cellsare
in a single form state. (a) The device state crosses a
boundary and immediately crosses back to the initial
form, resulting in a quick perceptual aternation
between the two forms. (b) The state crosses a
boundary and then penetrates deeper into the new
region, both taking time and increasing the

probability that the next passage over a boundary B

will be into the third region. The hysteresis zone has
been ignored in both parts of the figure, though it
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(a)

remains part of the model for multiple forms.

other two, the device responds with that percept. As the
individual cells change state randomly among the three
possibilities, the point representing the state of the device
describes a random walk within the triangle. It will
eventually cross a decision boundary, and the device
output will change. A perceptual fluctation has
occurred. With hysteresis, the boundary is now
effectively moved so as to enlarge the newly entered
region, enforcing a short latency period before the next
fluctuation.

The multiphase model gives rise to some testable
predictions of overt behavior, even though the exact
computation cannot be done. The boundary most likely
to be crossed shortly after a change is the one that was
just crossed to make that change. It is the nearest
boundary (Fig. 152a). After a longer period, the random
walk has had a chance to migrate into other regions of
the second state (Fig. 15b), and the probability that the
next state will be different from the first one has
increased. Hence, we can predict that rapid pairwise
alternation will be the favored mode of fluctuation, and
that a shift from pairwise alternation to a form not
included in the pair should usually be preceded by a
relatively long period without a change. A fatigue
hypothesis would make the opposite prediction in
respect of the dominance of alternations as opposed to
third-form changes.

A reexamination of data from the study by Taylor
and Henning (1963a) is relevant to the first part of the
prediction. Considering only the Necker cube figure and
its analogue, the hexagon with all diagonals drawn, and
considering both binocular and monocular viewing
conditions, we examined all the changes which occurred
after the introduction of a third form and before the
fourth was reported. For the hexagon, repetitions of the
preceding form outnumbered changes to the other form
by 63 to 58, hardly a significant difference, but
contradictory to the fatigue prediction nevertheless. For
the Necker cube, however, repetitions dominated
changes to the third form 171 to 59. These numbers
support the stochastic process model and contradict the
fatigue class of theories. We do not have data which bear
on the latency part of the prediction for third-form
transitions as opposed to pairwise alternations.

Oyama (1961) reported that for a figure-ground
reversal, the rate of reversals was lower when one of the

possibilities predominated as figure. According to our
model, predominance of one aspect could be due to an
asymmetry in the position of the hysteresis zone. The
actual transition rate is determined both by the numbers
of cells in the various zones and by the cell switching
rate, so that the model does not predict explicitly any
relation between rate of reversal and asymmetry. If,
however, the individual cell switching rate (k, in the
model) were to be held constant, then less symmetric
hysteresis zones would lead to slower overall reversal
rates and greater dominance of one form. It follows that
if zone asymmetry is statistically not related to cell
switching rate, then there should be a negative
correlation between the asymmetries (i.e., dominances)
and the reversal rates reported by a population of Os.
Oyama’s report is in the form of just such a negative
correlation.

Borsellino et al (1972) fitted gamma distributions to
their reversal interval data. Fox and his associates (Fox
& Herrmann, 1967; Blake, Fox, & McIntyre, 1971) have
similarly treated the alternation periods in binocular
rivalry. There is some similarity between binocular
rivalry and the rivalry of ambiguous figures. In each case,
one of two alternative forms may be seen, and
perception of the one excludes perception of the other.
Blake et al (1971) demonstrated that binocular rivalry
must be a central phenomenon, as must be the reversals
of ambiguous figures. The gamma fits of both Borsellino
etal (1972) and Fox and associates have a common
feature which further suggests something in common
between the effects. All the fits displayed by both
groups show an exaggerated and often early peak
followed by a depressed tail when compared with the
best fit gamma distribution. These deviations are not
large enough to cause problems with statistical
significance on any one fit, but they are consistent
across the published fits. Tt is interesting further to note
that the interval distributions implied by the model
presented here deviate in just the same way from the
gamma distribution.

CONCLUSION
There are many possible alternative forms of random

process model that will have characteristics similar to the
one analyzed here. For example, the individual cell
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switches may not conform to a Poisson process, but may
be influenced by cell satiation of the kind discussed
above, which would tend to equalize the periods a single
cell spent in any one state. Unless this equalization were
fairly exact, the averaging process performed by the
decision device would make it difficult to distinguish the
resulting time sequences from those generated by a
purely random process. This effect is similar to that
which occurs when one generates a pseudorandom noise
by adding together many sinusoids. The resultant can be
told from a truly random noise only by careful analysis.

A related variation in the model derives the observed
asymmetry between the phases from asymmetry in the
individual cell probabilities rather than from shifts in the
position of the hysteresis zone. Satiation could result in
such an asymmetry, if one form had a greater inherent
“figural strength” than the other, since the recovery of a
cell from adaptation of the stronger form would be more
rapid than would its recovery from the other form.

The reintroduction of fatigue as a driving mechanism
for the individual cell changes does not alter the status
of the model as a stochastic model, since the randomness
derives from the timing relationships among changes in
the individual cells. It is this randomness that enables the
model to account for the various features of the reversals
observed. Only when the cells are correlated in their
actions do observable fatigue-like events occur. It seems
altogether likely that the individual cells are susceptible
to satiation, and that a majority decision device has
evolved which provides the perceived world with the
stability it might otherwise lack. Such devices fall fairly
into the mainstream of current pattern recognition
theory.

APPENDIX Al
by K. D. Aldridge

Some properties and definitions of a stochastic model
for the perception of reversing figures have been
discussed earlier in this paper. It is the purpose of this
section to obtain probability density functions for the
random variables t, and tg, the model’s counterparts of
percept durations.

We introduce some nomenclature for our subsequent
discussion of the random process. The time taken for the
process to go for the first time from State N, =n to
State Ny=n+m is a random variable called the
first-passage time. This time is characterized by a
so-called first-passage probability density function
written as f; p4m(t). If Ny =n and N, = n+ m are the
lower and upper bounds of the hysteresis zone, the
first-passage time characterized by f, n4m(t) is just tg,
the time spent in State B; similarly, the time tp is
characterized by fj,,m, n(t), where in both cases (0 < n
< r—1) and (1 < m < r — n). The dependence of the
density functions on the number of “cells,” r, and the
basic switching rate, k, is made implicit in the definition
of the functions in order to simplify notation. Each pair
of first-passage probability density functions requires

specification of the four parameters, n, m, r, and k. We
wish to determine the family of first-passage probability
density functions.

The starting point of the analysis is the observation
that the next to be occupied by the random process
depends on the state presently occupied. If the process is
in State N,, there are precisely r — N, cells which are in
the “b” condition and may therefore change so as to
increase the state to N, + 1, at an overall rate (r —- N, )k.
Similarly, there are N, cells which can change so as to
decrease the state to N, — 1 at an overall rate of Nk
(the overall rate for some change is the sum of these two
rates, rk, as it must be when r independent cells switch
at Rate k). Since from any State N,, both the rate of
increase to State N, + 1 and the rate of decrease to
State N, — 1 are independent of time, the random
process is Markovian, We shall make use of some of the
mathematical techniques that have been developed for
processes of this type.

For our continuous-time discrete-state process, it is
expedient to introduce the Laplace transform of the first
passage probability density function:

89

fﬁ,rﬁm(s) = j;) fn,n+m(t)e_5tdt,

where the r and k dependence is again implicit in
fT n+m(s). Since the switching rate for each of the r bits
is k for either the “‘a” condition or the “b” condition,
the first-passage time from State n to State n+m is equal
to the symmetrically equivalent first-passage time from
Stater — n to Stater—(n+m). By symmetry,
therefore,

fn,n+m(t) = fr——n,r—»(n+m )(t),

so that the definition (Eq. 1) may refer to either
member of a pair of first-passage probability density
functions, by writing the appropriate subscripts. In what
follows, we shall refer only to one member of this pair
of functions. -

Our procedure is to find an expression for fg'n,,m(s)
from the properties of the model and then invert this
transform to recover f, nym(t). It can be shown by
means of signal flow graphs (R. A. Howard, 1971) that
first-passage transforms which are consecutive in n are
related recursively:

fhne1(ks) [+ 1) = nff_y n(k)l =r—n.  (2)
(It is convenient to introduce the rate k into the
expressions in the transform domain at this point.)

Alternatively, this recursion in the transform domain
may be established by the following argument in the
time domain, The transition from State n to State n+l
will occur for the first time either directly through a
transition of a “b” cell to the ‘a” state or indirectly
through a change of one or more “a” cells followed by
compensating “b” cell changes. Hence, the mean first
passage time for the process to go from Staten to
State n + 1 is the sum of two components: (i) the mean
time for a “b” cell to switch, times the chance of this

9

occurring first, and (ii) the mean of the time for an “a



cell to switch, making the system go from State n to
Staten — 1 for the first time, followed by switches
leading from State n — 1 to State n and from State n to
State n + 1 the first time, times the chance of the initial
«3” gwitch occurring first. In symbols, this statement
becomes

E(tp,n+1) = E(tp) + E(tp * thp—1 0 +tn, n+1)

where t; j is the first passage time random variable from
State i to Statej, and t, is the random variable of the
time for any cell to switch, an exponential of Rate 1k.
The application of this argument to higher order
moments leads to the relationship

stp) r—

E(e—Stn.n+ 1) = E(e—

+E [e—s(tp"'tn—l nttn n+1 )] a

r

after appropriate multiplication by powers of s and

summation over both sides of each equation. Integration

and identification of the resulting Laplace transforms
leads to Eq. 2.2

The nonlinear recursion of Eq.2 is converted to a

linear form

(r — n)Up4q1(ks) — (s + )Up(ks) + nU,,_4(ks) =0
(3)
by defining

Up (ks)

fipei1(ks)=——— n=0,1,

Uner (k) “

o 1

Un(ks) is a function for which we must discover an
explicit form.

An explicit expression for Up(ks) is found by
transforming Eq.3 into a first-order differential
equation in U(Z), defining the geometric transformation

U(z)= 2 uzi,
i=0

where the s dependence has been made implicit in both
U= U](ks) and U(Z)= U(Zks) for simplicity of
notation. Although Uj; is meaningful only for j<r
because there are r states in this model, it is useful to
define U(Z) for all positive j and later retain only those
Uj for j < r in the resultant expression for U(Z).

It is readily shown by multiplying the recursion
(Eq. 3) by Z™ and summing over all positive integers n
that the required U(Z) is a solution to the equation

d - ~

—_ +P -

a7 U+PU=Q,
where

=[2% — (s+nNZ+1+11/2(Z% - 1)
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and
Q=(r+1)/Z(Z* - 1).

Separation of the variables f], Z, and successive

integration by parts allows us to write

2) = PN 2NN N SN Cht) N
1-Z (-2t (1-2)3 (r—1)
zx s(s+2) e [s+2(r - 1)]
+(1_Z)r+1 r(r-—l)"'3°2'1 +I’

where 1 is an indefinite integral having Z**?1 as its lowest
power of Z. Since we are concerned with only those U,
for which n <1, it is unnecessary to invert that part of
U(Z) corresponding to L. From the identity

Zi oo /n>
L - ) zn,
(1 _ Z) i+l nz_:i ( 1

the first r+ 1 terms of the geometric transform U(Z)
may be inverted by inspection to give
s(s+2)

k= (8] + (1) + ()

n\s(s+2)*[s+2(n-1)]
+<n) (r—1) - (r—n+1)

n i—1 :
=14+ 2 (n) HS+2% n<r,

=1\ j=0 T—1
where we have replaced the s variable explicitly in
Up(ks). Upy(ks) is the coefficient of Z™ in the expression
for U(Z). Direct substitution of the above expression for
Un(ks) into Eq. 3 confirms that Uy(ks) is a solution and

hence provides a solution for f;{‘_nﬂ(ks). This
verification is somewhat simplified by noting that

(i) =emie 0 () =i(3)

From Eq. 4, it is now possible to write directly an
expression for the Laplace transform of the first-passage

density function ff ni1(ks). We call £ ,,;(ks) the
one-step transform.

To obtain an expression for f;{"n;,m(ks), the m-step
transform, we reconsider the real-time random process.
Since the first-passage times between consecutive states
are independent random variables (the process must go
from Staten to Staten+ 1 for the first time before
going from State n+ 1 to State n+ 2 for the first time),
the first-passage density function for a sequence of m
states is the m-fold convolution of the consecutive
first-passage density functions. The transform of the
m-fold convolution is the product of the m consecutive
transforms so that

(5)

fg,n+m (ks) = f'xl;,n+1(ks) X f’rlx‘+1,n+2(ks) X

X f’111‘+m—1,n+m(ks)'
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From Eq. 4, this conveniently reduces to

Up(ks)

T (ks)= —————.
n,n+m Un+m(ks)

The m-step transform is, of course, undefined if n + m >
I.

We now consider the recovery of the function
fon+m(t) from the transform f',I,“n+m(ks). Since the
poles of this transform are located at the zeros of
Un+m(ks), it is necessary to examine the behavior of
Up+m (ks).

Properties of Uplks) for (0<n<r) are most
accessible from the recursion (Eq. 3). Since from Eq. 5,
Uo(ks) = 1, it follows directly from Eq. 3 that Uy(ks),
written as a function of (s+r)/r is an even or odd
function with n even or odd, respectively. From Eq. 5,
Upn(ks) > 0 for s > 0. Written as a function of (s + 1)/r,
Upn(ks) > 0 for (s +r)/r > 1; hence, there are no sign
changes in Uy(ks) for (s +1)/r < —1, because U,(ks) is
either even or odd. Therefore, all the zeros of Uy (ks) lie
in the interval (-2kr,0). Furthermore, all the zeros of
Un(ks) are real and distinct because the polynomials

Uy(ks), Uy (ks) ** Uy(ks)

form a Sturmian sequence in (—2kr,0) (Szegd, 1966).
Proof of this latter statement follows by showing from
the recursion (Eq. 3) that at a point s,, where U,(ks,) =
0

(1) Up—1(ksy) Upns1(ksg) < 0 and
(ii) U;l(kso) Upn—1(ksg)

o m

m=1T—m +1 Ufn—l(kso)
= > 0.

r

()

We now proceed to obtain the desired m-step
first-passage density functions by inverting its transform,
f',l;,m.m(ks). Since all the zeros of Uy (ks) are reat and
distinct, the function fI ;. (ks) will have only simple
poles at those (n + m) zeros of Uy (ks). If —si(s; > 0)
is the ith zero of Upem(ks), we may write by the
method of partial fractions

Un(ks) n+m W, . 5

Unsm(ks) =1 s+§ °

f;l;,n+m(k5) =

where
Si n+m S,‘ — Si
W; = Up(—ks; —_— S E—
i = Un( S’)/r—i+l ,.91 r—j+1
j#Fi
We may now invert the transform fg‘m.m(ks) by

inspection to give the first-passage density function for
tg

n+m

fanem(t) = 2 Wiks;e Esit,
i=1

Similarly, we may write the corresponding density
function for ty,

r—n

—ksX
f1‘—-—(n+m),r—n(t) = ‘21 Wi*ksi*e s‘t,
i=

with —s;" the ith zero of U,_p(ks) and the weights W;'
defined as above, with n and n+m replaced by
r — (n+ m)and r — n, respectively.

The density functions are related to the mortality
curves and rate functions used in the main test by the
relations:

t
Po(t) = P(interval exceeds to) = 1 — [, ° £(t) d(t).

d
Rate at t, = ~dt log P,(t).

The mortality curve is simply log P, (t).

APPENDIX A2
FITTING PROCEDURE

The solid heavy lines in Figs. 11 and 12 originate from
the stochastic model. The selection of pairs of
distributions from the three-parameter family (r,n,m)
was begun by calculating the first (smallest absolute
magnitude) zero, —s,, of each of the polynomials Uy (ks)
for 0 < p < r over the range r=15 to r=50. This first
zero gives the asymptotic slopes of any mortality curve.
A table of ratios spim/Sy—n for each r over all (n,m)
values then specified a unique index for every possible
pair of distributions. The corresponding ratios of
asymptotic slopes for each pair of experimental
distributions were then tabulated. Since there are simply
more theoretical ratios available as the number of cells,
r, grows larger, there is no unique number, r, of cells for

1 set of experimental ratios. However, we choose to

select the lowest value of r which will adequately
provide the necessary theoretical ratios through the
adjustment of (n,m) to cover almost all the observed
ratios. In some cases, a slight improvement in ratio
selection can be found by further adjusting the number
of cells by +1. Once the (r,n,m) selection has been made,
the rate, k, is automatically fixed by the actual
asymptotic slope of the experimental distributions. For
each O, a latency distribution was then chosen of the
form A?*te”At, A was fixed for each O over all the fits,
and represents the time actually taken in pushing the
button. A was always around 10 to 15sec1,
corresponding to a time constant of 70-100 msec. The
delay thus introduced is meaningful in terms of the
responding mechanism, but has little effect on the actual
distributions as fitted, since they have ‘“‘time constants”
of the order of seconds. Its main effect is a slight
interaction with the choise of the width of the hysteresis
zone. The value of A used for each O was determined by



the average residual delay in the mortality curves after
the completion of the slope-fitting procedure. The same
value was used for all fits for a given O. Note that the
implied delay is appreciably shorter than the commonly
measured ‘‘reaction time.” Reaction time presumably
includes some time to interpret the stimulus input and a
further time to generate the response following the
decision that a response is required. The parameter A
here represents only the response time portion of the
reaction time, and seems to be of a reasonable order of
magnitude.

The chosen sets (r,n,m) are certainly not unique. We
could always find a larger number of cells, for example,
and obtain a set of distributions very close to those
shown in Figs. 11 and 12. If, however, we chose to keep
n or m constant over all trials, very large changes in 1,
and hence in k, would be required between certain trials
in order to satisfy the changes in asymptotic rate ratios.
On the contrary, by keeping r relatively constant, we
have required only small changes in n and m from trial
to trial to satisfy the experimental distributions. Thus,
our algorithm does not provide a unique fit to
experimental data; rather, it demands only minimal
changes in the model parameters. Personal judgment
exists in the procedure but is kept to a minimum.
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NOTES

1. We thank a reviewer for pointing out that fatigue models
can indeed lead to gamma distributions of interreversal intervals,
Our original conception of the fatigue process had incorporated
only threshold uncertainty as responsible for the stochastic
nature of the reversal timing, and we had therefore regarded the
experimental findings of gamma-distributed reversal intervals as
evidence against fatigue models.

2. We are indebted to the same reviewer for suggesting this
conditioning argument to establish Eq. 2,
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