
Behavior Research Methods & Instrumentation
1982, Vol. 14(3),329-342

COMPUTER TECHNOLOGY

State notation of behavioral procedures

ARTHUR G. SNAPPER
Western Michigan University, Kalamazoo, Michigan 49008

RONALD M. KADDEN
University ofConnecticut SchoofofMedicine, Farmington, Connecticut 06032

and

GEOFFREY B. INGLIS
University ofRochesterSchoolofMedicine, Rochester, New York 14642

State notation has been increasingly utilized to describe and implement behavioral pro­
cedures since its adaptation for this purpose in 1970. The original version describes states
as unique segments of an experimental procedure, accompanied by specified stimulus con­
ditions. Transitions among states are triggered by inputs from the subject, or by the passage
of time, and may be the occasion for changing stimulus conditions, recording data, or per­
forming other operations. Extensive usage has suggested a number of possible improve­
ments, and the notation therefore has been expanded and modified. Revisions recently incor­
porated in state notation increase its power as a descriptive device for effectively com­
municating the procedural details of reinforcement contingencies.

The use of notation systems in behavioral psychology
has a long history. Skinner (1938) found it useful to
diagram the difference between operant and respondent
conditioning procedures, as did Keller and Schoenfeld
(1950), Skinner (1958) also reported on a diagrammatic
scheme that he found useful in generating new rein­
forcement schedules, and Findley (1962) devised dia­
grams for complex multioperant schedules, The most
extensive of the early notation systems was developed
by Mechner (1959), and state notation is an outgrowth
of Mechner's basic concept, but modified so as to
correspond to the notation used in other scientific
fields that study sequential processes (see Snapper,
Knapp, & Kushner, 1970, for a more complete discus­
sion of the history of state notation).

Although it may take some effort to learn to use a
notation system, the consistent use of precise notation
has several advantages. The major advantage is that a
diagram of the complex contingencies that are present
in most experiments can clarify the procedure for the
reader. For this reason, state notation has been used to

The authors wish to thank Alan Poling for his helpful com­
ments on an earlier version of this manuscript. This work
was supported in part by Research Scientist Development
Award MH-70483 from the National Institute of Mental Health,
to the senior author. The work of junior author was supported
in part by Grants ES-01885, ES-01247, and ES-01248 from
the National Institute of Environmental Health Sciences,
Grant DA-00623 from the National Institute on Drug Abuse,
Grant MH-11752 from the National Institute of Mental Health,
and, in part, by a contract with the U.S. Department of Energy
at the University of Rochester.

teach behavioral psychology to both undergraduate and
graduate students (Lyon & Michael, Note I). It also
has been used to help teachers to understand the com­
plex contingencies of the elementary school classroom
(Farris, Note 2). Furthermore, the descriptive clarity
of state notation makes it very useful for programming
experimental procedures on a digital computer (Snapper
& Kadden, 1973).

The use of precise notation has another function that
should be of great importance to scientific readers.
State notation can avoid misunderstandings resulting
from the imprecise descriptions of contingencies that are
often found in the procedure section of articles report­
ing behavioral experiments. This is because state nota­
tion makes explicit all sequential properties of reinforce­
ment schedules. An earlier paper (Snapper et aI., 1970)
reported that two different methods for programming
Sidman avoidance have been used by various experi­
menters, and there is still evidence in the literature that
these differences in procedure, which may have impor­
tant behavioral effects, have not been clearly identified
by all researchers who use the schedule.

Another example of the confusion that can occur
in procedure sections involves the random-interval (RI)
reinforcement schedule. RI schedules have been pro­
grammed in two ways, which are likely to produce
different behavioral effects. Farmer's (1963) method
involves a fixed time period at the end of which the first
response to occur has a random probability of rein­
forcement. A new interval begins after a fixed period
of time, regardless of whether or not a reinforcer was
delivered. Under Catania and Reynold's (1968) RI,

Copyright 1982 Psychonomic Society, Inc. 329 0005-7878/82/030329-14$01.65/0

330 SNAPPER,KADDEN, AND INGLIS

the first response is reinforced once an interval of
random duration has elapsed. The schedule may dif­
ferentially reinforce longer interresponse times than the
former does. Furthermore, both of these methods have
two variants according to whether they are programmed
"by the clock" or "by the response" (Ferster & Skinner,
1957). It is often difficult or impossible to discover
from the description found in a typical procedure sec­
tion which variant ofRI was programmed.

Failures to replicate the findings of others can result
from subtle procedural differences of this sort. There is
seldom enough information to completely diagram a
procedure from the verbal description in an article
without contacting the experimenter. For this reason,
authors interested in providing enough detail for others
to replicate their experiments might do well to either
submit with their article a complete state diagram or
offer to send a state diagram to interested readers
requesting it.

The following description of state notation presents
its basic features, using, as illustrations, frequently
referenced reinforcement schedules. In the appendix,
there is a glossary summarizing the components of the .
notation.

STATE NOTATION-THE LANGUAGE
OF PROCESS CONTROL

State notation was developed to aid the design of
sequential switching circuits (Mealy, 1955; Moore,
1956). It has been used to describe sequential processes
in which outputs are completely determined by (1) the
preceding set of inputs and (2) the current input. For
processes of this sort, state notation provides the rules
for process control (this includes the procedures of
experimental psychology) with minimal amounts of
control logic, while completely eliminating indetermi­
nate states (i.e., "race" conditions) (McClusky, 1965).

A modified version of state notation has been adapted
to the design of laboratory procedures in which the
selection among various possible control sequences is
based upon the behavior of experimental subjects. The
major advantages of state notation as a process control
language are the following: (1) State notation is power­
ful enough to describe the most complex sequential
processes, (2) the simplicity of state notation makes it
easy to learn, (3) state notation provides generality
across different scientific and industrial process control
problems, and (4) since state notation was designed for
process control, it is very efficient in terms of necessary
control equipment (e.g., permitting as many as 12
concurrent procedures to be controlled simultaneously
by a single minicomputer).

present but is a potential condition. During the second
state, a reinforcer (e.g., food) is presented to the subject,
usually for a brief duration, by means of a mechanical
device.

Figure 1 shows that CRF can be completely described
by two mutually exclusive states. Either State 1 is present
(represented by the leftmost circle identified by the
numeral 1), or State 2 is present, beginning with the
onset of reinforcement (labled as "ON SR"). In this
procedure, the different states are associated with
different stimuli. In more complex procedures, the
correspondence between states and stimuli is not always
perfect.

The events that cause things to happen ("inputs")
in state diagrams are written above the arrow leading
from one state to the next. In Figure 1, Rl (a response
of Type 1) causes the transition from State 1 to State 2.
An input can also produce one or more outputs, which
are listed, following a colon, after the input. In Figure 1,
Rl initiates reinforcement, indicated by Rl :ON SR,
if the response occurs when State 1 is present. Four
seconds after State 2 is entered, the reinforcement is
terminated, shown by 4":OFF SR. In this case, the end
of a 4-sec period constitutes the input and OFF SR is
the output.

States also represent response contingencies, in
addition to stimulus transitions: in CRF, responses
(Rl) in State 1 produce reinforcement, but when
State 2 is present, responses have no effect (therefore,
there is no response transition indicated in State 2).

Transitions, which are considered to be instantaneous,
are symbolized by arrows leading from one state to
another. Transitions from one state to the next can be
initiated by responses (State 1 in Figure 1), or by
elapsed time periods, as shown by the 4-sec (symbolized
4") reinforcement duration of State 2 in CRF. The
timing of 4 sec is started on entry into State 2. When
the 4-sec period has elapsed, transition back to State 1
occurs.

In the laboratory (and, alas, in real life), reinforce­
ment is not always present or available. For the pur­
poses of an experiment, it is useful to define some
discrete event that starts the session and thus presents
the opportunity to earn reinforcement, as diagrammed
in Figure 2.

4":OFF SR

~
Figure 1. State diagram of CRF.

4":OFF SR
Continuous Reinforcement

A basic procedure of operant psychology is regular or
continuous reinforcement (CRF). This procedure con­
sists of two states, only one of which can be in effect
at any moment. In the first state, reinforcement is not Figure 2. State diagram of CRF including the START input.

The state diagram of Figure 2 consists of three
states. State 1 represents the conditions present before
the experiment begins. When the START transition
occurs (usually an event generated by the experimenter),
a stimulus (in this case, the houselight of the experi­
mental chamber) is turned on. In the diagram of Fig­
ure 2, the houselight is not affected by responses or
reinforcement and therefore is not turned on or off by
the response or 4" transitions. Since no :OFF HOUSE­
LIGHT is included in this diagram, once the experiment
begins it continues forever.

Unfortunately, both in the laboratory and in real
life, reinforcement opportunities have a limited dura­
tion. Figure 3, then, is a complete and rigorous descrip­
tion of a typical laboratory CRF experiment in which
100 reinforcements are available every session.

In Figure 3, a variable (represented by the letter A)
is set to zero when the experiment starts. After each
reinforcement, A is incremented by 1, as shown by the
statement SET A=A+l on the transition line leading
from State 3.

The SET function, introduced in Figure 3 as an out­
put, is borrowed from computer languages (e.g., FOR­
TRAN and BASIC). It is an assignment function that
causes the variable to the left of the equal sign to be
replaced by the value or expression to the right of the
equal sign. Thus, SET A=A+1 is equivalent to saying
"replace the current value of A by the old value of A
plus 1," or, in other words, add 1 to A. Then a decision
is made concerning the next state. At the end of each of
the first 99 reinforcements, the transition continues to
State 2, permitting more reinforcements. This occurs
because A is not yet equal to 100. Therefore, the
"ELSE" transition to State 2 will occur. At the end of
the lOath reinforcement, transition to State 1 occurs
and the houselight is turned off, signaling the end of
reinforcement availability.

Multiplication, division, and subtraction operations
also may be expressed in the SET function. For instance,
SET B=C*D multiples the value of two variables and
deposits the results in the variable B. For calculation
of rate measures, frequency is divided by time, as in
SET R=F/T. Subtraction is illustrated by SET A=B-l.

Decision functions (including the IF statement of
Figure 3) are graphically represented by a diamond with
the decision criterion written inside it. Since the decision
function is initiated by an input, it is therefore a type of
output function. The decision function differs from
other output functions in that it has two possible

1 STARtON HI. ; SET A·O

THEN, OFF Hl IF
A~OO

Figure 3. State diagram of CRF including the variable A used
to limit session to 100 reinforcements.

STATE NOTATION 331

output paths. Of course, only one of these paths is
taken. The actual path following a decision function
depends in any instance upon the validity of the condi­
tion specified in the decision function. For example,
in Figure 3, if A = 100, then the light is turned off and
State 1 is entered. If A is not currently 100 but some
other number (1-99 in the example of Figure 3), then the
transition to State 2 occurs.

In state notation, the comment "THEN" can be
drawn on the transition arrow, indicating the path to
be taken if the decision criterion is currently valid. The
comment "ELSE" indicates the transition that occurs
if the conditions are not valid. All decision functions
in state notation are binary. That is, either the condition
is valid or it is not valid when the decision function is
tested. The decision is assumed to be instantaneous, and
the decision function should not be confused with a
state, since it has no duration.

Figure 3 uses all of the major functions of state
notation. Although more complex reinforcement sched­
ules may consist of many sets of contingencies, each
complex procedure may be reduced to a series of states,
describing the momentary contingencies and stimuli
present when each state is in effect. It is important to
realize that the state diagram is a description only of
potential procedures, but not of the actual outcome of
an experiment. For example, in Figure 3, if the subject
never responds, reinforcement is never presented; or,
if less than 100 reinforcements are earned by the sub­
ject, then the houselight continues to shine.

Fixed-Ratio Contingencies
Fixed ratio (FR) is a procedure that is only slightly

more complex than CRF. In FR a prespecified number
of responses is required for reinforcement. Figure 4 is
a state diagram of FR 10. For simplicity, the event
terminating the session is not included in this drawing.
Notice that the only difference between Figure 4 and
Figure 2 is the "10" preceding the transition from
State 2 to State 3. The numerical prefix of the response
input signifies that the 10th response to occur after
entry to State 2 will produce reinforcement and go to
State 3. The first nine responses are counted but do not
produce transition.

Figure 5 illustrates the fact that the FR procedure
may also be diagrammed using variables (e.g., B) and the
IF statement.

In this example, each response increments B by 1.
The decision function indicates a choice that depends
upon the current value of the variable B. If B is not
equal to 10, the transition arrow returns to State 2. If
B is 10, then B is set back to 0 for the next ratio trial,
and reinforcement is presented in State 3. This method
of notating FR is cumbersome compared with the
method of Figure 4, but it serves to illustrate the logic
involved in the numerical counting of response inputs.

Some further rules of state notation are illustrated
by the fixed-consecutive-number (FCN) procedure,

332 SNAPPER,KADDEN, AND INGLIS

4":OFF SR

SX

THEN:SH K'K+l

2 Rl: SETVoV-l V.0

LIST A=3,7,9,1,1O,S,6,2,8,4

(Of course, in Figures 6 and 7, only the 10th Rl in
State 2 will cause a transition to State 3.)

Figure 8. State diagram of VR using consecutive states for
each ratio.

Variable-Ratio Contingencies
Variable ratio (VR) (Ferster & Skinner, 1957) refers

to a set of schedules in which the ratio requirement
varies after each reinforcement according to some rule.
For example, a simple VR schedule with two different
ratio values that alternate throughout the session is
diagrammed in Figure 8.

For each ratio in the sequence, it is necessary to
diagram two successive states: the state containing the
ratio value and the reinforcement state. To simplify the
diagramming of VR schedules, it is possible to list the
sequential values of the VRs and to then set a variable
equal to a value from the list. Figure 9 shows a VR
consisting of an arithmetic series from 1 to 10 with a
mean of 5.5 responses.

Figure 9 introduces four new concepts: (1) the list A,
(2) an indexed variable, A(K), (3) SX, and (4) the
comment "ALWAYS." The list statement LIST A=3,7...
is a shorthand expression equivalent to setting the
variable A(O) = 3, A(l) = 7, and so on. It assumes the
assignment of 10 variables, each identified by the letter
A and an index number from zero to nine. (Conven­
tionally, in this system index values always begin at
zero.) Each element of the A list is utilized, in sequential
order, under control of the diagram.

The subscripted variable A(K) is used to select values
from the list. The subscript K is another variable. In the
present example, it can have a value from 0 to 9. When
K is 0, A(K) is A(O), so that the expression SET V=A(K)
means SETV=3, the value of A(O). When K is 1,
SET V=A(K) is equivalent to SET V=A(1), resulting in
V's becoming 7, the value of A(1). By controlling the
value of K, we control which value from the list, A(O)
to A(9), is assigned to the variable V.

SX in Figure 9 is a null transition. Since each decision
function has two possible exit transitions, one that will

Figure 9. State diagram of VR using the list A(K).

THEN, ON SR;SET B'P1 START: ON 11.;SET B'P

Figure 7. State diagram of FeN using the variable D for
response count.

Figure 6. State diagram of FCN using response count.

Figure 4. State diagram of FR 10 using response count.

1 START, ON HL:SET 0'0

Figure S. State diagram of FR 10 using the variable B for
response count.

first used by Mechner (1958), as shown in Figure 6.
In this procedure, 10 responses of Type 1 must be

emitted consecutively before a response of Type 2 (R2)
is reinforced. Responses of Type 2 reset the accumulated
count of Rls, and a new set of 10 consecutive Rls
must again be emitted without an intervening R2 for
transition to State 3. The recycling transition of R2 in
State 2 resets the accumulated count ofRls. (Recycling
refers to transitions originating and terminating in
the same state.) The rule is that the counter of response
inputs is reset to zero on state entry. A diagram equiva­
lent to Figure 6, using explicit variables, is shown in
Figure 7.

Here, the reset of the accumulated counts of Rl in
State 2 is shown explicitly by the expression SET D=O
associated with the recycling transition of R2. Another
rule illustrated by the FCN procedure shown in Fig­
ures 6 and 7 is that multiple transitions can occur in one
state. In State 2, Rl has one effect and R2 has a second
effect. In order to avoid conflict among the various
possible transitions, there is a basic rule that states that
only one input can occur at a time. The input that
occurs first will cause its associated transition first.

STATE NOTATION 333

ELSE

LIST A=3,7,9,1,1O,5,6,2,8,4

4", Off SR

V RLlISTV'AIKI,ON SR

LIST MAX
+1

~~RL ON HUlST V·AIKI

C)I-V---,Rl-,---, --.

Figure 13, which contains the diagram of a 30-sec
fixed interval (FI30-sec) schedule, programmed "by
the response" (Ferster & Skinner, 1957).

FI 30 sec imposes a delay period of at least 30 sec
after a reinforcement before another reinforcement
becomes available. Responses occurring in State 2,
before the 30-sec period has elapsed, have no effect. A
variant of the FI schedule, in which reponses during the
delay period have an effect, is variously called differ­
ential reinforcement of low rate (DRL; Ferster &Skinner,
1957) or interresponse time greater than t (IRT > t;
Zeiler, 1977) and is diagrammed in Figure 14.

In DRL, responses that occur in State 2, before the
30 sec have elapsed, reset the 30-sec timer, as shown by
the recycling Rl transition in State 2. This transition
requires the subject to wait at least 30 sec after rein­
forcement or after an unreinforced response before
reinforcement can be obtained.

In some procedures, it is useful to identify inde­
pendent processes and to diagram these as parallel
state sets. Since parallel state sets are assumed to operate
independently of each other, a convention must be
added at this point: the Z pulse. This is an instantaneous
logical signal that may be used to synchronize parallel
state sets; a Z pulse is generated as an output in one
state set and serves as an input in another state set. An
example of this is shown in Figure 15, which illustrates
a second variant of the FI schedule, FI "by the clock"
(Schoenfeld, Cumming, & Hearst, 1956).

Figure 12. State diagram of VR using the LIST output
function and the variable V as a response counter.

Figure II. State diagram of equivalence of LIST output
function to the explicit use of variables.

Figure 10. State diagram showing the equivalence of the
variable counter V RI in Panel A with the explicit use of the
variable V in Panel B.

Interval Schedules
Interval schedules may be programmed in a manner

analogous to ratio schedules. For example, consider

occur if the decision criterion is valid and one that will
occur if it is not valid, we need a method for indicating
no transition. In the example of Figure 9, if V is not
zero, then we merely wish to wait for another Rl. We
do not need to change states or to cause a transition.
This condition can be diagrammed by a transition to SX.
In the diagram of YR, it also would have been possible
to go to State 2, instead of to SX. However, we will
see later that the null transition, to SX, is often useful.

In Figure 9, by a simple LIST statement, we estab­
lished a list of sequential ratios in which A(O) = 3,
A(I) = 7, and so on. On starting the session, the variable
V is set to A(K), where K = O. This means we set V to
A(O), or the ratio 3 in this example. Each Rl in State 2
then decreases (decrements) V by 1. The first R1 sets
V to 2, the second to 1, and the third to O. For the
first two responses, V is not zero, and therefore each
transition is to the null state SX.

Following the third response, V becomes equal to
zero, and the value of K is incremented and then
checked. If K is 10, it is then set to O. If K is not 10 or
if it has just been reset to 0, then V is set to A(K), the
next item of the list. Following completion of the first
ratio, K is incremented to 1, and V is set to A(l), the
value 7, for the next ratio. By checking the value of K
after each ratio, the index of the list can be set back to
the first item after the last ratio A(9), or 4, has been
used.

"ALWAYS" is used as a comment in Figure 9 to
simplify the diagram. We only want to set K to 0 if K
is currently at 10. However, we wish to set V = A(K)
and turn on SR whether or not K = 10. "ALWAYS"
indicates the common path that follows the second
decision function, after the decision has been made
whether to set K = O.

To further simplify the notation of variable schedules,
two conventions have been established. The first of these
is the equivalence between Panels A and B of Figure 10.

Preceding Rl by a variable (panel A) is equivalent to
decrementing the variable upon each occurrence of Rl
and then checking the variable for O. If the variable is
0, then the transition proceeds. Otherwise, the same
state remains in effect (the meaning of the null transi­
tion to SX).

The second convention is the use of LIST as an out­
put function. Thus, the expression V Rl :LIST V=A(K)
is defmed to be equivalent to Figure 11.

The LIST function is equivalent to the SET and IF
functions of Figure 11.

Using these two conventions, VR reduces to the
diagram of Figure 12. The sequence of numbers in
List A specifies the sequence of particular ratios to be
used. Any variable letter can be used in place of V, A,
or K.

334 SNAPPER, KADDEN, AND INGLIS

Rl Willi THEN,ON SR
P,02

Figure 18. State diagram of RI in which the first response
after 5 sec has a .02 probability of reinforcement.

4", OFF SR

~~ ~5"'ll

Figure 17. State diagram of RR with probability of response
of .02.

V T works in a way analogous to V R1 in Figure II.
Still another method of programming VI or VR

schedules involves selection of each interval or ratio on
a probabilistic rather than sequential basis. For example,
random ratio (RR) (Brandauer, 1958) assigns an equal
probability of reinforcement to each response. Figure 17
uses a new decision function that incorporates a prob­
ability decision.

WITHp=.02 means that the transition line leading to
State 3 will occur randomly with a probability of
1/50, or 2% of the cases in which the R1 transition
occurs. Otherwise, with probability of .98, the ELSE
transition to SX will occur, since all decision functions
have one input transition and two output transitions.
Figure 17 illustrates an RR schedule with a ratio of
50 responses/reinforcement on the average. Each response
in State 2 has 1 chance in 50 of being reinforced (by
producing State 3).

RI schedules have also been investigated (Catania &
Reynolds, 1968; Farmer, 1963). The method used by
Farmer is illustrated in Figure 18.

In this schedule, once every 5 sec there is an oppor­
tunity for reinforcement, with probability of .02. The
5-sec interval is timed by the clock, shown in 8S2. If
response in State 3 is not reinforced, State 2 is reentered.
Thus, if a response is emitted at least once every 5 sec,
then reinforcement will be delivered on the average every
250 sec, as computed from the formula T/P, where Tis
5 sec and P is .02.

An alternative method for programming RI (Catania
& Reynolds, 1968) is shown in Figure 19.

In this variant, every 5 sec there is a probability
equal to 2% of entering State 3. In State 3, the first
response is reinforced. Once again, the average inter­
reinforcement interval is 250 sec. However, there may be
some behavioral differencesbetween these two schedules:

YT,lISTY·AIKI

4", OFF SR

START, ON HUISTY·AIKI

Figure 14. State diagram of DRL 30 sec.

SSl

Figure 16. State diagram of VI programmed by the response.

Figure 15. State diagram of FI programmed by the clock.

LIST A=10",5",20" ,15"

4", OFF SR

Figure 13. State diagram of FI 30 sec programmed by the
response.

In this variant of FI, the first 30 sec interval begins
at the start of the session. Thirty seconds later and
every 30 sec thereafter, a Zl internal synchronizing
pulse is emitted.

If State Set 1 (SSl) is in State 2 when Zl occurs,
then State 3 is entered, making reinforcement available
for the next response. This schedule differs from FI "by
the response" in that the duration of State 2 of SSl
depends upon the behavior of the subject, as well as
upon the length of the FI. If the subject delays its
response after entering State 3, then the duration of
State 2, following the next reinforcement, could be
much shorter than the time between Z pulses.

Variable interval (VI) schedules are easilydiagrammed
using a notation similar to that used for VR: In the
arithmetic VI of Figure 16, the LIST output function is
used to establish the value ofV.

The current version of state notation assumes a basic
clock that provides a continuous stream of brief pulses,
at a high rate (every .01 sec, for example), to all state
sets. In Figure 16, V T indicates that V is decremented
at the basic clock rate whenever State 2 is in effect.
When V reaches zero, transition to State 3 occurs. Thus,

4" OFF SR

STATE NOTATION 335

j
'jl
c

t--__---l i

RL OFF SD; ON SR

sx

SX

VI ON D

J", OfFSR;21

1 lL RAND v-a; RAND D-ASTART

Figure 21. State diagram of a generalization procedure using
RAND functions for selecting stimuli and intertrial intervals.

5.SJ
5", DFF SHOCK; 21

Figure 20. State diagram of a discrimination procedure using
the RAND output function to randomly select the stimulus
from a list.

Figure 22. State diagram of Sidman avoidance with session
termination after 500 shocks, the emission of 800 responses, or
the passageof I h.

LIST A=1,1,1,1,1,2,3,4,5,6

LIST B=10",20",30",40",50",60",70"
ELSE, OfFD;21

LIST A=10" ,20" ,30" ,40" ,50" ,60",70"

J", OFF SR;£1

S.52

Other Complex Schedules
The concept of parallel state sets simplifies diagram­

ming the contingencies controlling session length. For
example, consider Sidman avoidance (Sidman, 1953),
in which shocks are presented every 2 sec unless a
response occurs, and each response produces a 10-sec
delay before the next shock. Assume the session is to be
terminated after any of the following: the delivery of
500 shocks, the emission of 800 responses, or the pass­
sage of 1 h from the beginning of the session. Figure 22
illustrates the procedure, using a parallel state set to
control the length of the session.

Randomization
Several methods for diagramming VI and VR sched­

ules have been discussed. A variant of the method
utilizing the LIST function has been developed so that
a variable may be set equal to a quantity selected ran­
domly from the list without replacement. That is, all
items must be selected from the list before any item can
be selected again. After all items have been selected
once, the function is reset and selection from among the
entire set of items can begin again. An example of the
use of the RAND function is illustrated in Figure 20.

Figure 20 depicts a discrimination procedure in which
a discriminative stimulus (SD) is presented after a
variable intertrial interval with a mean interval of 40 sec.
On START, and after reinforcement, the intertrial
interval begins in State 2 of SSl. The length of the
intertrial interval is controlled by the value of the
variable timer V T. On entry to State 2, a ZI operates on
SS2, where RAND selects a new value for V from
List A, as indicated by RAND V=A.

The RAND function randomly selects one of the
seven values from List A and then sets V to this value.
In this way, successive sets of seven trials will each have
intertrial intervals ranging from 10 to 70 sec, in random
order.

The RAND function is particularly valuable in
selecting stimuli in random order, for generalization
tests. Figure 21 illustrates a procedure in which six
stimuli are presented in random order. If the stimulus 1
is presented, then the first R1 after the interval V is
reinforced. If one of the other stimuli (2-6) is presented,
a response in State 3 is not reinforced but starts a new
trial. SS2 randomly selects intertrial intervals from
List B and stimuli from List A. Since the stimulus value
1 occurs five times in List A, the number of items in
the list is 10. Thus, each stimulus has a probability of
1/10 of being selected in each set of 10 trials, and the
stimulus 1 will occur on 5 of those trials. The order of
presentation of the stimuli is randomly selected and
will differ across successive sets of 10 trials.

4",OFFSR 4 \

~)

The Catania-Reynolds method may generate lower
response rates, since longer interresponse times have a
higher probability of reinforcement.

Figure 19. State diagram of Rl in which each 5-sec period
has .02 probability of setting up reinforcement for the next
response.

336 SNAPPER,KADDEN, AND INGLIS

1 START, ON S!;lISTY'A1Kl, LIST W'BUI

Figure 25. State diagram of chained VI VI.

LIST A=6",12.67",20.17",28.74",38.74",SO.74",65.74",80.74"

LIST B=12",25.33",40.33",57.48",77.48",101.48",131.48"

J";OFF SR

J"; OFF SR

Figure 26. State diagram of concurrent VI VI.

LIST A=6",12.67" ,20.17",28.74",38.74",50.74",65.74",80.74"

LIST B=12",25.33",40.33",57.48",77.48",101.48",131.48"

1, through the use of the V R1 statement. The fixed
increment, 5, is added to the current ratio requirement
for the next trial. The variable I "remembers" the
last ratio value initially contained in V. Thus, after the
first reinforcement, V is set to 10 (5+1 is 5 + 5), and I
is also set to 10. After the second reinforcement, V is
set to 15 (5+1 is 5 + 10) and I to 15 also, and so on.
Remember that V R1 decrements the initial value of
V as R1s occur, requiring that we remember the initial
value of V as a second variable (I).

Chained schedules (Ferster & Skinner, 1957) are easy
to diagram. Figure 25 is an illustration of chained VI VI.

The first VI is terminated by a response in State 3.
Instead of producing primary reinforcement, the first
response after the interval V changes stimulus conditions
and initiates a second VI. When a response occurs in
State 5, after the interval W, primary reinforcement is
delivered and stimulus conditions revert to their initial
status.

Concurrent schedules (Ferster & Skinner, 1957)
involve two or more different contingencies available
for different responses. Figure 26 illustrates concurrent
VI VI in which two responses are each reinforced on
independent VI schedules.

To reduce reinforcement for switching from one key
to the other, a changeover delay (COD) is often pro-

Figure 23. State diagram of interlock schedule of reinforce­
ment.

3"; OFF SR

! START, ON HL;SET Y-49

START,SHV'5,1'5

5S2

55l

Figure 24. State diagram of progressive ratio.

In SSl, the program alternates between State 2 with
no shock and State 3 with a brief inescapable shock
every 2 sec. If a response occurs while in State 2, State 4
is entered and is maintained if further responses occur
before 10 sec elapse. Note that since R1s have no
effect in State 3, the shock is avoidable but inescapable
once initiated. After 10 sec elapse in State 4 without a
response, shock is delivered. Every Rl in States 2 and 4
of SSl produces a Zl, and every shock offset produces
a Z2. In SS2, the 800th Zl, or the SOOth Z2, or the
passage of 60 min after the start of the session will
cause the session to stop. The plus sign between the
inputs in State 2 of SS2 indicates the "logical OR"
statement (not the "logical AND").

More complex reinforcement schedules may involve
modifications of contingencies according to local
response rates. For example, the interlock reinforce­
ment schedule (Berryman & Nevin, 1962; Rider, 1977)
involves a ratio requirement that decreases as time from
the preceding reinforcement increases. Figure 23 illus­
trates an interlock schedule in which 50 responses
are required for reinforcement at the beginning of each
trial.

When a response occurs, or after every 2 sec, the
response requirement is decreased by one. At least one
response is required for reinforcement, as shown by the
final Rl in State 3.

Other schedules with changing requirements for
reinforcement have also been investigated. Progressive
ratio (Hodos, 1961) is illustrated in Figure 24.

In this schedule, the ratio V is incremented by a
fixed amount,S, upon each reinforcement. In the
example of Figure 24, the first ratio is 5, the second is
10, and so on. The session terminates when 15 min
elapse without a response.

This schedule needs two variables: V and I. The
variable V is set to the current ratio requirement on
entry to State 2. Initially it will be 5, then 10, and so on.
Each response causes this variable to be decremented by

grammed (Catania, 1966). One way to program this
delay is to prevent reinforcement for the responses on
one key, for a brief period, following responses on the
other key. In Figure 26, this is accomplished in SS3,
which reflects the most recent response. If an R1
occurred most recently, then SS3 will be in State 2. If
an R2 occurred last, SS3 will be in State 3. Responses
in State 3 of SSI and SS2 check the current state of
SS3. "IF SS3=2" is equivalent to saying "if State Set 3
is in State 2." If this condition is valid, transition will
proceed along the line labeled "THEN." If SS3 is cur­
rently in some other state, then transition will proceed
along the line labeled "ELSE," and the COD state,
State 5, will be entered for 3 sec.

This example also illustrates the fact that there is a
temporal sequence to state diagrams. The response in
SS1 can check SS3 and find that the preceding response
was different only if SS3 has not yet reacted to the
current response. The rule is that the response goes to
SSI first, then to SS2, and so forth, in sequential order.
Thus, SS3 must temporally follow SS1 for the IF
statement to work. If SSI and SS3 were reversed, then
the IF statement would never discover the previous
response type.

A frequently used schedule is a concurrent chain,
incorporating features of both concurrent and chain
procedures. Figure 27 illustrates concurrent VI 1 min
VI 1 min chain FI 10 sec FI 30 sec, in which each of two
different responses produces a different stimulus condi­
tion on independent VI schedules. If either VI (State 2
of SSI or State 2 of SS3) is completed and its succeed­
ing stimulus condition is presented, then the other VI is

STATE NOTATION 337

suspended until after reinforcement. This is accom­
plished by producing a Zl when the stimulus condition
of the second component is presented. The ZI suspends
action on the other schedule while retaining the status
of its interval timer, until a Z2 is generated after rein­
forcement. If the VI in SSI is completed first, then the
stimulus 2 is presented and an F1IO-sec schedule is in
effect until the reinforcement is delivered. In SS2, in
the presence of the stimulus 3, a 30-sec FI is in effect
after its preceding VI is completed.

Data Collection
Data collection can be represented by state notation

in several different ways. The different types of data
collection, which are not mutually exclusive, include
(1) simple counts of events or of time durations in
different states and (2) calculated data, sorted and
treated by means of state table instructions.

Recording of counted data or elapsed time. Collect­
ing simple counts of data or elapsed time is the easiest
method to use and often provides the most meaningful
and useful information concerning performance of the
subject. The method is based on the use of the variable C
as a special type of variable.

An example of data acquisition of the simplest sort
is shown in Figure 28.

Figure 28 represents a "time allocation" procedure
in which the subject can choose between two shock
distributions. When the green light ("G") is on in the
second state of SS1 and the variable timer VT of SS2
times out, a shock is delivered. On the other hand, if
the red light ("R") is on, having been produced by an

LIST A=6" ,12.67",20.17",28.74",38.74",50.74",65.74" ,80.74"

LIST B=12" ,25.33" ,40.33" ,57.48",77 .48" ,101.48",131.48"

3", OFF SR,S1; ON S1; l1

S51 (1 START, ON S1:lISTV·AIJI

3": OFF SR, S3; ON Sb!1

START;ON Sio 1ISTW'BIKI

tl

Rl

5S3~START; ON Hl R1
1 1 3

Figure 27. State diagram of concurrent VI VI chain FI FI.

338 SNAPPER,KADDEN, AND INGLIS

LIST A=10"

LIST B=S"

2", OFF W;ON G

R2, ADD 4

RI: ADD 3

VT: II STV-AI KI
552

ELSE

.5": OFF SHOCK; ADD 8: II

,dr.2.3,5 THEN: ON SHOCK

.5", OFF SHOCK; ADD 9:;<2
55.3

S.s.4

WI: LISTW-BIJI

ElSE

IF
,Sl-3,4,5

THEN:ON SHOCK

Figure 28. State diagram of a time allocation procedure.

R2, then shocks may be presented by SS3. A 2-sec
COD, signaled by a white light ("W") , permits shocks
from either distribution in this example. The new func­
tion of this diagram is the ADD statement following both
responses and times. ADD 1 is a shorthand version of,
and completely equivalent to, SET C(1)=C(l)+1. Thus,
ADD 1 following each R1 in State 2 of SSl will incre­
ment C1.

Similarly, ADD 6 following each .01 sec spent in
State 2 of SSl will increment C(6), keeping a record of
the total time (in .01-sec units) spent in that state.
Table 1 describes the contents of each counter.

This recording scheme permits the experimenter
to obtain time and response allocation data for the
session as a whole. Even if the experimenter were also
collecting interevent times, (s)he might want simpler
summary data of this sort to describe daily performance.
The essential feature illustrated in Figure 28 is that
data may be collected and summed over the entire
session. On-line data analysis, here, consists merely of

Table I

Counter

I
2
3
4
5
6
7
8
9

Meaning

Rl s in green
R2s in red
Rls in COD (State 5)
R2s in COD (State 3)
Session duration in .Ol-sec steps
Time in green (.01 sec)
Time in red (.01 sec)
Shocks in green (or white)
Shocks in red (or white)

collecting the number of responses, shocks, and times
elapsed in different stimulus conditions. There is no
attempt to look at the fme-grain structure of the behavior
or to obtain data that could permit an analysis of the
sequential structure of the responding.

On-line data analysis. A more elaborate analysis of
data from the experiment of Figure 28 is easily accom­
plished. For example, histograms of the latencies between
shock and the next changeover response might provide
evidence of temporal discriminations of the shock
distributions in each component of the schedule. Fig­
ure 29 shows the two additional state sets that collect
this information.

SS5 records each latency from the delivery of shock
by SS2 (Figure 28) to the next occurrence of an R1
that sends SSl first to State 3 and then to State 4. In
State 2 of SS5, a Zl produced by the end of a shock
generated in SS2 will set the variable M to 10. If an R1
occurs in the next 1 sec, then C(M), which in this case
is C(10), will be incremented and State 2 will be reen­
tered. If, however, an R1 is not emitted in the first
1 sec of State 3, then M will be incremented to 11. If
an R1 occurs in the next 1 sec, then C(11) will be incre­
mented. In this manner, the total number of latencies
occurring in l-sec categories, up to 10 sec, will be
accumulated in C(10) to C(19). Latencies greater than
10 sec will be stored in C(20). The IF statement that
checks for M's being less than 20 will prevent M's being
incremented beyond this value.

SS6 records the R2 latencies following shocks gen­
erated by SS3 in C(21) to C(31).

STATE NOTATION 339

S. S.1

. "';
"-

Figure 3 I. State diagram illustrating Z-pulse priorities.

~4

S.S. J 1;.'\,'

,START.i 1 . RllJ .~ J

Figure 30. State diagram illustrating Z-pulse priorities.

START _..i 2

In Figure 30, an Rl occurring during State 2 pro­
duces a Zl and causes transition to State 3. The ZI,
if it occurs in State 2, should cause transition to State 4.
To prevent conflict in diagrams of this sort and to
retain the rule that only one input can occur at a time,
we must introduce another rule: Z pulses operate after
the input that produces them has operated on each
state set, but before an input of any other type can
occur. For instance, a Z1 produced by an Rl will occur
before an R2 is operated on. This is Priority Rule 1.
This rule clarifies Figure 30: The ZI is slightly later than
and nonsimultaneous with the Rl , and therefore the ZI
will occur in State 3 and will cause transition to State 5.
The sequence will be as follows: First, Rl occurs in
State 2, producing a ZI and causing transition to
State 3; next, the Z1 will cause transition from State 3
to State 5. Although this type of conflict rarely arises
in state diagrams, there must be a well-defined rule that
tells us what would happen in this case.

The same type of conflict may occur more frequently
in cases involving parallel state sets and will be resolved
by Priority Rule 1. For example, in Figure 31, both
state sets will be in State 2 after a START pulse.

When an Rl occurs, the following sequence of events
will be produced: The Rl will produce both ZI and
State 3 in SS1. Next, the Rl will cause transition from
State 2 to State 3 in SS2. The ZI will then cause transi­
tion from State 3 to State 5 in SS1, and in SS2 it will
produce a Z2 and transition to State 5. Next, the Z2
will cause transition from State 5 to State 6 in SSI and
will have no effect in SS2. Thus, the Rl will produce
State 6 in SSI and State 5 in SS2.

sx
ELSE

IF
M<2l:}

,y~jl THEN, ~~!~t~----<0

'y

~

I"

R2: ADD elY)

Rl ADD elw
--~~,

State notation, as originally designed (Mealy, 1955;
Moore, 1956) required that only one input can occur at
a time and that all inputs, transitions, and outputs are
instantaneous. These two basic rules guarantee that no
conflicts or indeterminate paths ("race" problems in
engineering jargon) can occur. The first valid input to
occur within a state will cause its associated outputs and
transitions. Thus it is possible to predict the outputs
and transitions that will occur when a particular input
occurs in a particular state.

The theory of sequential machines (McClusky,
1965) deals only with single state sets, whose relation­
ships to the world outside are limited to receiving inputs
and sending outputs. Although all sequential procedures,
including reinforcement schedules, could be diagrammed
by means of a single state set, we have suggested that
for clarity, simplicity, and often for reduction in the
number of states, it is useful to introduce parallel state
sets. The concept of parallel state sets is implicit in the
theory of sequential machines, since any input to a
sequential machine can be generated as an output by
another sequential machine, also described by state
notation.

Snapper et al. (1970) proposed explicit construction
of parallel state sets that communicate by Z pulses
that are produced as an output by one state set and
serve as an input for another state set. The explicit
consideration of parallel state sets with their associated
Z pulses introduces problems of priorities that must be
considered in a formal logical system, even though these
problems are rarely encountered in programming rein­
forcement schedules. The problems arise from two rules
of state notation. The first rule is that only one input
may occur at one moment in time, and the second is
that outputs are instantaneous and simultaneous with
inputs. Since Z pulses serve as inputs to states (having
been generated by responses, time, or other Z inputs),
the Z pulses could logically be considered to be simul­
taneous with the inputs that produced them. Therefore,
the basic rule of only one input at a time would be
violated. This problem can be clearly illustrated by a
single state set.

STATE TABLE PRIORITIES

Figure 29. State diagram of a data recording scheme to be
added to the time allocation procedure of Figure 28.

340 SNAPPER, KADDEN, ANDINGLIS

5.5.3

S.5'2C?S~START Rl, l3
I 2 3

5.5.2 n5TART .r>. Rl .r>
~

5.5.1

This priority rule must sometimes be invoked when
different Z pulses are produced in different state sets
by the same input. For example, in Figure 35, the RI
will produce Z2 in SSI and Z3 in SS2. The result, of
course, will be to produce State 4 in SS3. Be sure to
check for the occurrence of this sort of conflict when
you have a state with two or more Z pulses as inputs.
Although Priority Rule 2 permits some programming
"tricks" to be used on purpose, it probably should be
avoided, since it results in obscure diagrams.

Another priority problem may arise from decision
functions that check the current state of another (or
the same) state set. Consider Figure 36.

In Figure 36, an Rl in State 2 of SSI checks the
status of SS2 to choose between transition to State 3
and transition to State 2. SS3 advances to State 3 on an
Rl. If the Rl simultaneously causes transition in the
parallel state sets, the decision function of SS1 is inde­
terminate, since Rl causes SS2 to change states while
simultaneously checking the current state of SS2 in the
decision function of SSt.

Priority Rule 3 defines the outcome for state dia­
grams involving this sort of conflict: When an input
occurs, it drives state sets sequentially (SSI first, SS2
next, etc.). Priority Rule 3, then, specifies that Rl will
cause transition to State 3 in SSI when SS2 is in State 2,
because the RI will drive SSI before SS2. If the order
of the state sets were reversed, then the outcome would
be reversed.

The RI in Figure 37 would never cause transition to
State 3 of SS2, since SSI would move from State 2

Figure 35. State diagram illustrating priorities of multiple
Z pulses produced with different state sets.

Figure 36. State diagram illustrating priorities in decision
functions.

Figure 34. State diagram illustrating priorities of multiple
Z pulses across parallel state sets.

Figure 33. State diagram illustrating priorities among mul­
tiple Z pulses in the same transition.

5.5.1 (~\START_0Rl,n;l2 _O
~~

Figure 32. State diagram illustrating an infmite loop.

In general, it is never necessary and seldom useful to
use Priority Rule 1 in programming reinforcement
schedules. The use of this priority rule will reduce the
clarity of the state diagram and make it difficult for
others to read.

Furthermore, special care must be exercised when
using Z pulses, since infinite loops may be produced
by improvident programming. For example, in Figure 32,
the start event produces a ZI and goes to State 2. The
Zl will then produce a Z2 and go to State 3. The Z2
will produce a Zl and go to State 2. The cycle between
States 2 and 3 will continue indefinitely.

Priority conflicts can arise when multiple Z pulses
are utilized. In Figure 33, an RI in State 2 produces
both ZI and Z2.

The Z pulses will be produced following the RI
(Priority Rule 1), but which Z will be effective in
State 3? Priority Rule 2 was created to handle conflicts
of this sort: When a state has two or more transitions
produced by separate Z pulses and when the two or
more Z pulses occur on the same input, the transition
line in the higher position in the state diagram will
occur first. In Priority Rule 2, "higher position" means
the uppermost transition line in a state having multiple
transitions. In Figure 33, the Zl transition will take
place because it is drawn above the Z2 transition.

In Figure 34, involving parallel state sets, the RI in
SSI produces ZI and Z2. In SS2, the Z2 transition
will occur, producing State 4, because it is the upper
transition line.

STATE NOTATION 341

REFERENCE NOTES

CONCLUSION

Figure 38. State diagram nIustrating priorities in decision
functions within a state transition.

REFERENCES

state notation and the SKED computer system for communica­
tion, education, and restarch. Symposium presented at the 81st
annual meeting of the American Psychological Association,
Montreal,1973.

2. Farris, H. E. Classroomprogram booklet: 197H976. Unpub­
lished manuscript, Western Michigan University, 1976.

BERRYMAN, R., & NEVIN, J. A. Interlocking schedules of rein­
forcement. Journal of the Experimental Analysis of Behavior,
1962,3,213-223.

BRANDAUER, C. M. The effects of uniform proiNIbilltiD of nin­
fo,"ment. Unpublished doctoral dissertation, Columbia Uni­
versity, 19~8.

CATANIA, A. C. Concurrent operants. In W. K. Honig (Ed.),
Operant be1ulvior: Areas of research and application. New
York: Appleton-Century-Crofts, 1966.

CATANIA, A. C., & REYNOLDS, G. S. A quantitative analysis
of the responding maintained by interval schedules of rein­
forcement. Journal of the Experimental Analysis of Be1ulvior,
1968,11, 327-383.

FARMER, J. Properties of behavior under random interval rein­
forcement schedules. Journal of the Experimental Analysis of
Be1ulvior, 1963,6,607-616.

FERSTER, C. B., & SKINNER, B. F. Schedules of ni'l!o,"ment.
EnaIewood Cliffs, N.J: Prentice-Hall, 1957.

FINDLEY, J. D. An experimental outline for building and explor­
ing multi-operant behavior repertoires. Journal of the Experi­
mental Analysis ofBehavior, 1962,5, 113-166.

HOD08, W. Progressive ratio as a measure of reward strength.
Science, 1961,134,943-944.

KELLER, F. S., & ScHOENFELD, W. N. Principles of psychol­
ogy. NewYork: Appleton-Century-Crofts, 1950.

McCLUSKY, E. J., JR. Introduction to the theory of switching
circuits. NewYork: McGraw-Hill, 1965.

MEALY, G. H. A method for synthesizing sequential circuits.
&11System T«hnical Journal, 1955,34, 1045-1079.

MECHNER, F. Sequential dependencies of the lengths of con­
secutive response runs. Journal of the Experimental Analpis
ofBehavior, 19~8, 1,229-233.

MECHNER, F. A notation system for description of behavioral
processes. Journal of the Experimental Analysis of &Iulvior,
1959,2,133-150.

MOOD, E. F. Gedanken-Experiments on lClquential machines.
Automata Studies, Annals of Matlrematical Studies, 1956, 34,
129-153.

RIDER, D. P. Interlocking schedules: The relationship between
response and time requirements. Journal of the Experimental
Analysis ofBehavior, 1977,11,41-46.

ScHOENFELD, W. N., CUMMING, W. W., & HEARST, E. On
the classification of reinforcement schedules. Proceedings of tire
National Academy ofSciences, 1956,42,563-570.

SIDMAN, M. Two temporal parameters in the maintenance of
avoidance behavior by the white rat. Journal of Comparative
and PhysiologicalPsychology, 1953,46,253-261.

SKINNER, B. F. The be1ulvior oforganisms. NewYork: Appleton­
Century-Crofts, 1938.

SKINNER, B. F. Diagramming schedulesof reinforcement. Journal
ofthe Experimental Analysis ofBelulvior, 1958,I, 67-68.

SNAPPER, A. G., & KADDEN, R. M. Time-sharing in a small
computer based on a behavioral notation system. In B. Weiss
(Ed.), Digital computers in the be1ulvioral laboratory. New
York: Appleton-Century-Crofts, 1973.

SNAPPER, A. G., KNAPP, J. Z., & KUSHNER, H. K. Mathe­
matical description of schedules of reinforcement. In W. N.
Schoenfeld (Ed.), The theory of ni'l!orcement schedules. New
York: Appleton-Century-Crofts, 1970.

ZEILER, M. Schedules of reinforcement: The controlling vari­
ables. In W. K. Honig & J. E. R. Staddon (Eds.), Handbook
of operant behavior. Englewood Cliffs, N.J: Prentice-Hall,
1977.

TI£NIF
A' J

ELSE

RI, SET A· J

State notation has been utilized, over the past 12 years,
by an increasing number of scientists and educators to
communicate the details of behavioral procedures. The
utility of this system for providing unambiguous descrip­
tions of procedures to computerized control systems
gave impetus to its initial development (under the
name SKED)I and to its subsequent improvement
(titled SUPERSKEDV Notational clarity has advanced
concomitantly with the development of improved con­
trol methods. This notational system has proved to be
sufficiently flexible to describe a wide variety of pro­
cedures, regardless of their complexity.

S.S.!~~ Rl .r>.
USTA~~~)

S.S.1

I. Lyon, D.O., & Michael, J. Introducing state notation in
university instruction. In A. G. Snapper (Chair), The use of

to State 3 before the decision function of SS2 could be
entered.

A fourth priority rule is needed to define what will
happen with IF decision functions that check a variable
that is modified on the same transition line in which
the decision function is used. Figure 38 illustrates this
potential conflict.

Each Rl in State 2 sets A to 3 and checks the current
status of A. Priority Rule 4 states that the output and
decision functions caused by an input in a state occur
in sequential order from left to right. In Figure 38,
then, transition will always occur from State 2 to the
next state when an Rl occurs in State 2, because A is
always set to 3 first. Although this is a trivial and non­
useful example, Priority Rule 4 defines the outcome of
similar conflicts.

Although the priority rules are arbitrary to some
degree, in that other equally usable rules could have
been chosen to handle conflicts, the current rules have
been used successfullyin severalversionsofstate notation.

Figure 37. State diagram illustrating priorities in decision
functions.

342 SNAPPER, KADDEN, AND INGLIS

NOTE

I. SKED and SUPERSKED are registered trademarks of State
Systems, Inc., of Kalamazoo, Michigan.

APPENDIX

Concepts of State Notation
ADD. ADD 1 is equivalent to SET C(I)=C(1)+1. ADD X(3)

is equivalent to SET X(3)=X(3)+1.
ALWAYS. A comment to clarify the final common path

for decision functions.
CARRAY. The variable C is unique in that it is used for

recording data. (See ADD.) Otherwise, it is similar to any other
variable.

DECISION FUNCTION. Specifies what occurs if an alge­
braic statement is valid at the time of state transition. Every
decision function has one input transition and two output
transitions. (See "IF," "WITH," "THEN," "ELSE," and
"ALWAYS.)

ELSE. A comment used to indicate the path to be taken if
the comparison involved in a decision function is not true.

FIXED TIME INPUT. A fixed time input (e.g., 10 sec) IS

always started or reset on entry to the state in which it is an
input. (Contrast with VARIABLE TIME INPUT.)

FIXED COUNT INPUT. A fixed count of responses or
Z pulses (e.g., 5RI) is always reset on state entry. (Contrast
with VARIABLE COUNT INPUT.)

IF. A decision function that can be used to compare the
current value of a variable or the state number of the current
state in a state set with another variable or constant and then
to select one of two different paths, depending upon the ou r­
come of the comparison.

INDEX. The index, or subscript, of a variable array points
to one of the items in the array and is itself a variable.

INPUT. A response, the passage of time after state entry, or
a Z pulse. Since inputs are instantaneous, only one input is
considered to occur at a time.

LIST. The list is a declaration of values for an array. When
the last element of the list is used, the list starts again from
the beginning. The LIST function is often used for specifying
the sequence of input requirements for variable-ratio or interval
schedules, but it may also be used to specify a sequence of
values for any variable.

LOGICAL OR. Inputs can be "OR'd," meaning that the
completion of any of several input requirements will have the
same effect, producing the same transition and the same outputs.
The OR symbol is +.

OUTPUT. Any stimulus change or mathematical operation
that may occur when an input requirement is completed.

PARALLEL STATE SETS. Subprocesses that are essentially
independent can be diagrammed as separate state sets operating
in parallel. They may intercommunicate by means of Z pulses.

RAND. The RAND function selects elements from a list at
random without replacement until each element of the list has
been selected.

RESET INPUT COUNTERS. When a state is entered, all

fixed input counter requirements are reset to a specified number.
This is true for counters of responses and counters of Z pulses,
as well as for counters of the passage of time. However, variable
inpu t counters are not reset upon state entry; they are modified
only by the SET, LIST, or RAND functions.

SET. An assignment statement used to change the value of a
variable to that of a constant, another variable, or an expres­
sion.

STATE. A portion of a sequential procedure. A state consists
of the contingencies present during some time interval: that is,
the designation of the possible transitions that will result when
various inputs occur.

STATE SET. A collection of states, and transitions among
them, that make up a procedure.

START. An event that can act as an INPUT and will start a
session.

STOP. End-of-session command that inactivates all state
sets.

SX. SX is used to terminate "null" transitions that neither
terminate states nor reset input requirements. Null transitions
may, however, generate outputs.

THEN. A comment used to indicate the path to be followed
if the comparison of a decision function is true.

TRANSITION. The instantaneous change between two states,
triggered by an input. The previously active state is immediately
deactivated, and any specified outputs are immediately imple­
mented.

VARIABLE. A quantity whose value changes as a function
of algebraic relationships between other quantities. See "SET."

VARIABLE COUNT INPUT. A variable count of responses
or Z pulses (e.g., V RI) that always must be explicitly set to
an initial value (e.g., SET V=lO), since the variable is decre­
mented to zero during the counting process.

VARIABLE TIME INPUT. A variable time (e.g., V T) must
always be set to an initial value (e.g., SET V=IO"), since the
variable is decremented to zero during the timing process.

WITH P. A decision function based on a random probability.
Z PULSE. An internal pulse generated as an output in one

state set and used as an input by another state set, to synchro­
nize them.

Priority Rules
Priority Rule I. Z pulses operate after the input that pro­

duces them has operated on each state set, but before an input
of any other type can occur.

Priority Rule 2. When a state has two or more transitions
produced by different Z pulses and when these two or more
Z pulses are produced by the same input, the transition line in
the higher position in the state diagram will occur first.

Priority Rule 3. When an input occurs, it drives state sets
sequentia1ly (State Set I first, State Set 2 next, etc.)

Priority Rule 4. The output and decision functions caused
by an input to a state occur in sequential order, as listed from
left to right.

(Received for publication March I, 1982;
accepted March 5,1982.)

