
Behavior Research Methods. Instruments. & Computers
1990. 22 (2). 179-183

SESSION VIII
TEACHING USING COMPUTERS:
GENERAL ISSUES AND REVIEWS

N. John Castellan, Jr., Presider
Indiana University

An implementation and empirical evaluation of
an exploration environment with

different tutoring strategies

FRANZ SCHMALHOFER and O'ITO KUHN
German Research Center for Artificial Intelligence, Kaiserslautern, West Germany

RHONA CHARRON
McGill University, Montreal, Quebec, Canada

and

PAULA MESSAMER
University of Colorado, Boulder, Colorado

An exploration environment and tutoring strategies were developed for the first few hours of
learning the programming language LISP. In this environment, the amount of exploratory and
receptive learning can be systematically manipulated. In an experimental study with three differ­
ent learning conditions, learning in a basic exploration environment (without an automated tu­
tor) was compared to learning with an automated tutor that provided help rather selectively,
and with an automated tutor that provided help whenever possible. The results showed that the
selective tutor condition was most effective: The students in this condition took the least time
in acquiring knowledge and solving the criterion test tasks, while solving equal numbers of the
tasks correctly.

Tutoring systems provide a new means of combining
learning from instructions (receptive learning) and learn­
ing through exploration, so as to utilize the advantages
of both learning methods and avoid their disadvantages.
In addition, the instruction and exploration sequences can
be tailored to the particular needs of the learner. Since
the teaching strategy of a tutoring system can be made
either more or less instruction- or exploration-based
(Dede, 1986), an adequate mixture ofreceptive and ex­
ploratory learning must be determined for every tutoring
system.

In receptive learning, a teacher or tutor presents infor­
mation so that the learner can acquire new knowledge.

This research was supported by grant Schm 648/ I from the Deutsche
Forschungsgemeinschaftto the first author and by an equipment grant
from ffiM/Canada to McGill University. Correspondenceshould be ad­
dressed to Franz Schma1hofer, German Research Center for Artificial
Intelligence, Postfach 2080, 0-6750 Kaiserslautem, West Germany.

In exploratory learning, on the other hand, the learners
themselves can choose which additional knowledge they
want to acquire by instigating an appropriate interaction
with an environment that will supposedly yield new in­
formation. Receptive learning can be divided further, ac­
cording to type of material. The tutor may present general
statements in the form of a text. This method has been
called "learning by being told" or "advice taking"
(Mostow, 1983). The tutor may also present concrete ex­
amples of a situation, in order to represent specific solu­
tions to a particular problem. The student can thus learn
from a demonstration consisting of a sequence of exam­
ples. This learning method hasbeen called "learning from
examples" (Winston, 1975).

Exploratory learning can also be divided according to
type of material. The type of material available to a learner
depends on what the learner is exploring. If the learner
explores an environment, only concrete situational exam­
ples will be available. Thus, when a learner generates

179 Copyright 1990 Psychonomic Society, Inc.

180 SCHMALHOFER, KUHN, CHARRON, AND MESSAMER

some input to a LISP-interpreter environment, this input
and the environment's response together will constitute
a situationalexample. This method has been called "learn­
ing by discovery. " If a tutor or teacher is available for
interrogation by the student, much more general questions
can be asked and answered. The learning material may
therefore also consist of text sentences. This method is
called the "question and answer" method.

A TUTORING SYSTEM FOR
LEARNING ELEMENTARY LISP

To test different combinations of receptive and explora­
tory learning, a tutoring system consisting of a learning
environment and a teaching component was developed.
The learning environment was restricted to the subject's
first few hours of learning the programming language
LISP.

The tutoring system is applied in the following ways:
(1) Learning by being told is used to induce the knowledge
needed for successful learning by exploration; (2) an ex­
ploration agenda is provided to the learner (e.g., "learn
the functions FIRST, REST, and LIST"), and a simple
correct example is shown for each function; (3) the stu­
dent's explorations are then monitored by tracking the
learning progress in terms of a model (Schmalhofer,
1986); and (4) the resulting student model, which is up­
dated on-line with every exploration episode, is used to
determine when learning from a specific example and
learning by being told should be applied; learning from
an example is applied when a user needs help with specific
details (i.e., when he or she repeatedly produces an er­
ror), whereas learning by being told is applied to direct
the learner's attention and provide more global concep­
tual information.

In the tutoring system, the amount of receptive learn­
ing can be manipulated in two ways: Examples or advice
can always be presented whenever a student behaves
nonoptimally. Alternatively, learners may be allowed to
learn from their own mistakes; in this case, examples or
advice will only be presented after a learner has also failed
to learn from such a mistake. We will now describe the
various components of the tutoring system.

The Basic Exploration Environment
The learning environment is based on a reduced LISP

interpreter, which is written in TURBO PASCAL on an
ffiM/AT. It can handle the functions LIST, FIRST, REST,
SET, and DEFUN, as well as any combination and any
list structure. Acting in the learning environment, within
an hour the student can learn: (1) the correct syntax for
an input to the LISP system; (2) how a given input is
evaluated and what result will be returned; (3) the num­
ber and type of arguments that a function requires; and
(4) that quoted expressions, bound atoms, or function calls
can be specified as arguments.

At the beginning of a learning session, examples for
each function that the learner can explore are shown at
the top of the screen. The learner must then generate an

input to the LISP system. In order to avoid unnecessary
typing errors, only characters valid in LISP (letters, digits,
blank, parentheses, and quotation mark) can be typed, and
only lines with balanced parentheses are accepted as in­
puts. In addition, colors are used to indicate the level of
nesting in the expressions. Because these features help
to generate syntactically correct training examples, they
should reduce the number of trivial and useless syntax
errors. (Such errors do not convey useful information
about the system, and they reduce the efficiency of learn­
ing through exploration because they increase study time.)

The generated inputs are evaluated by the LISP inter­
preter, and either the result of the evaluation or an error
message is displayed. If the monitor that supervises the
learning process detects a sequence of training examples
that do not seem to contain useful information, the learner
is prompted to press a key in order to get help. Both the
detection of inefficient exploration and the assistance
provided are based on the monitoring of the knowledge­
acquisition process.

Monitoring of the
Knowledge-Acquisition Process

Every input is analyzed immediately by the monitor.
Ideally, such an analysis should be conducted according
to psychological principles. In particular, it should render
a description closely related to the information that
learners store in their memories. Instead of storing every
example individually in memory, learners remember only
information that they consider generally relevant and ig­
nore information that is highly specific. The knowledge
of the general form of correct inputs to the LISP system
can be described by templates (Anderson, Farrell, &
Sauers, 1984).

The monitor models a template construction process by
means of an inductive learning mechanism that creates
increasingly general template representations. Beginning
with the first input, the LISP interpreter determines
whether or not each input is syntactically correct. Syn­
tactically correct inputs are called positiveexamples. The
first positive example is stored in memory. When a sec­
ond positive example is generated, the two examples are
compared from left to right, in order to construct a tem­
plate. As long as the respective elements of the two ex­
amples are equal, they are taken as constants of the tem­
plate. When they are different but are named as belonging
to the same class, a variable is introduced to the template
with the constraint that it may take as a value any mem­
ber of the respective classs. If the two elements that are
being compared belong to different classes, whether or
not they both belong to a more general superclass is
checked. If they do, a variable is introduced with the con­
straint that the template must be bound to a member of
the respective superclass. If no common superclass can
be found, the generated input is used to build a separate
template.

Since the generated inputs may differ in number of ele­
ments, generalizations are made regarding not only class
membership, but also number of elements. The sequence

LEARNING FROM EXPLORATIONS AND INSTRUCTIONS 181

of input examples below shows how a template that is con­
structed from the first example is modified, and how a
separate template is constructed from the fourth exam­
ple. The input sequence is shown on the left, and the con­
structed templates and modifications are shown on the
right. (?A denotes a single member and +A an arbitrary
number of members of a class.)

1. (FIRST '(A 8» (FIRST '(A '8», (A is-atom),
(B is-atom)

2. (FIRST '(X (Y Z))) (FIRST '(?A ?8», (?A is-atom),
(?8 is-expr)

3. (FIRST '«A 8») (FIRST '(?A + 8», (?A is-expr),
(+8 is-expr)

4. (FIRST FRIENDS) (FIRST ?A), (?A is-hound-atom)
(FIRST '(?A +8», (?A is-expr),
(+8 is-expr)

Teaching Strategy
Assistance to learning through exploration is provided

by the tutor on two occasions: (1) when a sequence of
n inputs that are redundant in terms of the constructed
templates has been detected, or (2) when a sequence of
m errors has been detected.

Since redundant examples are usually generated when
a learner does not know what else can be learned about
the system, information about more general or presently
yet unexplored features of the system should be provided.
Such information can be provided best in the form of a
short text. The template that matches the last example is
examined in terms of whether it can be generalized fur­
ther, or whether it already describes some unit of the tar­
get knowledge. If further generalization is possible, a ver­
bal description of more general inputs is presented. If no
further generalization of the particular template is possi­
ble, a general verbal description of the yet unlearned func­
tions is presented. The verbal descriptions provided as
help are all prestored, so they can simply be selected for
presentation. The help information for some redundant
examples is shown below:

example I: (FIRST '(A 8»
example 2: (FIRST '(X Y»
help information: The argument for the function FIRSTcan be
a list of any complexity.
example 3: (FIRST '«A 8) (C D)))
example 4: (FIRST '(X Y»
helpinformation: The argument for the function FIRSTcanalso
be a hound atom or a function call.

Such information should help the learner open a new
exploration space, in which new informative examples can
be constructed. When a sequence of errors is detected,
the learner presumably has wanted to perform a task, but
has failed to construct a completely correct solution out
of prior knowledge. Since the learner wanted to generate
a particular example, a demonstration of a correct form
that is closely related to the negative example should be
helpful. To accomplish this goal, the last incorrect input
of the error sequence is corrected and then presented to
the learner. The correction is accomplished through anal­
ysis of the incorrect input from left to right. Parentheses
and quotes are deleted or added if needed, with the fol­
lowing restriction: Ifa symbol is identified asbeing a func­
tion name, the input is corrected whenever possible in such
a way that the function name yields a function call. Be­
low, one can see how some incorrect inputs are corrected.
The corrected examples provide a solution to some task.
Presumably this solution is at least related to the solution
that the learner has attempted.

Incorrect:

1. (FIRST (FIRST '(A (8))))
2. (FIRST (REST '(A 8» (REST C D»
3. (LIST (FIRST '(A 8) (REST '(C D»»
4. I AM HERE

Corrected:

1. (FIRST (FIRST '«A) (8))))
2. (FIRST (REST '(A 8 (REST CD»)))
3. (LIST (FIRST '(A 8» (REST '(C D)))
4. '(I AM HERE)

EMPIRICAL EVALUATION OF
TUTORING STRATEGIES

Method
In the following empirical study (Charron, 1989), three

different learning conditions were compared. Learning in
the basic exploration environment (with no tutor) was
compared with both learning with a selective tutor and
learning with a constant tutor. The selective and the con­
stant tutor differed in teaching strategy. For the selective
tutor, the parameters were set to n = 3 (assistance after
three similar inputs) and m = 2 (correction after two er­
rors). The constant tutor was specified by setting n = 2
(assistance after two similar inputs and m = I (every er­
ror is corrected).

Table 1
Mean Results of the Learning Phase

Condition

No Tutor Selective Tutor Constant Tutor

Exploration time (min)
No. of inputs
No. of errors
No. of tutor assistances

17.6
24.50 (8-59)
7.16 (1-22)

11.8
17.67 (11-22)

3.33 (0-6)
1.00 (0-6)

17.8
25.33 (5-62)
7.50 (0-19)
7.50 (0-19)

Note-Ranges of values given in parentheses.

182 SCHMALHOFER, KUHN, CHARRON, AND MESSAMER

Condition

Table 2
Results of the Test Phase

Results
The results of the learning phase of the experiment are

shown in Table 1. Subjects in the selective tutor condition
spent less time in exploring the LISP functions than did
the subjects in the no-tutor and constant-tutor conditions.
This time difference can be explained by the fact that the
selective tutor subjects generated fewer inputs and made
fewer errors. Also, a smaller number of tutor corrections
was required in the selective tutor conditions. However,
none of these group differences were significant.

The results in Table 2 show that the subjects in the two
tutor conditions required significantly less time to solve
the programming tasks than did the subjects in the no­
tutor condition [F(2,14) = 4.6, MSe = 47.3, P < .05].
There was no significant difference in the number of cor­
rectly solved programming tasks; all subjects solved about
50%of the programming tasks correctly. When the results
of the learning and testing phases are considered together,
it can be said that the most efficient learning occurred in
the selective tutor condition, followed by the constant­
tutor condition. The worst performance was observed in
the no-tutor condition.

Subjects. Eighteen students from McGill University,
who were paid $10 for their participation, were randomly
assigned to one of the three conditions.

Procedure. After having read an introduction sheet, that
outlined the experiment, all subjects read a text about data
representations in LISP (Atoms and Lists) and about how
the LISP interpreter evaluates expressions. After that,
knowledge about the LISP functions FIRST, REST, and
LIST was to be acquired under the three different ex­
perimental conditions. For each function, a single exam­
ple was presented at the top of the screen. All subjects
were instructed to interact with the exploration environ­
ment until they felt that they had acquired sufficient
knowledge for solving related programming tasks. Among
other data, the number and duration of interactions with
the exploration environment were recorded. Upon com­
pletion of this learning phase, all subjects were tested with
an identical set of six simple programming tasks. The
programming tasks required the learners to extract and
combine various elements from lists. Two sample pro­
gramming tasks are as follows:

Generate an input to the LISP system using the list (A B C) so
that the atom A is returned.

Generate an input to the LISP system using the list (A B C) so
that the atom B is returned.

COMPARATIVE DISCUSSION

In this discussion, other tutoring approaches (e.g., An­
derson's LISP-tutor) will be compared to the present one
and to the results of our research. In learning a program­
ming language like LISP, students are normally expected
to study a textbook and consequently solve a number of
related programming problems. Intelligent automated
tutoring systems are typically applied for assisting learners
in solving such programming problems (Anderson &
Skwarecki, 1986). The tutor determines which set of
programming tasks is to be solved. For each program­
ming task, a tutor has one or several goal structures, each
of which determines a valid solution to the problem.
Whenever a learner makes a syntactic error or the
leamer's programming actions deviate from the tutor's
goal structure, the tutoring system immediately provides
help. The learner will therefore always follow one of the
tutor's goal structures for solving the task.

Three important assumptions underlie this approach:
(1) It is better to have the teacher or tutor determine which
tasks need to be solved than to allow the student to be
creative and make his or her own selection. (2) All the
possible or good solutions to a task can be generated
on-line or are known beforehand. (3) Presumably stu­
dents cannot learn from their own errors. Therefore,
students' errors should be immediately corrected when
they arise.

The preceding assumptions, however, may not hold for
all learning situations. Since learners may prepare them­
selves for performing quite different tasks with a system,
different learners have different learning needs. Learners
may also come up with new solutions to a problem, which
have not been represented in the tutoring system. Since
the errors that students make in performing tasks are
directly related to the students' own goals, error messages
may themselves stimulate personally useful reasoning
processes. Under some circumstances, students may there­
fore better learn from their own errors rather than being
presented correct solutions that are only vaguely related
to their own thought processes. Rather than make the
learner abandon (erroneous) thoughts completely, the
presentation of a related correct input may sometimes bet­
ter allow the learner to straighten out errors and thus con­
tinue along a line of personal reasoning.

The present empirical study showed that the partial tu­
tor condition was the most effective. These learners re­
quired the least amount of time to acquire the knowledge
to solve the criterion test tasks and to solve an equal num­
ber of programming tasks correctly. Overall, tutoring was
successful, in that the learners in both tutor conditions
performed better than those in the no-tutor condition. The
results thus suggest that a partial tutoring strategy used
with an exploration environment may be quite success­
ful, because this combination includes the advantages of
both types of learning.

18.49
61

18.45
50

30.45
47

No Tutor Selective Tutor Constant Tutor

Total time (min)
Percent correct

LEARNING FROM EXPLORATIONS AND INSTRUCTIONS 183

REFERENCES

ANDERSON, J. R., FARRELL, R., & SAUERS, R. (1984). Leaming to pro­
gram in LISP. Cognitive Science, 8, 87-129

ANDERSON, J. R., & SKWARECKI, E. (1986). The automated tutonng
of introductory programming. Communications of the ACM, 29,
842-849.

CHARRON, R. (1989). The influence ofdifferent degrees ofassistance
in automated tutoring. Unpublishedmaster's thesrs, McGill Umver­
sity, Montreal.

DEDE, C. (1986). A review and synthesis of recent research in mtelli-

gent computer-assisted instruction. International Journal of Man­
Machine Studies, 24, 329-353

MOSTOW, D J (1983). Machine transformation of adviceintoa heuristic
search procedure. In R. MIchalski,J G Carbonall, & T. M Mitch­
ell (Eds.), Machine learning (pp. 367-403). Palo Alto, CA: Tioga.

ScHMALHOFER, F (1986).The construction of programming knowledge
from system explorations and explanatory text: A cognitIve model.
In C R Rollinger & WHom (Eds.), GWAI-86 and 2nd Austrian
Artificial Intelligence Conference (pp. 152-163). Heidelberg. Sprmger.

WINSTON, P.H. (1975). Learning structural descriptions from exam­
ples. In P H Winston (Ed.), The psychology of computer vision
(pp. 157-209) New York: McGraw-Hill.

