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Timecourse of coactivation in
bimodal divided attention
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Reaction time distributions were obtained from practiced subjects in a go/no-go detection task
with attention divided across the visual and auditory modalities. Redundant signals were some
times presented asynchronously on the two modalities, with the time between signals varying
from 0 to 167 msec. An extension of the inequality derived by Miller (1982) was used to test be
tween separate-decisions models, in which the response is initiated solely by whichever signal
is detected first, and coactivation models, in which both signals contribute to the activation of
a single response. As in previous studies with bimodal detection tasks, the results contradicted
separate-decisions models and favored coactivation models. The largest violations of separate
decisions models were observed when the visual signal was presented 67-100 msec before the
auditory signal. A new inequality was also derived to discriminate between two classes of coacti
vation models that differ about whether responses are generated by processes combining activa
tion across time as well as across signals. Violations of this inequality ruled out exponential coac
tivation models, in which activation processes are sensitive only to the instantaneous properties
of the signalfs), Instead, the results require an accumulation model of coactivation, in which both
signals provide input to a process that accumulates activation over a considerable period oftime,
even if signal conditions change during that time.

In divided-attention tasks, people are often asked to
monitor two different information channels and make a
speeded response as soon as a signal is presented on either
channel. To understand the division of attention, it is par
ticularly important to determine what happens when sub
jects must process two signals presented simultaneously
on different channels. Intuitively, it seems that the con
sequences ofdividing attention should bemost pronounced
when both channels require action at the same time, so
the characteristics of the underlying division should be
particularly apparent under such circumstances.

Empirically, it is almost always the case that a response
is made faster when it is indicated by two simultaneously
presented signals, one on each channel, than when a sin
gle signal is presented on either channel alone (e.g., Raab,
1962). This paper is concerned with the explanation of
this advantage, often called the redundant signals effect
(RSE), in bimodal detection tasks with visual and audi
tory signals. The RSE has consistently been obtained in
such tasks (e.g.; Miller, 1982), but explanations of the
effect vary widely.

The simplest explanation of the RSE is embodied in a
class of models commonly called separate-decisions or
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race models (Raab, 1962). In these models, separate
processes respond to signals on different channels. When
one signal is presented, the response is activated solely
by the process that monitors that signal's channel. The
process associated with each channel is stochastic, so the
response time (RT) to a given signal varies randomly from
trial to trial. When both signals are presented simulta
neously, each process proceeds as if only its own signal
had been presented. If the two processes compete for
resources (e.g., attention), their finishing times may be
negatively correlated; if they are influenced in the same
way by an internal state (e.g., alertness), their finishing
times may be positively correlated; or, of course, the
finishing times may be independent. In any case, the
response is caused by the first of the two separate
processes to finish (hence the name "race models"). As
suming that there is some overlap in the distributions of
the finishing times for the two response-activation
processes so that each wins the race on some of the trials
with redundant signals, responses to redundant signals will
be faster, on average, than responses to either of the sig
nals presented alone. In this model, the RSE reflects facili
tation of a purely statistical variety (Raab, 1962), since
the process that activates any given response is influenced
by the presence of only one of the two signals.

Models that embody the assumption of separate deci
sions are plausible candidates to explain the RSE, because
they have had considerable success in predicting detec
tion accuracy in bimodal divided attention tasks (e.g., Cor
coran & Weening, 1969; Mulligan & Shaw, 1980; Shaw,
1982). A variety of evidence contradicts these models,
however, by showing interactions among stimuli on differ-
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ent sensory channels (e.g., Bernstein, 1970; Colavita,
1974; Gielen, Schmidt, & Van den Heuvel, 1983; Long,
1976; Nickerson, 1973). This paper focuses on one par
ticular source of evidence against these models, obtained
by examining RT distributions within bimodal divided
attention tasks.

Miller (1982) noted that all race models must make an
explicit prediction regarding the distributions of RTs that
should be observed in response to redundant signals. Let
RTy, RTA , and RTRbe random variables corresponding
to the RTs observed on trials with visual signals, audi
tory signals, and redundant signals, respectively. RTy and
RTA might have any bivariate probability distribution, but,
according to race models, RTRis constrained by the re
lation:

RTR = min(RT y, RTA ) .

This relation follows directly from the assumption that
the response on a redundant-signals trial is determined
by whichever of the separate processes finishes first.
Given this constraint, it is easy to prove (see Miller, 1982)
that the following inequality must be satisfied by Fy(t),
FA(t), and FR(t), the cumulative probability density func
tions (CDFs) of RTs in the three conditions:

FR(t) ~ Fv(t) + FA(t) for all t. (1)

That is, for any time, t, the proportion of redundant-signal
responses faster than t should be less than or equal to the
sum of the proportion of visual-signal responses faster than
t and the proportion of auditory-signal responses faster
than t.

Miller (1982) tested and found violations of Inequal
ity 1 in a bimodal detection task with easily detectable
visual and/or auditory stimuli. Subjects were required to
press a response key as quickly as possible on trials with
either the visual signal or the auditory signal, or with both,
and to withhold the response on trials without any signal.
The observed RTs on trials with visual signals, auditory
signals, and redundant signals were used to estimate the
respective CDFs Fy(t), FA(t), and FR(t), and the estimated
values significantly violated Inequality 1. In particular,
the inequality was violated for relatively small values of
t, suggesting that there were more fast responses to redun
dant signals than could be explained in terms of a race
between separate responses to visual and auditory signals.
Thus, race models cannot account for the RSE.

The observed violations ofInequality 1 support models
in which the RSE reflects more than just statistical facili
tation of average RT. In these models, simultaneous sig
nals on different channels activate the response jointly
rather than separately, so the system must combine re
sponse activations contributed by processes that monitor
different channels. Such models have been referred to as
coactivation models (e.g., Grice, Canham, & Boroughs,
1984; Miller, 1982).

The experiment reported in this paper was designed to
study the timecourse of response coactivation in bimodal
detection tasks. Redundant visual and auditory signals

were presented with signal onset asynchronies (SOAs) up
to 167 msec, and the resulting data were used to address
two major issues about the timecourse of response coac
tivation.

One issue was whether RTs to asynchronous redundant
signals would reveal violations of race models analogous
to those observed with simultaneous redundant signals,
and, if they did, how the size of the violations would de
pend on SOA. 1 To evaluate race models with asyn
chronous signals, Inequality 1 must be generalized
slightly. According to race models, a response to redun
dant signals is caused by the first to finish of the two
separate processes responding to each signal. Obviously,
the two processes will not start at the same time if signal
presentation is asynchronous, and finishing times must
be adjusted to take that fact into account. If RT is mea
sured from the onset of the first signal, the SOA between
signals must be added to the latency of responses to the
second signal. Let SOAy and SOAA denote the SOAs from
the onset of the first signal to the onset of the visual and
auditory signals, respectively. This notation is very con
venient when measuring RT from the onset of the first
signal, although it is admittedly peculiar in that one of
the two SOAs must equal zero on any trial (i.e., the SOA
for the first signal). Given this notation, the race model
asserts that:

RTR,sOA = min(RT y+SOAy, RTA + SOAA) ,

where RTR,sOA is the obtained RT on a redundant signals
trial with the indicated SOA, and RTy and RTA are still
the finishing times for the separate processes responding
to visual and auditory signals. The addition of the SOA
is the appropriate correction for asynchronous signals; if
the start of one racer is delayed by an amount SOA, that
racer's completion time will increase by the same amount.
This constraint imposed by race models is exactly analo
gous to the one with simultaneous redundant signals, and
an inequality analogous to Inequality 1 follows im
mediately:

FR,sOA(t) ~ Fy(t-SOAy)+FAt-SOAA) for all t. (2)

Thus, one purpose of the present research was to see
whether Inequality 2 was violated-and race models fur
ther contradicted-with asynchronous redundant signals.

The second issue addressed by the present research in
volved a comparison between two classes ofcoactivation
models using a new inequality related to Inequalities 1
and 2. Although those inequalities can be used to see
whether response processes combine activation across sig
nals, the second main objective of this study was to in
vestigate the question of whether response processes could
combine activation across time. Two classes of coactiva
tion models were considered-referred to here as "ac
cumulation" and "exponential" models-both of them
generalizations of standard RT models developed for tasks
with single stimuli and no attentional manipulations. Both
classes of models are consistent with violations of Ine
quality 1, but only the former allows for a combination



of activation across time. In brief, accumulation models
assume that coactivation occurs in a process that builds
up response activation gradually over time, whereas ex
ponential models assume that coactivation occurs in a
process that changes states in an instantaneous, all-or-none
fashion to generate a response.

Accumulation models are based on a mechanism that
sums small activations gradually over time, stopping when
a criterion is reached. This class of coactivation models
is a natural extension of RT models-often based on
statistical decision theory (e.g., Audley, 1973)-in which
a decision process accumulates evidence that a signal has
been presented (i.e., "response activation"), emitting the
response when the amount of activation reaches a certain
criterion level (e.g., Green & Smith, 1982; Link, 1975).
To account for divided-attention tasks, accumulation
models can be generalized to allow activation from more
than one channel to contribute to the process accumulat
ing activation. Such a model can easily explain the RSE,
because summing of activations produced by two signals
on different channels would allow the stopping criterion
to be satisfied before either signal had produced enough
activation to satisfy the criterion by itself. In essence, the
inequality predicted by race models is violated because
of a change in the rule for stopping the race. In an ac
cumulation model the race stops when the total distance
covered by the two runners is equal to the criterion dis
tance, whereas in a race model it stops as soon as one
of the runners covers the criterion distance. 2

In coactivation models of the exponential class, redun
dant signals combine in their influence on the instanta
neous state of the process generating the response, but
there is no accumulation of activation or evidence over
time. This class of coactivation models is an extension
of RT models with exponentially distributed decision times
(e.g., Ashby, 1982; Ashby & Townsend, 1980; Christie
& Luce, 1956; Green & Smith, 1982; Hockley, 1984;
Hohle, 1965; Luce & Green, 1970; Ratcliff, 1978; Rat
cliff & Murdock, 1976; Townsend & Ashby, 1983), be
cause in these models the decision to respond is made by
a mechanism that has a constant instantaneous probabil
ity (i.e., rate) of terminating at each moment after it be
gins (see McGill, 1963). It is usually assumed that total
RT is the sum of an exponentially distributed decision
making time and a normally distributed residual time that
reflects sensory and motor processes.

To extend exponential models to divided attention tasks,
one can allow the rate of the decision process to depend
on the signal configuration, with one rate for a visual sig
nal, a second rate for an auditory signal, and a third rate
for redundant signals. More specific exponential models
could attempt to specify the rate for redundant signals as
a function of the rates for the two individual signals. In
general, though, exponential models are consistent with
the RSE as long as the rate for redundant signals is higher
than the rate for either of the individual signals. Further
more, they are consistent with violations of Inequality 1
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if the rate for redundant signals is sufficiently greater than
the sum of the rates for the two individual signals.

To sharpen the contrast between accumulation and ex
ponential models and hint at a way of deciding between
them, note that an exponential process can be considered
history-free, because the probability of finishing in the
next instant of time does not depend on how long the
process has been active (i.e., its history). Accumulation
models, on the other hand, are history-dependent in the
sense that the probability of finishing in the next instant
increases with the time since the process began.

The SOA manipulation can be used to discriminate be
tween accumulation and exponential models by reveal
ing whether responses are jointly activated by both the
single signal present initially and the redundant signals
present after the end of the SOA. Such an effect is re
quired by history-dependent accumulation models, but is
inconsistent with history-free exponential models. Accord
ing to accumulation models, the first signal must start con
tributing increments of activation that move the accumu
lator some of the way toward the criterion. Once the
second signal is presented, both signals contribute addi
tional increments toward the criterion. This means that
the criterion is satisfied partly by activation from the first
signal alone and partly by activation from the two signals
acting together. In the present analysis, the increments
provided by the first signal can be regarded as the his
tory of the accumulation process, and the amount of acti
vation that must be accumulated from the two signals act
ing together (i.e., starting at the end of the SOA) is
influenced by this history.

In contrast, exponential models require the response to
be produced entirely by one of the instantaneous states
of the system. This could be the state produced by the
first signal, present until the end of the SOA, or the state
produced by the redundant signals, present after the end
of the SOA. Since there is no accumulation across time
in history-free exponential models, however, the response
cannot be influenced both by the presence of the first sig
nal and by the presence of the redundant signals.

In essence, then, the distinction between accumulation
and exponential models is that the former allow the
response to be influenced by two different signal config
urations that occur sequentially on a single trial, whereas
the latter allow the response to be influenced by only one
of them.? This distinction in the time domain is analo
gous to the distinction in the signal domain between race
models and coactivation models: coactivation models al
low combination of activation across signals, whereas race
models do not; analogously, accumulation models allow
combination ofactivation across time, whereas exponen
tial models do not. This analogy suggests that exponen
tial models must make a prediction similar to Inequali
ties 1 and 2.

Consider a trial on which a visual signal is presented
first and an auditory signal is presented after some non
zero SOAA. According to exponential models, a response
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observed on this trial will have been activated either by
the visual signal present before the end of the SOAA or
by the redundant signals present after the end of the SOAA,
but not by both." This situation is almost analogous to a
race between two response processes, with the process
responding to the visual signal getting a head start equal
to the SOAA' If the race analogy held exactly, then ex
ponential models would assert that

RTR,sOA = min(RTv, RTR,o+SOAA),

where RTR,o is the RT to simultaneous redundant signals.
The race analogy does not hold exactly, however, since

the racer for the visual signal is replacedby the racer for
the redundant signal if the former has not finished when
the redundant signal starts. Forcing the visual racer to drop
out when the redundant racer starts can only slow down
the winning time, relative to what would be observed if
the visual racer continued in the race. Thus, exponential
models actually assert that

RTR,sOA ~ min(RTv , RTR,o+SOAA).

This constraint leads immediately to Inequality 3, by
direct analogy to Inequalities 1 and 2:

FR,sOA(t) :s Fv(t) + FR,o(t-SOAA) for all t. (3)

The interpretation of Inequality 3 is that the response
on a trial with a visual signal followed after SOAA msec
by an auditory one should take long enough for it to be
attributable either to the visual signal state present at the
start of the trial or to the redundant signal state appear
ing SOAA msec later. An analogous inequality can be con
structed for trials on which the auditory signal is presented
first.

To summarize, the second purpose of this experiment
was to obtain data that could be used to test Inequality 3.
This inequality can be used to test exponential coactiva
tion models, all of which assert that it should be satis
fied. Because it is an inequality, the test is rather conser
vative; however, if any data are found to be inconsistent
with the inequality, the entire class of models can be re
jected.

METHOD

The apparatus and signals were the same as those used by Miller
(1982, Experiments 1 and 2): visual signals were response
terminated plus signs appearing in the center of a computer dis
play screen, and auditory signals were 780-Hz tones of 150-msec
duration. Responses were made by pressing the / (slash) key on
the computer keyboard with the right index finger. Two naive volun
teer subjects, a 35-year-old male (B.D.) and a 21-year-old female
(K.Y.), were tested over a period of about 1 month. Both were right
handed. Each was tested in 4O-min sessions during which two blocks
were completed, with one session per day and four to six sessions
per week. Subject B.D. eventually completed 42 blocks, and Sub
ject K.Y. completed 43. Only the last 40 blocks completed by each
subject were included in the analysis.

Each bimodal detection trial began when the subject pressed a
key to indicate readiness. Then a fixation point was presented for
250 msec and there was a random foreperiod lasting from 250 to

2,250 msec (uniformly distributed). At that point, the first signal
was presented, and after an appropriate SOA, the second signal (if
any) was presented unless the subject had already responded. On
catch trials, there was a 2-sec blank interval at the end of the ran
dom foreperiod, during which false alarms were recorded. No feed
back was given after responses. After each response there was an
enforced delay of 500 msec, after which the subject was given the
opportunity to initiate the next trial by pressing a key. Any trial
on which an error (false alarm or miss) occurred was rerun later
in the block.

Each block started with 4 warm-up trials, followed by 170 test
trials. There were 40 catch trials, on which no signal was presented
and no response was to be made, and 130 signal trials. The latter
130 trials were equally divided among 13 conditions: (1) visual sig
nal alone, (2) auditory signal alone, (3) both signals simultaneously,
(4-8) visual signal presented first, then auditory signal presented
33,67, 100, 133, or 167 rnsec later (SOAA), and (9-13) auditory
signal presented first, then visual signal presented 33, 67,100,133,
or 167 rnsec later (SOA v) . The subjects were instructed to respond
as quickly as possible if either the visual or auditory signal was
presented, or both, but to withhold the response if no signal was
presented.

RESULTS AND DISCUSSION

Before proceeding with the analysis of models using
Inequalities 2 and 3, it is worthwhile to examine several
features of the basic results. Table 1 shows descriptive
statistics for RT as a function of SOA, with SOAs ordered
symmetrically around the condition of simultaneous sig
nals. One of the most clear-cut results was that responses
to single auditory signals were much faster than those to
single visual signals [B.D., t(798) = 21,p < .01; K.Y.,
t(798) = 16.2, P < .01]. Faster responding to auditory
signals also appears to have influenced the results obtained
with redundant signals in three respects. First, there was
very little effect of a redundant visual signal presented
after the auditory signal, since responses to an auditory
signal presented alone were as fast as responses to an au
ditory signal followed by a visual signal in all but one
comparison [B.D., SOA v = 33, t(798) = 3.27,p < .01].
This probably results from faster responding to auditory
than to visual signals, because delaying the more slowly
processed visual signal would make it arrive too late to
have any impact on the response to the more quickly
processed auditory signal.

Second, auditory signals influenced responses even
when they were presented long after visual signals. Mean
RT increased systematically with SOAA, the time from
the visual to the auditory signal. For Subject B.D.,
responses were faster when the auditory signal was
presented 167 msec after the visual signal than when the
visual signal was presented alone, a particularly surpris
ing result because of the speed of responses in a simple
RT task. This effect is probably also related to the single
signal advantage for auditory signals, since a more quickly
processed auditory signal could often overtake a more
slowly processed visual one, even when the latter had a
head start.

Third, a relatively small RSE was obtained when visual
and auditory signals were presented simultaneously. This
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Table 1
Descriptive Statistics as a Function of SOA and Subject

SOA Condition

Auditory First: Visual First:

SOAv SOA..

Alone 167 133 100 67 33 0 33 67 100 133 167 Alone

Subject B.D.

Mean RT 231 234 230 227 228 221 217 238 263 277 298 316 348
SE 2.8 2.9 2.0 2.0 1.6 1.4 1.4 1.4 1.3 1.5 1.6 1.7 4.6
Min RT 164 180 162 165 155 166 158 189 213 215 93 235 60
Median RT 219 223 222 221 223 219 215 233 259 274 296 316 326
Max RT 720 966 403 624 347 437 469 546 431 648 526 532 767
RSE -3 1 4 3 10* 14* 26* 35* 54* 50* 32*

% Misses = 0.0 % False Alarms = 0.1 N = 400 observations per SOA

Subject K.Y.
Mean RT 211 216 217 214 218 215 208 237 249 256 273 278 282
SE 3.0 3.7 3.8 3.9 3.8 3.3 3.2 3.1 2.9 2.3 2.7 3.1 3.1
MinRT 138 130 131 144 58 140 88 176 79 166 Il3 192 196
Median RT 193 196 194 192 192 198 190 216 235 244 264 268 266
MaxRT 499 741 544 1060 489 489 502 557 560 542 585 612 664
RSE -5 -6 -3 -7 -4 3 7 29* 26* 9* 4

%Misses = 0.2 % False Alarms = 1.3 N = 400 observations per SOA

Note-SE = standard error of the mean. *p < .05.

250 215 300
RT IN MSEC

Figure 1. Subject B.D. Observed CDF of RTs to redundant sig
nals with visual signal presented f'1l"St and SOA.. = 100, compared
against the sum of the CDFs of RTs to the two single signals [i.e.,
Fv(t) + F..(t-lOO»).

asynchronous. To use the inequality, it is necessary to es
timate Fv(t), FA(t), and the 11 different FR.SOA(t) func
tions. These CDFs were estimated separately for each sub
ject by pooling together all of the RTs from the appropriate
condition into the necessary cumulative distribution.

After the various CDFs were thus estimated, Inequal
ity 2 was used to check for violations of race models in
these data. For each of the 11 redundant signal conditions,
the observed FR.SOA(t) was compared against the sum of
Fv(t-SOAv) and FA(t-SOAA). For example, Figure 1
shows these CDFs for Subject B.D. in the condition with
an SOAA of 100 msec. As is apparent in this figure, Ine
quality 2 was seriously violated at this SOA, since the ob
served redundant-signals CDF is considerably above the
sum of the single-signal CDFs for almost all of the values
of RT observed in response to redundant signals. This
figure was chosen to illustrate the nature of violations of

is probably also due to the faster processing of auditory
signals, because a quickly processed auditory signal would
usually have time to evoke the response before the
processing of a simultaneous visual signal had made much
contribution.

Table 1 also shows, for each subject, the RSE computed
for each of the redundant-signals conditions, with aster
isks marking those that were significantly different from
zero by a two-sample t test. The RSE with simultaneous
signals is calculated as

RSE = min(RT v, RT A) - RT R.

With asynchronous signals, the average RTs must becor
rected for the late onset of the second signal, as discussed
in the introduction:

RSEsOA= min(RT v+ SOAv, RTA+SOAA) - RT R. SOA.

It is apparent that the RSE was replicated in this ex
periment. In fact, the largest benefits for redundant sig
nals occurred when the auditory signal was presented 67
- 133 msec after the visual signal. This pattern is also
qualitatively consistent with the fact that the auditory sig
nal was processed faster; the visual signal must be given
a head start to enable it to have much influence on the
response. A somewhat surprising difference between sub
jects was that B.D. showed much larger RSEs than did
K.Y. The source of thisindividual difference was not clear
from subjective reports, and Subject K.Y. appears to be
somewhat atypical in view of the consistency with which
RSEs are obtained.

Test of Race Models Using Inequality 2
Inequality 2 was used to see whether the predictions of

race models were violated when redundant signals were
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this inequality, and it is one of the ones showing the larg
est violations. It is interesting to note that many more
responses were observed in the fastest latency range (e.g.,
RT < 270 msec) than can be predicted by race models.
This suggests that the fastest responses to redundant sig
nals can sometimes be faster than the fastest responses
to either of the single signals, contrary to race models.
Unfortunately, it is difficult to test for this effect directly
using minimum RTs, because anticipations (i.e., the
processes that produce false alarms on trials without a sig
nal) almost certainly produce a few spuriously fast RTs
in all conditions.

In order to present the violations of Inequality 2 for both
subjects and all SOAs without including the 22 different
figures corresponding to Figure 1, it is convenient to use
a single numerical measure of the size of the violation
at each SOA. In Figure 1, the violation of the inequality
is reflected in the fact that there is a large area below the
curve defined by FR,IOO(t) but above the curve defined by
the sum of Fv(t) and FA(t-100). This area is readily quan
tified numerically, and it seems the most direct summary
measure of the extent to which Inequality 2 is violated
at each SOA. Standard measures for comparing distri
butions (e.g., Kolmogorov-Smirnoft) would not be ap
propriate in this case, since the prediction being ex
amined is an inequality rather than an equality. For the
present analyses, the area of violation was measured as
a proportion of the total area under each FR,sOA(t). The
V(Observed) values in Table 2 are these area measures
[in units of 1/1,000 the total area under FR,sOA(t)], and
they are intended to reflect the extent to which Inequal
ity 2 was violated for each of the different subjects and
conditions.

The V(Observed) values in Table 2 contradict race
models by showing substantial violations of Inequality 2.
As much as half of the total area under the observed CDFs
for redundant signals lies outside the range compatible
with race models, and violations of at least 10% of the

total area are not uncommon. It is not surprising that the
violations of Inequality 2 are largest for conditions in
which the visual signal was presented first. This finding
is consistent with the observation that auditory signals
were processed much faster, since an initial auditory sig
nal could produce a response before the later visual signal
had time to have any influence at all. Clearly, the coacti
vation reported by Miller (1982) seriously underestimated
the true potential for coactivation in this task, since these
same signals were presented simultaneously in the earlier
experiment.

The obtained pattern of V(Observed) values is also
strong evidence against the idea that race models can ex
plain the RSE, because race models were seriously vio
lated at precisely those SOAs with large RSEs (cf. Ta
ble 1). It is interesting to note that violations of the race
model are much larger for B.D. than for K. Y., although
even K.Y. shows some violations. Since K.Y. showed
only a small redundant signals effect, however, it is not
surprising that she also showed only small violations of
the race model.

An important statistical question is whether the V(Ob
served) values in Table 2 might have been observed by
chance (sampling error) when in fact a race model was
correct. In previous studies, CDFs have usually been ob
tained for many subjects, and statistical testing was per
formed by evaluating the consistency of the violations
across subjects. Since only 2 subjects were tested in this
experiment, however, that procedure would have had un
acceptably low power.

To find out how large a V(Observed) might be observed
by chance if a race model were actually correct, computer
simulation was used (cf. Diaconis & Efron, 1983). The
entire experiment was simulated 1,000 times for each sub
ject, with the following procedure carried out within each
simulation. Simulated RTs for the single-signal conditions
were obtained by randomly sampling (with replacement)
from the observed distributions of single-signal RTs for

Table 2
Violations of Inequality 2 as a Function of SOA and Subject

SOA Condition

Auditory First: Visual First:
SOAv SOAA

167 133 100 67 33 0 33 67 100 133 167

Subject B.D.

V(Observed) 0 0 4 0 0 85 340 440 505 246 88
V(Critical) 13 16 17 20 16 22 33 82 87 62 40
Lower Bound(V) 0 0 0 0 0 6 230 353 411 137 22
Upper Bound(V) 7 12 36 11 29 132 385 497 552 294 118

Subject K.Y.
V(Observed) 0 0 0 6 0 13 46 150 156 10 3
V(Critical) 10 11 12 11 12 17 66 85 69 30 13
Lower Bound(V) 0 0 0 0 0 0 4 90 76 0 0
Upper Bound(V) 3 6 18 32 4 52 90 218 215 46 41

Note-V(Observed) is the area below FR,SOA(t) but above Fv(t-SOAv) + F,,(t-SOAA), in vio
lation of Inequality 2. This area was measured in units of 1/1,000th of the total area below
FR.SOA(t). V(Critical) is the maximum size of V(Observed) that would be expected by chance if
race models were correct. Lower and Upper Bound(V) are 95 % confidence limits around V(Ob
served). For further details see text.



that subject. In accordance with race models, simulated
RTs for the redundant-signal conditions were obtained by
sampling two RTs (one from each single-signal distribu
tion), adjusting them appropriately for SOA and select
ing the minimum adjusted RT. These two single-signal
times were not sampled independently, however. As noted
in Inequality 1, race models predict FR(t) to be at most
the sum of Fv(t) and FA(t) , and this maximum is attained
only when the times for racers on the two channels have
a strong negative correlation (see Miller, 1982, p. 253;
Ulrich & Giray, 1986, Table 1). Thus, sampling error
is most likely to produce violations of Inequality 2 in a
race model with a strong negative correlation. To pro
vide a conservative test, making it difficult to reject race
models, a strong negative correlation was therefore in
troduced into the simulation. This was accomplished by
randomly selecting an RT from the distribution of visual
signal RTs, computing its percentile, P, and then sam
pling the auditory-signal RT with percentile lOO-P.
Thus, relatively fast responses to visual signals were
paired with relatively slow responses to auditory signals,
and vice versa, producing a strong negative correlation
between racers. After sampling the appropriate number
of trials for each condition in the simulated experiment,
the CDFs for the various conditions and the size of the
violation of Inequality 2 were computed from the simu
lated RTs just as they had been computed from the ob
served RTs.

To summarize the results of the 1,000 simulated ex
periments, a critical violation, V(Critical), was obtained
for each subject and condition. This value was the larg
est number such that, across the 1,000 simulations, vio
lations larger than that number were obtained only 5 %
of the time. This procedure provides a V(Critical) cor
responding to the traditional notion of a critical value for
any hypothesis-testing statistic, in the sense that an ob
served violation greater than the critical value will be ob
served by chance only 5%of the time if the null hypothesis
(i.e., a race model) is correct. Thus, race models can be
rejected for any SOA at which V(Observed) is greater than
V(Critical), with 95% confidence that the race model is
inappropriate for that subject and SOA. The summary
values of V(Critical) are shown in Table 2.

On the basis of the results of the computer simulations,
it is clear that the observed violations of race models are
much larger than would beexpected by chance in the con
ditions with visual signals preceding auditory signals
precisely those conditions in which RSEs were obtained.
Thus, race models can be confidently rejected as an ex
planation of the RSE with asynchronous as well as simul
taneous (Miller, 1982) redundant signals.

Having ruled out race models, it is of interest to con
sider which SOAs produced the most coactivation (i.e.,
greatest violation ofrace models). The V(Observed) values
in Table 2 also suggest that the size of the violation varies
systematically with SOAA when the visual signal is
presented first. For both subjects, total violation increases
with SOAAS from 0 to 100 msec and then falls off for
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SOAAS of 133 and 167 msec. Unfortunately, there is also
a statistical problem with the comparison of these observed
violations: Since we do not know how far each V(Ob
served) might be from the true value of the violation for
that condition (due to sampling error), we do not know
how far apart two values must be before we conclude that
the two conditions really have significantly different
amounts of violation. To answer this question, a boot
strapping procedure (e.g., Efron, 1979) was used to com
pute 95 % confidence intervals for the true value of the
violation in each condition. Once these confidence inter
vals were obtained, conditions could be compared by see
ing whether their confidence intervals overlapped.

In essence, the bootstrapping procedure takes the ob
served data as the underlying probability distribution, and
determines how much variation in the computed statistic
[here, V(Observed)] will be produced by random sam
pling from that distribution. To carry out the bootstrap
ping process, the experiment was again simulated 1,000
times for each subject. In these simulations, the RTs for
each condition were obtained by randomly sampling (with
replacement) from the observed distribution of RTs from
that condition. After sampling the appropriate number of
RTs from each condition, the CDFs and violations of In
equality 2 for that simulated experiment were computed
with the same procedures used to compute these statis
tics from the observed data. To summarize this set of
1,000 simulations of the experiment, estimates of the up
per and lower confidence bounds were chosen. Within
a condition, the estimate of the upper bound was the size
of violation such that only 2.5% of the simulated experi
ments produced violations larger than that. Similarly, the
estimate of the lower bound was the size of violation such
that only 2.5 % of the simulations produced smaller vio
lations. Together, these two bounds define the middle 95 %
of all violations that would be expected if the observed
data were, in fact, the true underlying distributions, and
it is reasonable to use these values to estimate the 95 %
confidence interval for the true V(Observed).

The upper and lower confidence bounds obtained by
bootstrapping are also shown in Table 2. Since the con
fidence intervals around some of the observed violations
do not overlap, we can conclude that some of the differ
ences in observed violations are too large to have been
obtained by chance, and that some SOAs really produce
larger violations of race models than others. It appears
that race models are most seriously violated in the condi
tions with auditory signals presented 67 -100 msec after
visual signals, for both subjects.

It is interesting to observe that the SOAs producing the
largest violations of race models are approximately those
SOAs that equalize mean RTs to single signals (corrected
for SOA), with violations decreasing somewhat symmetri
cally for SOAs larger and smaller than the one yielding
the maximum. This observation is quite consistent with
coactivation models. If signals coactivated the response,
one would expect maximal coactivation to be found with
an SOA for which the two signals produced response ac-
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tivation simultaneously. This suggests that the optimal
SOA for violations of race models would be the one that
maximizes the overlap of RT distributions to the single
signals, since signals producing responses over the same
range of times would presumably be producing response
activation over the same temporal range as well. If SOA
deviates from this optimal value in either direction, there
would be less opportunity for coactivation because most
of the response activation would come from the signal with
the faster mean single signal RT (corrected for SOA).

Before leaving the evaluation of race models, it is also
necessary to consider the possibility that the violations ob
served in Table 2 were caused by artifacts arising from
the use of RT distributions obtained by pooling together
all the RTs from a given condition. RTs are known to
depend on both practice (Fitts, 1964) and sequential ef
fects (Kornblum, 1969), and both of these types of ef
fects were significant in the present experiment. Thus,
it is possible that the observed violations somehow resulted
from combining different types of responses into a single
overall distribution. For example, a response to redun
dant signals might benefit from stimulus repetition no mat
ter which signal was presented on the previous trial,
whereas a response to a single signal could benefit only
if preceded by the same signal. Thus, responses to redun
dant signals would benefit from the repetition effect on
a higher proportion of trials than responses to either sin
gle signal, and this might explain the failure of race
models.

To test for the presence of pooling artifacts, values
analogous to those shown in Table 2 were recomputed
with more restricted pooling of RTs into overall distri
butions. Table 3 shows the violations of Inequality 2 ob
tained when pooling separately across the first and second
halves of the experiment for each subject. Table 4 shows
the violations obtained when responses were sorted on the
basis of whether the previous trial was a catch trial or
a redundant signals trial (there were not enough trials fol
lowing single visual and auditory signals for a meaning
ful analysis). Clearly, there are significant violations of
race models regardless of how the trials are partitioned.
Violations were present in both halves of practice and for
both types of preceding signals. We can conclude that
pooling artifacts of these types do not contribute substan
tially to the inconsistency with race models.

To summarize the findings from the above analyses,
it is clear that race models cannot be used to explain the
RSE obtained in this experiment. Comparing Tables 1 and
2, it is obvious that the predictions of race models were
seriously violated at all SOAs for which there was a siz
able RSE. Thus, it can be concluded that a response to
a redundant signal is not simply a response to either its
visual or its auditory component.

Comparison of Accumulation and Exponential
Coactivation Models

Not only do the violations of Inequality 2 contradict race
models; they also support coactivation models in which

two redundant signals somehow combine to activate the
response. Therefore, it is reasonable to compare the ac
cumulation and exponential coactivation models using In
equality 3.

To evaluate exponential models, Inequality 3 was tested
in the same way as Inequality 2, except for the use of a
different sum of CDFs on the right-hand side of the ine
quality. Table 5 shows the total violations of the inequal
ity and the associated critical values and bounds of 95 %
confidence intervals, all of which were computed with the
same procedures used to obtain the values in Tables 2-4.

The data show substantial violations of the inequality
derived from exponential coactivation models in condi
tions with visual signals presented first. Responses to
asynchronous redundant signals were much too fast to
have been activated solely by either the visual signal
present from time 0 to time SOAA or the redundant sig
nals present after time SOAA. This demonstrates that two
signal configurations present at different times can jointly
activate the response, so response activation must be ac
cumulated across time as assumed by accumulation
models. Apparently, the visual signal gets the response
activation process started, and the redundant signals pro
vide the final activation to satisfy the criterion.

In fact, the violations of Inequality 3 are about the same
size as violations of Inequality 2. This suggests that the
main source of coactivation-hence, violations of race
models-is accumulation of activation over time. One
might have hypothesized instead that violations of Ine
quality 2 were mainly due to an interactive effect of the
two signals on the rate at which response activation ac
cumulated. For example, suppose response activation ac
cumulated at the rates of 10, 12, and 5,000,000 units/sec
for visual, auditory, and redundant signals, respectively.
This would result in huge violations of Inequality 2, but
only very small violations of Inequality 3. The fact that
the violations of Inequality 3 are almost as large as those
of Inequality 2 suggests that the rate of response activa
tion for redundant signals is of the same order of magni
tude as the sum of the rates for the two single signals.

How Soon Does Response Activation Begin and
How Long Does It Take to Reach Criterion?

Assuming that violations of Inequality 2 reflect coacti
vation, they can be used to estimate two parameters
describing the timecourse of response activation produced
by each signal: Os, the minimum time from presentation
of the signal to the onset of response activation produced
by that signal, and Ds , the minimum accumulation time
needed to reach criterion by 'accumulating response acti
vation just from that signal.

These analyses require comparison of violations across
a number of SOAs, so they were only performed with
Subject B.D. 's data from conditions with the visual sig
nal presented first. Obviously no general conclusions can
be drawn from the results of a single subject tested with
specific stimuli, but the comparison of these values in this
case leads to some intriguing hypotheses.
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Table 3
Violations of Inequality 2 as a Function of SOA, Practice, and Subject

SOA Condition

Auditory First: Visual First:
SOAv SOA..

167 133 100 67 33 0 33 67 100 133 167

Subject B.D., First Half
V(Observed) 0 0 7 0 3 37 258 370 460 207 92
V(Critical) 12 12 13 14 13 14 19 108 110 81 36
Lower Bound(V) 0 0 0 0 0 0 96 231 306 55 0
Upper Bound(V) 11 27 44 3 34 94 305 432 500 261 130

Subject K. Y., First Half
V(Observed) 0 0 0 2 0 9 21 198 60 0 0
V(Critical) 9 9 9 9 10 8 39 117 20 11 12
Lower Bound(V) 0 0 0 0 0 0 0 82 0 0 0
Upper Bound(V) 11 3 9 26 3 46 64 258 110 7 14

Subject B.D., Second Half
V(Observed) 0 0 1 0 4 53 341 495 484 217 33
V(Critical) 12 14 15 13 14 16 22 106 112 56 19
Lower Bound(V) 0 0 0 0 0 0 180 356 317 34 0
Upper Bound(V) 17 5 24 24 32 109 373 518 512 251 50

Subject K.Y., Second Half
V(Observed) 0 0 0 4 0 4 44 182 255 38 12
V(Critical) 13 13 14 12 13 12 35 118 105 24 14
Lower Bound(V) 0 0 0 0 0 0 0 89 130 0 0
Upper Bound(V) 2 13 26 33 10 43 94 280 312 91 67

Note-Symbols are defined in legend of Table 2.

Table 4
Violations of Inequality 2 as a Function of SOA, Previous Trial, and Subject

SOA Condition

Auditory First: Visual First:
SOAv SOA..

167 133 100 67 33 0 33 67 100 133 167

Subject B.D., Following Catch Trial

V(Observed) 0 7 16 7 15 67 324 327 270 15 0
V(Critical) 11 12 12 14 13 12 17 76 10 4 4
Lower Bound(V) 0 0 0 0 0 0 7 6 7 0 0
Upper Bound(V) 16 30 47 27 49 85 224 228 210 38 7

Subject K.Y., Following Catch Trial

V(Observed) 0 0 0 0 2 0 9 79 6 0 0
V(Critical) 7 6 6 6 6 7 24 58 6 7 7
Lower Bound(V) 0 0 0 0 0 0 0 0 0 0 0
Upper Bound(V) 10 3 4 12 26 13 48 127 33 2 2

Subject B.D., Following Redundant Signal Trial

V(Observed) 0 0 4 0 0 17 237 416 538 253 106
V(Critical) 16 14 11 13 13 15 16 87 106 87 47
Lower Bound(V) 0 0 0 0 0 0 108 292 396 112 9
Upper Bound(V) 16 5 33 11 12 67 280 463 560 306 139

Subject K.Y., Following Redundant Signal Trial

V(Observed) 0 0 3 22 0 18 48 156 221 11 20
V(Critical) 12 10 10 11 12 11 55 107 81 20 12
Lower Bound(V) 0 0 0 0 0 0 0 77 88 0 0
Upper Bound(V) 5 14 37 60 2 63 116 242 272 55 69

Note-Symbols are defined in legend of Table 2.
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Table 5
Violations of Inequality 3 as a Function of SOA and Subject

SOA Condition

Auditory First:
SOAv

167 133 100 67 33 0 33

Visual First:
SOAA

67 100 133 167

Subject B.D.
V(Observed) 0 0 4 0 0 236 374 481 232 85
V(Critical) 16 15 16 15 78 26 85 89 67 40
Lower Bound(V) 0 0 0 0 0 137 293 400 135 29
Upper Bound(V) 7 10 33 10 14 275 438 537 285 116

Subject K.Y.
V(Observed) 0 0 0 5 0 12 133 129 1 1
V(Critical) 11 12 13 14 51 71 96 62 22 10
Lower Bound(V) 0 0 0 0 0 0 76 44 0 0
Upper Bound(V) 4 4 14 27 4 57 194 173 23 27

Note-V(Observed) is the area below FR,sOA(t) but above Fv(t) + FR••(t-SOAA) or FA(t) +
FR,.(t-SOAv), as appropriate, in violation of Inequality 3. This area was measured in units of
1/1,000tb of the total area below FR , SOA(t). V(Critical) is the maximum size of V(Observed) that
would be expected by chance if exponential models were correct. Lower and Upper Bound(V)
are 95% confidence limits around V(Observed). For further details see text.

O, indicates how soon after its onset each signal be
gins to produce response activation. To estimate the rela
tive values of Ov and OA, it is reasonable to use the
smallest values of t for which Inequality 2 is violated. If
the inequality is violated at time t, then both signals must
have contributed some activation to responses made at
time t. Allowing for the necessary motor delay (M), this
implies that both signals must have produced some acti
vation by time t-M. By finding the smallest value of t
producing coactivation, we can find smallest t-M at
which activation has been produced by the signal (i.e.,
the onset of activation).

The middle column of Table 6 shows, for each condi
tion in which the visual signal was presented first, the
smallest value of t for which Inequality 2 was violated.
In each condition, this was defined as the smallest t for
which FR,sOA(t) was at least .01 greater than the sum of
Fv(t) and FA(t-SOAA). The smallest value across all con
ditions was obtained in the conditions with SOAs of 0 and
33 msec. In these conditions, the earliest sign of coacti
vation was in responses with latencies of about
196-197 msec. Thus it appears that a visual signal did
not influence a response that occurred less than about
196 msec after it, so it is reasonable to concludethat visual
signals did not start to produce any response activation
in the first 196-M msec. The true value of O; is proba
bly slightly less than 196-M, however, because the sig
nal might produce a little response activationwithout caus
ing a violation of Inequality 2.

The rightmost column of Table 6 shows the analogous
values for the auditory signal, measured from the onset
of the auditory signal to the point of coactivation (i.e.,
t-SOAA). In the condition with an SOA.. of 33 msec, for
example, the same responses demonstrating coactivation
197 msec after the visual signal also demonstrated coac
tivation only 164 msec after the auditory signal, since the
latter signal had been delayed by 33 msec. This value in-

dicates that an auditory signal can influence a response
that occurs within 164 msec after it. Values obtained for·
the other SOAs indicate that an auditory signal can in
fluence a response that occurs as little as 105 msec after
it is presented. This implies that the auditory signal must
have produced some response activation within the first
105-M msec after its onset, since its activation con
tributed to a violation of race models within that time.

Comparing the relative values of O; and 0 A just esti
mated, the conclusion is that an auditory signal can start
producing response activation about 91 msec (196 - M
- 105 + M) faster than a visual one. That is, the con
clusion is that the minimum time needed for a visual sig
nal to influence a response is much more than that needed
for an auditory one. This conclusion is consistent with
the faster overall RTs to single auditory signals, and may
be one of the reasons why auditory signals are more ef
fective alerting stimuli than visual signals (Posner, Nis-

Table 6
Estimates of Minimum Onset and Duration of

Response Activation for B.D.

Smallest t Violating Inequality 3*

Measured From Measured From
SOA Onset of Onset of

(Visual First) Visual Signal Auditory Signal

o ~6 1%
33 197 164
67 225 158

100 233 133
133 238 105
167 319 152

Estimated Minimum Onset 196 105
Minimum RTt to Single Signal 247 176
Estimated Minimum Duration 51 71

*Smallestt for which FR,sOA(t) > FA(t-SOAA) +Fv(t) + 0.01. tRT
at 2.5 percentile was used rather than minimum, to avoid contamina
tion from anticipation responses.



sen, & Klein, 1976). It is also interesting to note that this
analysis requires M to be smaller than 105 msec.

By extending the above argument, it is possible to esti
mate D; and DA , the minimum times needed for each sig
nal to produce enough activation to reach criterion. The
minimum duration of response activation can be estimated
by the difference between the minimum single-signal RT
and the minimum time needed for the onset of activation,
estimated above. For example, an auditory signal could
influence a response that occurred as little as 105 msec
after it, but could never cause a response all by itself in
less than 176 msec (minimum RT for trials with a single
auditory signal). From this comparison, it appears that
auditory signals required at least 71 msec (176-105) to
produce enough activation to reach criterion.

Comparable values for the visual signal were, surpris
ingly, somewhat shorter. The fastest responses to a visual
signal (247 msec) were only 51 msec slower than the
fastest responses that could be influenced by a visual sig
nal (196 msec). Thus, it appears that the visual signal can
produce enough activation to reach criterion in less time
(measured from the onset of activation) than the auditory
signal, even though the onset of activation is earlier for
the auditory signal. It should be emphasized that these
comparisons are between minimum times, and the same
conclusions may not apply to average time needed for ac
tivation to begin and to reach criterion. However, if the
assumptions of the analysis are correct, the values of 71
and 51 msec are estimates of the minimum absolute du
ration of response activation, not just relative values.

The Combination Rule of Grice, Canham, and
Boroughs (1984)

Grice et al. (1984) have proposed a form ofaccumula
tion model that incorporates the qualitative features im
plied by the above analyses of RT distributions. Their
model gave a very good account of results obtained in
letter-detection tasks, accounting for over 99% of the vari
ance. Thus, it seemed reasonable to fit the model to the
present data. The model is described briefly below, and
then the results of the fit to the present data are reported.

In Grice et al. 's (1984) model, response activation E(t)
grows deterministically as a function of time since onset
of the signal, without random trial-to-trial variation. When
response activation reaches a criterion, the response is
initiated. Variation in RT is caused by the fluctuation of
this response criterion, which is assumed to have a nor
mal distribution with unknown mean and variance.

In a divided-attention task, it is natural to assume that
signals on both channels produce response activation, and
that the total activation produced by redundant signals is
some function of the activations produced by the two sin
gle signals. Grice et al. (1984) used the observed cumula
tive density functions of RT to estimate E1(t ) , E2(t), and
ER(t) , the functions describing the timecourse of the
response activation produced by a signal on channell,
a signal on channel 2, and redundant signals, respectively
(see Grice et al., 1984, for a fuller description). They then
used linear regression to look for a combination rule that
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would predict ER(t) from E 1(t) and E2(t). In Grice et al. 's
(1984) data, a linear averaging function accounted for
about 99 % of the variance in each of several experiments:

ER(t) = C+AX[E1(t)+E2(t)]. (4)

In several experiments, the values of A were consistently
about 0.5, and C ranged from about .3 to .6.

Grice et al. 's (1984) model was fit separately for each
subject and redundant-signal condition of the present ex
periment. First, ER,sOA(t) was estimated for each of the
11 redundant-signal conditions, using Grice et al. 's Equa
tion 4. Twenty values of t were identified in each condi
tion, corresponding to F(t) values ranging from 0.025 to
0.975 in steps of 0.05. Following Grice et al., 3.5 was
added to each E(t) to adjust the origins of these activa
tion functions to O. Next, using the distributions of RT
obtained in each of the two single-signal conditions,
EA(t-SOAA) and Ev(t-SOAv) were computed for each
of the 20 values oft from each of the 11 redundant-signal
conditions. Then linear regression was used to estimate,
for each condition, the values ofA and C that best predict
the 20 values of ER,sOA(t) from the sum of the correspond
ing EA(t-SOAA) and Ev(t-SOAv).

Table 7 summarizes the fits for both subjects across all
conditions. These fits are reasonably good for Subject
B.D., accounting for a total of 96.6% of the variance
across all conditions, although these fits are not nearly
as precise as those obtained by Grice et al. (1984). In
spection of the 11 fits indicated that ER(t) is consistently
overpredicted for values of t corresponding to cumula
tive percentages of2.5, 7.5, 12.5, and 97.5, and consis
tently underpredicted at values of t corresponding to per
centages from 42.5 to 57.5. Across the 11 regression
analyses, the prediction errors at all of these values of
t were consistently different from zero by Student's t tests
(df = 10, p < .05).

The fits are much poorer for K. Y., accounting for only
81.7% of the total variance across conditions. For this
subject, too, the model significantly overpredicted ER(t)
at the lower values of t, corresponding to cumulative per
centages of 2.5 to 22.5, and underpredicted for values
oft from 37.5 to 87.5. Inspection of the percent variance
accounted for by the model in each condition (Table 7)
shows that the model fits especially poorly for K. Y. in
the conditions in which no redundant signals effect was
found (cf. Table 1).

A more stringent test of the model is to see how well
ER,sOA(t) can be predicted from EA(t-SOA) +
Ev(T-SOAv) using a single set of estimates for A and
C across all SOA conditions. Since the different condi
tions were mixed together within blocks of trials, it is hard
to see how the parameter estimates could vary across these
conditions. When all 220 points for B.D. were pooled into
a single regression equation, the estimates of C and A were
0.83 and 0.66, respectively, and the model accounted for
only 89.7 % of the variance. For K.Y., the estimates were
1.89 and 0.38, with 76.9% of the variance accounted for.
The reduction in prediction accuracy, compared with the
set of models using different values of C and A for the
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Table 7
Estimates of A and C and Percentage of Variance Accounted

for as a Function of SOA and Subject

SOA Condition

Auditory First: Visual First:
SOAv SOAA

167 133 100 67 33 0 33 67 100 133 167

Subject B.D.
e .65 -.09 -.55 -.30 -.45 .06 .90 1.02 1.61 1.46 .96
A .74 .86 .97 .88 .94 .80 .65 .59 .53 .55 .67

%Var 97.7 98.1 99.6 99.0 99.3 94.8 94.8 99.2 95.1 93.5 91.4

Total variance accounted for across all 11 conditions = 96.6%

Subject K.Y.
C 1.82 1.93 1.91 2.07 1.95 1.90 1.30 1.36 1.66 1.75 1.90
A .45 .40 .43 .36 .37 .37 .41 .41 .42 .40 .41

%Var 67.1 69.5 65.1 73.9 77.4 86.9 97.9 97.7 94.8 89.6 77.9

Total variance accounted for across all 1l conditions = 81.7%

different SOA conditions, was significant for both sub
jects [B.D., F(20,198) = 20, p < .01, MS. = 0.0354;
K.Y., F(20,198) = 2.57, p < .01, MS. = 0.4845].

CONCLUSIONS

The results of this experiment provide further evidence
against race models of bimodal detection tasks, extend
ing previous work with simultaneous redundant signals
(Miller, 1982). RT distributions obtained from two highly
practiced subjects indicate that their responses to sequen
tially presented redundant signals were too fast to be ex
plained in terms of the winner of a race between two
processes responding separately to the two single signals.
Violations of race models tended to be larger in condi
tions in which the RSE was larger, so it is clear that race
models cannot account for that effect.

Tests of Inequality 3 showed that, for both subjects,
responses to sequentially presented redundant signals were
also too fast to have been produced by a race between
one process responding to the single signal and a separate
process, starting SOA msec later, responding to the
redundant signals. Activation appears to have been ac
cumulated over time as well as over signals, so an in
dividual response can sometimes be activated both by the
single signal present at the beginning of the trial and by
the redundant signals present after the end of the SOA.
This finding supports accumulation models of coactiva
tion and of RT processes in general, and it is evidence
against exponential models in which the response is gener
ated by history-free processes.

It is perhaps surprising that response processes accumu
late activation over a significant period of time, even in
simple signal detection tasks with superthreshold signals.
The requirement of a long accumulation interval may be
a necessary corollary of the need to maintain a fairly high
response criterion to avoid making false alarms on catch
trials (cf. Grice, 1972).

The results of the present paper, although strongly sup
porting accumulation models of coactivation, unfor
tunately give no indication of the level of processing that
is responsible for coactivation, and it will be important
to try to identify this level in future research. For exam
ple, one possible coactivation model would localize the
interaction within a central decision process that accumu
lates evidence of signals until it has enough to satisfy an
internal response criterion (Miller, 1982). If each signal
causes evidence to accumulate in this decision maker
coactivation could arise because the decision proces~
would pool evidence coming from different signals, al
lowing both to contribute toward satisfying the response
criterion. Naturally, this would produce faster responses
on redundant-signal trials than on single-signal trials.
Miller (1982) argued for decision-level coactivation on
several grounds.

Other possible coactivation models might localize the
interaction between signals within the sensory or motor
systems, and these models are closely related to the energy
summation and preparation enhancement models of the
intersensory facilitation observed in focused-attention
tasks (e.g., Nickerson, 1973). Energy summation models
are based on the idea that energy from different signals
sums within the perceptual system, as might be the case
if neurons responding to signals on different modalities
converged on a common sensory area (cf. lung, Korn
huber, & DaFonseca, 1963). Such convergence would
produce a stronger perceptual.signal on redundant-signals
trials than on single-signal trials. Preparation-enhancement
models assume that redundant signals combine in activat
ing the motor system, so that motor responding is faster
to redundant than to single signals.
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NOTES

1. Other investigators (e.g., Blake, Martens, Garrett, & Westendorf,
1980; Meijers & Eijkman, 1977) have tested race models by making
a particular assumption (usually independence) about the correlation be
tween processes responding to signals on different modalities. From such
an assumption, one can derive exact predictions for FR(t), thus obtain
ing tests with more statistical power. Unfortunately, making such an
assumption leads to a test with less conceptual power, since, if the predic
tions are not fulfilled, one does not know whether the race model or
the assumed correlation is wrong. The test based on Inequality 1 is
preferred here for its generality: If this inequality is violated, no race
model is consistent with the data, regardless of the assumed correlation.

2. For the purposes of this paper, many distinguishable RT models
are included without distinction in the accumulation class. These are
all models in which the decision is made by a process changing states
gradually over time, including diffusion models, random walk models,
and so forth. The class of accumulation models discussed here should
not be confused with the accumulator model of Vickers (1970), which
is one particular member of this class.

3. A variant of an accumulation model could assume that the deci
sion process accumulates activation over time, but restarts if the signal
conditions change. This would allow accumulation over time, but not
combination of activation from an early single signal and a later redun
dant one. For the purposes of this paper, such a model will be consi
dered to be exponential, because it is severely limited in its ability to
accumulate information over time. In any case, this model was ruled
out by the experimental results.

Likewise, it is possible for an exponential model to allow an effect
of history by assuming that the exponential response rate to a redun
dant signal depends on whether a single signal was previously present.
This assumption seems contrary to the spirit of exponential models,
however, since it allows history to influence the decision. Therefore,
models of this type will be classed with accumulation models, even if
the decision process is exponential, given a static signal configuration.

4. The term "signals" is used here to refer to physical stimuli, not
to internal representations that activate responses. An anonymous
reviewer rightly pointed out that, if the internal representation of an
auditory signal were formed much more quickly than the internal
representation of a visual signal, the auditory representation might fully
activate the response even though the visual stimulus had been presented
first. Since the auditory representation would have arisen as a result
of the redundant physical stimulus, though, this consideration does not
complicate the interpretation of the inequality derived below.
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