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A measure of temporal patterns

JAMES N, MacGREGOR
University of Victoria, Victoria, British Columbia, Canada

The paper proposes a quantification of temporal patterns derived from Garner's (1974) princi­
ples of balance and progression. The measure was found to predict subjects' selection of starting
points in the perception of 56 patterns reported in the literature. The median correlation between
the measure and performance was - .94, and 49 of the 56 correlations were significant beyond
the .05 level. A model of starting-point selection is proposed to account for the relationship, and
a simulation based on the model selected starting points with frequencies similar to those of sub­
jects (r = .89). Further derivations from the model are tested against data in the literature.
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Table 1
Run Size, Run Position, E Value, and Frequency of Selection

For All Starting Points of an Eight-Item Sequence

ble negativecorrelation between the sizes of runs and their
degree of enclosure. This inverse relationship is max­
imized when the longest runs are in the least enclosed po­
sitions (balance), and when the run sizes decrease progres­
sively from the start of the pattern to the middle and in­
crease progressively from the middle to the end (progres­
sion). A simple measure of this correlation is given by
the sum of the cross-products,

where ei is the enclosure of the ilh run and r, is its size,
for a pattern of n runs. Referring to this measure as E,
then, a value of E can be calculated for each of the possi­
ble starting points of a pattern, and the lowest of the result­
ing values, Emin, should identify the pattern with the
greatest degree of balance and progression. (Given the
direction of the variable E, it is, strictly speaking, a mea­
sure of temporal pattern "badness," although the term
"goodness" will be used, bearing in mind that the lower
the value, the better the pattern.)

Table 1 illustrates the calculation of E for each possi­
ble starting point of Pattern P (Royer & Gamer, 1966).
The columns of the table show from left to right, the eight
possible forms of the pattern, the corresponding run sizes,
the enclosure values of the runs, the resulting E values,
and the number of subjects perceiving each form (from
Royer & Garner, 1966).

Run Sizes Position E Value Frequency of
r(i) e(i) Ee(i) . r(i) Selection
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When a binary pattern is repeated continuously with no
cues to indicate a starting point, then any element pro­
vides as logically "good" a starting point as any other.
However, subjects do not perceive all of the logicallypos­
sible forms of a pattern with equal frequency. There tend,
rather, to be "preferred" forms (Garner & Gottwald,
1967, 1968; Preusser, Garner, & Gottwald, 1970; Royer
& Garner, 1966, 1970).

To date, no method of quantifying binary patterns can
account for such preferences, but certain descriptive prin­
ciples have been proposed (Garner, 1974; Royer &
Garner, 1970). These are that preferred patterns display
"balance" or "progression." A balanced pattern is one
that both begins and ends with the longest runs. Progres­
sion occurs when run sizes decrease progressively from
the start or increase progressively towards the end of the
pattern. To illustrate, the 12-element binary pattern
321123 (in which the integers represent successive run
sizes) displays a high degree of both balance and progres­
sion and should consequently be a "good" form. In con­
trast, starting the same sequence on the second singleton
run produces 123321, low in both balance and progres­
sion. Consequently, it should be a poorer form, one less
likely to be perceived.

The present paper proposes a quantification of Garner's
principles. As a first step, it may be observed that balance
and progression both depend on two factors, the sizes of
runs and their relative positions within a pattern. Run size
can be measured as the number of elements in a run. Run
position seems to depend on the serial location of a run
with respect to the start or end of the pattern. For this
reason, it is measured here as the "enclosure" of a run,
defined as the number of runs from a given run to the
closer end run. The end runs therefore have enclosure
values of 1, the second and second last runs, values of
2, and so on.

The next step is to observe that both balance and pro­
gression are maximized when there is the highest possi-
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Table 2
Median Correlations Between E Value and the Frequency of

Selection of Temporal Patterns

A MODEL OF TEMPORAL
PATTERN SELECTION

The entries in the last two columns illustrate the rela­
tionship between E and performance for this particular
pattern. Two aspects of this relationship are worth not­
ing. First, the most preferred pattern is the one with the
lowest E value, as anticipated from Garner's principles.
Second, the frequency of selection of the possible forms
of the pattern shows an inverse relationship with E. The
product-moment correlation between E and frequency of
selection is, in this case, r =-.86 (p < .05). This sug­
gests that the selection of good forms is not categorical,
but behaves more like a continuous variable which closely
follows the distribution of E values.

This apparent relationship between E and pattern prefer­
ences was further tested using data from Garner and Gott­
wald (1967), Preusser (1972), and Royer and Garner
(1966, 1970). The analyses were identical to that described
above for the data from Royer and Garner (1966) and
Gamer and Gottwald (1967). That is, E values were cal­
culated for all possible starting points in a pattern, and
the correlation between E and frequency of selection was
obtained for each pattern. The Royer and Gamer (1966)
patterns had eight possible starting points, and this gives
the value for n in the correlation calculations. For Gamer
and Gottwald (1967), the patterns had five possible start­
ing points. In the case of Preusser (1972) and Royer and
Garner (1970), the frequency of selection of run-breaking
forms was not reported, being negligibly small. Conse­
quently, the present calculations included only non-run­
breaking forms. For Preusser's data, this provided four
forms for each pattern. For Royer and Gamer (1970),
there were 14 patterns with four possible forms and 9 pat­
terns with six forms.

The results of these comparisons are summarized in Ta­
ble 2. The second column of the table shows the number
of different patterns used in each study, and indicates the
number of correlation coefficients calculated for that set
of data. The final column gives the median correlation
between E and frequency of selection for each set of data.

It is apparent from the table that there is a strong and
consistent relationship between E and pattern preferences.
This relationship was tested over 56 patterns, and the me­
dian value of the 56 correlations was -.94. Forty-nine
were significantly different from zero (p < .05). The
question naturally arises of why such a relationship ex­
ists. A partial explanation is proposed below, in the form
of a model of temporal pattern selection.

Data Source

Gamer & Gottwald (1967)
Royer & Gamer (1966)
Royer & Gamer (1970)
Preusser (1972)

Number of Number of Median r of E
Patterns Elements With Frequency

2 5 -.87
16 8 -.85
23 9 -.94
15 6-12 -.98

A major proposal of the model is that E is a measure
of pattern complexity. The model then attempts to account
for preferences as a consequence of differential complex­
ity. The model applies to situations in which patterns
repeat continuously, and it is assumed that, during pat­
tern acquisition, subjects overtly or covertly attempt to
anticipateor track pattern elements. The main components
of the model are represented in Figure 1. Two interlocked
cycles are proposed, a starting-point-selection cycle and
a pattern-learning cycle. The two cycles are considered
to operate simultaneously.

The selection cycle consists of four component
events-the selection of a starting point, the E value of
the sequence from that starting point, the occurrence of
overt or covert errors as the subject tries to learn or track
the repeating pattern in that form, and "going off track"
as a consequence of errors. The relationships between
these events are represented by the symbols "+" and
••- ," indicating direct and inverse relationships, respec­
tively. For example, selection of an initial starting point
results in a particular E value, which may be high or low.
If it is high, then, by hypothesis, the probability of error
will be high; if it is low, the probability of error will be
low. If an error occurs, there is some probability of the
subject's "going offtrack," losing his or her place in the
sequence (Restle & Burnside, 1972). If this occurs, the
subject will have to pick up the sequence again, which
may result in a change of starting point. If this again
results in a high E value, then the same cycle of events
is likely to be repeated. If it leads to a lowering in E, then
error probabilities decrease, going off track becomes less
likely, and the probability of a starting shift decreases.
According to this model, therefore, sequences are more
likely to stabilize around low-E-value forms. Notice
however, the operation of the learning cycle. This
hypothesizes two relationships between errors and trials.
As errors continue, trials are continued (by the ex­
perimenter), usually to the criterion of zero errors. As
trials continue, errors tend to decrease, through learning.

STARTING + or- E
SHIFTS

+ +

+
GOING

OFF ERRORS TRIALS
TRACK + -

Figure 1. A model of temporal pattern selection.



The learning cycle makes it possible, therefore, for com­
plex forms to be eventually learned.

As an initial test of this model, a simulation of tem­
poral pattern selection was carried out, in which a com­
puter model performed the following steps. The starting
point of a pattern was selected at random, the E value
of the pattern determined, and a probability of error as­
signed to each element proportional to the E value (the
constant of proportionality used was a free parameter in
the simulations). The occurrence of errors at each ele­
ment was simulated on the basis of these error probabili­
ties. If no error occurred on the starting element, the pro­
gram proceeded to the next element in the series. This
process continued until an error occurred, at which point
a starting point was again selected at random and the en­
tire process was repeated. Following each complete cy­
cle of the sequence, the probability of error was reduced
by a constant amount (this simulated the learning cycle,
and the constant applied here represented a second free
parameter). The program continued until the criterion of
two errorless repetitions of the sequence was reached, at
which point the sequence was considered to have stabi­
lized and the last starting point was recorded. The fre­
quency that a sequence stabilized around each starting
point was the primary data collected.

The simulations employed the 23 unique binary patterns
of nine elements. One hundred replications were carried
out for each of the 23 patterns, and the frequency of selec­
tion of each starting point was obtained. These values were
then compared with the percentage of starting points
selected by subjects for the same patterns (reported in
Royer & Garner, 1970). Royer and Garner did not report
frequency of selection for patterns that break runs, but
state that the overall frequency of run-breaking was 1.9%.
For comparison with the simulations, I have assigned run­
breaking forms a value of 0 throughout.

The goodness of fit of the simulations can be judged
by three criteria,the size of the correlation between the
predicted and obtained values, the slope of the best-fitting
line (predicted value = 1), and the intercept (predicted
value = O).On all three counts, the simulations provided
an acceptable fit to the data. The correlation was signifi­
cantly high (r == .89, p < .05). The obtained slope was
.98, the intercept, .18. Neither differed significantly from
the predicted values.'

The results indicate that a process of the kind envisaged
by the model leads to the stabilization of the same forms
of patterns in approximately the same frequencies as ob­
served in subjects. However, it should be mentioned that
the simulations made certain simplifying assumptions that
are clearly untenable. Importantly, it was assumed that,
for a given starting point, the probability of error was
equally distributed across all elements in a pattern. This
is wrong on two counts, since errors depend on the posi­
tion of an element within a run and on the position of a
run within a pattern (Jones & Zamostny, 1975; Restle &
Brown, 1970). Also questionable is the assumption that,
when starting shifts occur, the new starting point is
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selected randomly. It may be more likely that elements
that start runs are favored. By not taking these factors into
account, the model gives run-breaking forms a better
chance to stabilize than should probably be the case, given
that subjects virtually never report run-breaking forms
(Preusser, 1972; Royer & Garner, 1970). It is perhaps
all the more striking that, with this conservative bias, the
simulations closely approximated human performance.

The model makes a number of other predictions about
performance, two of which will be explored briefly be­
low. The first is that E should provide a measure of bi­
nary pattern complexity. The second pertains to the ef­
fects of giving subjects a starting point.

Pattern Complexity
A major assumption of the model is that E is a mea­

sure of pattern complexity. This assumption was tested
using response measures of complexity reported in the
literature. Table 3 summarizes the results.

From left to right, the columns of the table show the
data source, the number of different patterns used, the
response measure of complexity employed, and the corre­
lation between E and complexity. The correlations range
from .58 to .99, and the directional hypothesis that E
correlates with complexity is supported beyond the 95 %
level in all seven cases. The lowest correlation is some­
thing of an outlier, and Garner and Gottwald (1968) noted
that their simplest pattern was often incorrectly described,
apparently due to simple carelessness. When this pattern
is excluded, the correlation increases to .71.

The Effects of a Given Starting Point
In many studies, the effects of a given starting point

have been controlled, either by counterbalancing presen­
tation over all starting points (Royer & Garner, 1966) or
by ensuring that subjects "enter" the repeating pattern
at a random point (Preusser, 1972; Royer & Garner 1970).
In several studies, however, the effects of a given start­
ing point have been the focus of study (Garner & Gott­
wald, 1967, 1968). The present model allows several
predictions under these conditions.

Table 3
Correlations of E With Performance Measures of Complexity

Number of Dependent Correlation
Data Source Patterns Variable With E

Galanter & Smith 6 Median trials .98
(1958) to criterion
Gamer & Gottwald 10 Errors of .58
(1968) description
Preusser (1972) 15 Errors of .81

reproduction
Royer (1967) 29 Maximum rate -.87

of production
Royer & Gamer 19 Response point .94
(1966) uncertainty
Scott & Henninger 5 Errors to .99
(1933) criterion
Vitz (1968) 20 Judged .90

complexity
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Consider, first, the probability that subjects will "re­
tain" a given starting point by learning the pattern from
the starting point given by the experimenter. For the
model, retaining a starting point could mean either that
no starting shifts occurred during acquisition or that the
subject shifted, then returned to, the initially given start­
ing point. In either case, it followsdirectly from the model
that low E value forms have a greater chance of being
retained than higher E value forms.

Consider, next, the cases in which subjects fail to re­
tain the given starting point. In these cases, the model
predicts that lower E-value forms should "attract"
responses more frequently than high-E-value forms. That
is, the probability that an element will take over as start­
ing point will be negatively correlated with the E value
of the resulting pattern.

Garner and Gottwald (1967) report data for two five­
element patterns that allow a test of these predictions. With
respect to retention of starting point, the correlations with
E were -.91 and -.81. The correlations between E and
"attracting" responses were -.91 and -.79. All but the
last of these correlations were significant beyond the 95%
level. It appears that the capacity of an element to retain
or take over the position of starting point varies inversely
with E value of the pattern that results.

GENERAL DISCUSSION

The paper began by proposing a quantification of
Garner's (1974) principles of temporal pattern goodness.
The proposed measure, E, was found to correlate highly
with subjects' pattern preferences. To explain this rela­
tionship, a model of starting-point selectionwas proposed,
and simulations based on the model were found to corre­
late highly with human performance. Central to the model
was the proposition that E is primarily a measure of pat­
tern complexity. This proposition was tested using data
from seven reported studies, and the median correlation
between E and response measures of complexity was.90.

The question remains as to why this method of quan­
tifying binary patterns should correlate so consistently
with complexity. One possibility is suggested by results
in the area of serial pattern learning, which have shown
that subpatterns in more enclosed positions are more
difficult to learn (Jones & Zamostny, 1975). If it were
also true that the difficulty in learning runs depended
directly on their size, then a multiplicative function of run
size and run enclosure could provide a measure of total
pattern complexity.

Other results in the area of serial pattern learning sug­
gest certain limitations to the present measure, which is
based on the assumption that runs provide the basic per­
ceptual unit in the processing of binary patterns. Although,
on the one hand, there is considerable support for this as-

sumption (Royer & Garner, 1970; Simon, 1972), there
is also evidence that units of a higher order than runs may
form, even with binary patterns (Vitz & Todd, 1969).
With more complex patterns, hierarchical forms of en­
coding appear to be the rule (Jones & Zamostny, 1975;
Restle, 1970; Restle & Brown, 1970). It seems likely that
the present form of the E measure will be useful only in
situations in which runs form the important perceptual
unit. It is also quite possible that the measure can begener­
alized to more complex patterns, provided that both the
measurement of enclosure and of unit size are based on
the relevant units of encoding.
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