
Behavior Research Methods. Instruments, & Computers
1989, 21 (5), 502-524

Lookup tables for linear trajectories
through color space

HAROLD STANISLAW
University of New South Wales, Kensington, New South Wales, Australia

Many applications require changing the color of a visual stimulus, so that a linear trajectory
through color space is traversed. The present paper outlines two methods for generating such
trajectories on computer-controlled video systems. FORTRAN implementations of each method
are provided, along with measures of interest for studies of color vision.

Ramping a colored stimulus on or off requires holding
chromaticity constant while luminance is changed. Other
applications hold luminance constant while chromaticity
is changed (e.g., Olzak, Thomas, & Stanislaw, 1987).
Both of these manipulations require color changes that
describe a linear trajectory through color space. They can
be generated in real-time on a computer-controlled color
video system, by ftlling the system's color lookup table
(LUT) with the desired trajectory, and then successively
changing the LUT entry that is used to "paint" the
stimulus.

In general, the change from one color to the next should
be minimal. This is especially important when thresholds
(e.g., for detecting chromatic shifts) are being measured,
because the precision of such measurements is limited by
the magnitude of the color change.

Halftoning can reduce the difference between succes­
sive colors to any level desired (Mulligan, 1986). How­
ever, halftoning cannot be used with small stimuli, and
researchers may wish to avoid the complications it intro­
duces. The present paper details methods for ftlling an
LUT with entries that describe a given trajectory through
color space and differ from each other as little as possi­
ble without halftoning.

Terminology
The discussion below applies generally to any color­

measurement system, but it is based on the 1931 Com­
mission Internationale de 1'Bclairage (CIE) XYZ system.
This system describes colors in terms of their red-green
(X), achromatic (Y), and yellow-blue (Z) components,
collectively labelled tristimulus coordinates (Pokorny &
Smith, 1986). LUT entries are also trivariate, describing
the voltages that drive red (R), green (G), and blue (B)
electron guns.

The XlZ and RGBcolor spaces are not isomorphic, but
RGBentries can be converted to tristimulus coordinates,
using the equation

x, Yr z,
[X Y Z] = [eR eo eB] Xg Yg Zg, (1)

Xb v» Zb

where the rightmost matrix describes the chromaticity
coordinates of the monitor's phosphors (obtainable from
the manufacturer), and the es are the phosphor excitations
that result from loading the LUT with entries [RGB].
Gamma correction must be used to determine the excita­
tions that result from a given set of LUT entries. Gamma
functions are nonlinear, and vary across time and moni­
tors. However, monitors can be calibrated with a pho­
tometer, and the calibration data can be used to construct
arrays containing values for eR, eo, and eB, indexed by
the LUT entry (for details, see Brainard, 1989; Cowan,
1983; Mulligan, 1986; Watsonet al., 1986). Alternately,
calibration data may be used to derive a formula for
gamma correction. The formula used here is

1

exp[pO+Pl(ln v)+p2(ln v)2+piln V)3] if v > Vo

e= m
QO+qlV+q2V2 if v ~ Vo

where e is the excitation, v is the LUT entry, PO-P3 are
parameters for a power function, qO-q2 are parameters
for a quadratic function, and Vo is the voltage setting mark­
ing a transition from a power to a quadratic function.
Parameter values for one video system are listed in Ap­
pendix A, but these values should not be generalized to
other systems.

To convert tristimulus coordinates to LUT entries, both
sides of Equation 1 can be postmultiplied by the inverse
of the phosphor chromaticity coordinates:

I thank two anonymous reviewers for providing helpful comments
on an earlier version of this manuscript. Correspondence regarding this
paper should be addressed to Harold Stanislaw, School of Psychology,
University of New South Wales, P.O. Box I, Kensington, NSW 2033,
Australia.

x, Yr z, -1

[eR eG eB] = [X YZ] Xg Yg Zg

Xb Yb Zb

(3)

Copyright 1989 Psychonomic Society, Inc. 502

LOOKUP TABLES 503

(4)

(6)

The corresponding LUT entries can then be determined
through inverse gamma correction. This may be accom­
plished with an array of voltage settings indexedby ex­
citation values (constructed on the basis of calibration
data), or a suitable predictionequation. Alternately, if an
equation is used for gamma correction, the roots of that
equationmay be used for inverse gammacorrection. For
example, subroutine XYZRGB (listed in Appendix A),
finds the roots of Equation 2, using the method detailed
by Press, Flannery, Teukolsky, and Vetterling (1986,
pp. 145-146).

Measures of Interest
Consider a visual stimulus that is initially at tristimu­

Ius coordinate (Xo, Yo, 20), and then changes in color to
follow a particular linear trajectory through color space.
The trajectory may be described by a vector, m, of the
form [x,Y,z]. Eachentry in m denotesthe relativechange
fromthe initial coloralonga particular axisof colorspace.
For example, [1,0,0] describes a change in X only,
[1,0,1] describes equal changes in both X and Z, and
[XI - Xo, YI - Yo, ZI- 20] describesa change from the ini­
tial color to tristimulus coordinate (Xl>YI>ZI).

Filling an LUT with entries that satisfy m would be a
trivialexercise, exceptthat LUT entriesmustbe integers.
This limits the colors that can actually be displayed by
a given videosystem (see Figure 1), so that m cannot be
traversedprecisely. Instead, the colors producedby each
LUT entry may deviate from the desired trajectory,
producing quantization errors.

Thisproblem is illustrated in Figure 2. The initial color,
0, is at (Xo, Yo, 20). A desired color, D, falls on vector
m, but it cannot be displayed by the apparatus. The nearest
color that actuallycan be displayed, A, is at (Xl>YI>ZI)'
However, quantization error is not necessarily the dis­
tance from A to D, because there may be another point
that also lies on m but is closer to A. This point, P, is
at (X', Y' ,Z'), where A projects onto m. The quantiza­
tion error is thus AP.

Lines AP and OP are perpendicular, so

oJ is simply

OA = -.!(XI- Xo)2 + (YI - YO) 2 + (ZI-20)2, (5)

while calculus can be used to find the distance OP that
minimizes AP:

OP = (XI-Xo)x + (YI- Yo)Y + (ZI-2o)Z .

..JX2+y2+Z2

OA and OP are both measures of interest. Suppose that
o is the true (i.e., displayed) background color, and
stimulipainted withcolorA are just detectable againstthis
background. OA then represents the thresholdfor detect­
ing colors that vary from background0 along the vector
leading from 0 to A. This vector is ideally identical to
m. Notethat the threshold is not OP. However, thresholds
can be measured most precisely if AOP-the change in

15

10

x

5

30252015

Z

105
O+-----r-----r-----r-----r----.....-------,

o

Figure 1. Section through the XZ plane (with Y = 10.00±0.01) of the color space for a Barco COCT 5137 monitor
driven by a CAT 1631 graphics board in a Cromemco CSo2computer. This system can display 234 colors, of which
9698 (0.06%) are shown. The arrow starts at (7.6,10.0,4.3) and foUows the trajectory m = [0,0,1].

504 STANISLAW

A (XI' Y" Z,)

d-----.. mp (X', Y', Z')

Figure 2. Measuresofinterestfora trajectory through color space
from point 0 along vector m. See text for details.

OP from one LUT entry to the next-is as small as the
apparatus permits. Note also that fiOP must be positive
throughout the LUT for movement through color space
to be unidirectional.

Filling an LUT with a Grid Search
One method for filling an LUT is to start with the set

of displayable colors, and select the subset of desirable
colors. This method can be implemented by starting with
the LUT entry for the initial color, searching a surround­
ing grid of candidate entries, and using gamma correc­
tion to find the tristimulus coordinates (and thus OP and
AP) for each candidate. Candidates that do not increase
OPcan be rejected. The best remaining candidate can then
be adopted as the next LUT entry, used as the starting
point for another grid search, and so on, until the LUT
is full or the limits of the apparatus are met.

The "best" candidate is that which produces the
smallest positive fiOP, but nevertheless yields a quanti­
zation error that is within some acceptable level, APmax .

If no such candidate can be found, the grid may be ex­
panded to search a greater portion of the displayable color
space.

This method is implemented by FORTRAN subroutine
GRIQJsee Appendix B). GRID takes m, the initial color,
and APmax as input. Inverse gamma correction is used to
find the first LUT entry. Subsequent entries are found by
using gamma correction to evaluate a grid that initially
allows each value of R, G, and B to vary by ±l from
the previous entry. The grid expands as needed to allow
a maximum variation of ± 10.

GRID spends most of its time making gamma correc­
tions. This involves converting LUT entries into excita­
tions, and excitations into tristimulus coordinates. Since
the former conversions involve far more calculations than
the latter, GRID considers factorial combinations of the
excitations only, not of the LUT entries themselves. This
reduces execution time dramatically. Further reductions
can be obtained by recalculating the contribution of the
red and green excitations to the tristimulus coordinates
only when the corresponding excitationchanges, not when
any excitation changes. (This modification is not im­
plemented in Appendix B, because it reduces the listing's
interpretability.)

Filling an LUT by Vector Addition
An alternate method for filling an LUT is to begin with

a set of desired colors, and select the subset that can be
displayed. The desired colors can be generated by adding
m in an iterative manner to the initial color. Inverse
gamma correction can then determine the LUT entries
needed to display each of these colors.

Vectors containingelements that are proportional to each
other-such as [1,2,3] and [2,4,6]-should produce iden­
tical LUTs. This can be ensured by rescaling m to an arbi­
trary standard. In general, m should be minimized, so
that fiOP is minimized. However, there is a limit beyond
which further reductions in m merely increase roundoff
error and the number of iterations needed to produce novel
LUT entries. This limit may change throughout a given
trajectory .

Another problem is that OP may decrease from one
LUT entry to the next, even though each desired color
is farther along m than the previous color. Thus, the LUT
must occasionally be reordered, to ensure that fiOP is al­
ways positive.

Vector addition is used by FORTRAN subroutine
ADDM (see Appendix C). ADDM first standardizes m
so that the most extreme entry has an absolute value of
unity. The LUT produced by ADDM is thus affected only
by the relative proportionality of the entries in m, not the
values themselves. ADDM subsequently rescales m as
needed. If the LUT entry changes after only a single ad­
dition ofm, m is deemed too large. ADDM then "backs
up" a step and halves m before proceeding further. If the
LUT entry does not change after two additions of m, m
is deemed too small and therefore doubled. All rescaling
of m is in powers of 2, to control roundoff error.

ADDM's inverse gamma function returns fractional
LUT entries, which are converted to integers by adding
0.5 and rounding down. This method does not always
find the displayable color that is nearest the desired
color. A grid search can therefore follow inverse gamma
correction, to determine whether rounding should be up
or down. In practice, however, this does not improve
the LUT.

Comparison of Methods
Typical quantization errors from GRID and ADDM are

shown in Figure 3. The quasicyclic variation of the errors
is a form of aliasing: The displayable colors are distributed
in an approximate grid, and the trajectory cuts diagonally
across this grid (see Figure 1).

Figure 3 also illustrates a form of heteroscedasticity:
The quantization errors produced by GRID tend to in­
crease with OP. This occurs partly because GRID chooses
the best candidate for the current iteration, which may
be suboptimal for future iterations. GRID thus takes oc­
casional "wrong turns." These are corrected by grid ex­
pansion when they become excessive, but heteroscedastic­
ity is unavoidable for both routines when a trajectory

LOOKUP TABLES 505

0.04

a

0.03

0.02

0.01

O.OO-l-----""''T'"----__,~----~----"""T'"----__,

b

0.03

Quantization
0.02

error (AP)

0.01

O.OO-l-----"""T'"----__,~----~----"""T'"----__,

c

0.03

0.02

0.01

252015105
0.00+------,....----.......------.------..,...-------.

o

Distance from initial color (OP)

Figure 3. Quantization errors for the fIrSt256 LUT entries produced by (a) GRID, (h) ADDM, and (c) the union of GRID and ADDM,
for the trajectory illustrated by the arrow in Figure 1. APmax was set to 0.03.

approaches the limits of the apparatus, where neighbor­
ing colors are farther apart (e.g., the upper right portion
of Figure I).

The average values of AP and !:J.OP are comparable for
both GRID and ADDM, despite differences in the LUTs.
GRID produces smaller color changes than ADDM at
small values of OP, while ADDM is superior at large

values. However, experience with other trajectories and
initial colors suggests that neither routine consistently out­
performs the other.

Execution times for the two routines are also similar.
Both routines fill the LUT for Figure 3 in 4 sec on a
16-MHz computer equipped with an optimizing compiler
and math coprocessor. This drops to 3 sec if CALL state-

506 STANISLAW

ments are eliminated by incorporating the gamma and
inverse gamma functions directly within each routine.
Clearly, however, neither routine cangenerate newLUTs
in real time(e.g., in response to observerinputs), partic­
ularly if implementedon a slower computer.

Given these similarities, the choice between routines
may be dictated by the availability and accuracy of
methods forgamma andinversegamma correction. Both
routines involve both corrections, but GRID centers on
the former, while ADDM centers on the latter. In fact,
if the LUT entry for the initial color can be specified
a priori, inverse gamma correction canbeeliminated from
GRID. Similarly, ADDM can ignore gamma correction
if the specific values of AP and OP are not of interest
(although inthiscaseIiOPmay occasionally be negative).

NotealsothatGRID is highly dependent uponthevalue
of APmax , while ADDM is not. In fact, ADDM performs
wellevenif APmax is unspecified or absurdly large, while
GRID does not. Thus, ADDM should be used if there
is no interestin the actual magnitude of the quantization
errors.

If execution time is not of concern, both routines can
be used. TheLUTfor Figure 3c, forexample, is theunion
of the LUTs produced by GRID and ADDM. It yields

a smalleraverage IiOP than either GRIDor ADDM (as
indicated by the reduction in the final valueof OP), and
combines the best elements of both approaches.

REFERENCES

BRAINARD, D. H. (1989). Calibrationof a computer controlledcolor
monitor. COLOR Research & Application, 14, 23-34.

COWAN, W. B. (1983). An inexpensive scheme forcalibration of a colour
monitor in terms of CIE standardcoordinates. Computer Graphics,
17, 315-321.

MULUGAN, J. B. (1986). Minimizing quantization errors in digitally­
controlled CRT displays. COLOR Research & Application, 11,
S47-S51.

OLZAK, L. A., THOMAS, J. P., & STANISLAW, H. (1987).Development
oja chromatic/luminance contrast scale(ContractNo. DTCG-39-C­
80205). Washington, DC: U.S. Coast Guard.

POKORNY, J., & SMITH, V. C. (1986). Colorimetryand color discrimi­
nation. In K. Boff, L. Kaufman,& J. P. Thomas (Eds.), Handbook
ojperception andhuman performance: Vol. 1. Sensory processes and
perception (pp. 8-1-8-51). New York: Wiley.

PRESS, W. H., FLANNERY, B. P., TEUKOLSKY, S. A., & VETTER­
LING, W. T. (1986). Numerical recipes: The an oj scientific com­
puting. Cambridge, England: Cambridge University Press.

WATSON, A. B., NIELSEN, K. R. K., POIRSON, A., FITZHUGH, A.,
BILSON, A., NGUYEN, K., & AHUMADA, A. J., JR. (1986). Use of
a raster framebufferin visionresearch. Behavior Research Methods,
Instruments, & Computers, 18, 587-594.

APPENDIX A
Subroutines to Convert between RGB and XYZ Color Space

SUBROUTINE RGBXYZ(LUTR,LUTG,LUTB,X,Y,Z)

c

C FORTRAN subroutine to convert from RGB color space (the LUT entries

C LUTR, LUTG and LUTB--all INTEGER*2 variables) to XYZ color space

C (tristimulus coordinates X, Y and Z--all REAL*4 variables). All

C internal calculations are in double precision.

C

C ** WARNING ** The parameter values in this subroutine should not be

C generalized to other video systems.

C

REAL*8 V(3),E(3),VO(3),PO(3),Pl(3),P2(3),P3(3),QO(3),Ql(3),Q2(3)

DATA VO/O.l1764310D+03,O.14000000D+03,O.10949059D+03/

DATA PO/O.15284195D+02,-.74795130D+02,O.39596094D+02/

DATA Pl/-.11514202D+02,O.39700333D+02,-.24230622D+02/

DATA P2/0.25233193D+Ol,-.71598417D+Ol,O.48892751D+Ol/

DATA P3/-.15663061D+OO,O.45336301D+OO,-.30539627D+OO/

LOOKUP TABLES 507

APPENDIX A (Continued)

DATA QO/0.62875237D-Ol,0.51273829D-Ol,0.20635986D+Ol/

DATA Ql/0.17687158D-02,0.10497312D-02,0.10010797D-02/

DATA Q2/0.13656599D-03,0.16917282D-03,0.43687862D-03/

V(l)=LUTR

V(2)=LUTG

V(3)=LUTB

C

C Convert LUT entries to excitations, using a quadratic function for

C small entries, and a power function for large entries.

C

DO 100 I=1,3

IF(V(I) .LE.VO(I» THEN

E(I)=QO(I)+V(I)*(Ql(I)+V(I)*Q2(I»

ELSE

VLOG=LOG(V(I»

E(I)=EXP(PO(I)+VLOG*(Pl(I)+VLOG*(P2(I)+VLOG*P3(I»»

ENDIF

100 CONTINUE

C

C Post-multiply the excitations by the monitor chromaticity coordinates,

C to convert the excitations to tristimulus coordinates.

C

X=0.62DO*E(1)+0.210DO*E(2)+0.15DO*E(3)

Y=0.33DO*E(1)+O.675DO*E(2)+O.06DO*E(3)

Z=0.05DO*E(l)+O.115DO*E(2)+O.79DO*E(3)

RETURN

END

SUBROUTINE XYZRGB(X,Y,Z,IERR,LUTR,LUTG,LUTB)

C

508 STANISLAW

APPENDIX A (Continued)

C FORTRAN sUbroutine to convert from XYZ color space (the tristimulus

C coordinates x, Y and Z--all REAL*4 variables) to RGB color space (the

C LUT entries LUTR, LUTG and LUTB--all INTEGER*2 variables). All internal

C calculations are in double precision.

C

C ** WARNING ** The parameter values in this subroutine should not be

C generalized to other video systems.

C

IMPLICIT REAL*8 (A,B,E,T)

REAL*8 V(3), E (3) , vo (3) , PO (3), P1 (3) , P2 (3) , P3 (3),00 (3) ,01 (3),02 (3)

DATA VO/0.11764310D+03,0.14000000D+03,0.10949059D+03/

DATA PO/0.15284195D+02,-.74795130D+02,0.39596094D+02/

DATA P1/-.11514202D+02,0.39700333D+02,-.24230622D+02/

DATA P2/0.25233193D+01,-.71598417D+01,0.48892751D+Ol/

DATA P3/-.15663061D+00,0.45336301D+00,-.30539627D+00/

DATA 00/0.62875237D-01,0.51273829D-01,0.20635986D+01/

DATA Ql/0.17687158D-02,O.10497312D-02,0.10010797D-02/

DATA Q2/0.13656599D-03,0.16917282D-03,0.43687862D-03/

IERR=O

C

C Post-multiply the tristimulus coordinates by the inverse of the

C chromaticity coordinate matrix, to convert the tristimulus

C coordinates to excitations.

C

E(l)= 1.92908l89DO*X-O.54480480DO*Y-O.32490380DO*Z

E(2)=-O.94447500DO*X+l.76763786DO*Y+O.04507973DO*Z

E(3)~ 0.01539308DO*X-O.22283305DO*Y+1.27982404DO*Z

C

C Use inverse gamma correction (i.e., find the roots of the gamma

C correction equations) to convert the excitations to LUT entries.

LOOKUP TABLES 509

APPENDIX A (Continued)

C

DO 300 1=1,3

EO=QO(I)+VO(1)*(Q1(1)+VO(1)*Q2(1))

1F(E(1) .LE.EO) GOTO 200

C

C Find the roots of a power function.

C

E1=P2(1)/P3(1)

E2=P1(1)/P3(1)

E3=(PO(I)-LOG(E(1)))/P3(I)

EOFF=Ell3.0DO

A=(E1*E1-(E2+E2+E2))/9.0DO

B=(2.0DO*E1*E1*El-9.0DO*E1*E2+27.0DO*E3)/54.0DO

IF (B*B.GT.A*A*A) GOTO 100

C

C Three real roots

C

THETA=ACOS(B/SQRT(A*A*A))

ETERM=-2.0DO*SQRT(A)

V(1)=EXP(ETERM*COS«THETA+12.5663706144DO)/3.0DO)-EOFF)

1F(V(1) .LT. (VO(I)-O.lDO) .OR.V(I) .GT.255.1DO)

* V(I)=EXP(ETERM*COS«THETA+6.28318530718DO)/3.0DO)-EOFF)

1F(V(1) .LT. (VO(I)-O.lDO) .OR.V(1) .GT.255.1DO)

* V(I)=EXP (ETERM*COS (THETA/3.0DO)-EOFF)

IF(V(I) .LT.(VO(I)-O.lDO) .OR.V(I) .GT.255.1DO) IERR=l

GOTO 300

C

C One real root

C

100 ETERM=EXP(LOG(SQRT(B*B-A*A*A)+ABS(B))/3.0DO)

510 STANISLAW

APPENDIX A (Continued)

V(I)=EXP(-SIGN(1.0DO,B)*(ETERM+(A/ETERM))-EOFF)

IF(V(I) .LT. (VO(I)-O.lDO) .OR.V(I) .GT.255.1DO) IERR=l

GOTO 300

C

C Find the roots of a quadratic function.

*

C

200 A=-0.5*(Q1(I)+SIGN(1.0DO,Q1(I»*SQRT(Q1(I)*Q1(I)-

4. ODO* (QO (I) -E (I» *Q2 (I»)

V(I) =A/Q2 (I)

IF(V(I) .LT.-0.1DO.OR.V(I) .GT. (VO(I)+O.lDO» V(I)=(QO(I)-E(I»/A

IF (V(I) .LT. -0 .1DO .OR.V(I) .GT. (VO (I) +0 .1DO» IERR=l

300 CONTINUE

LUTR=V (1) +0.5

LUTG-V(2)+0.5

LUTB=V(3)+0.5

RETURN

END

SUBROUTINE GAMMA(IGUN,LUT,E)

C

C FORTRAN subroutine to perform gamma correction (i.e., convert the LUT

C entry LUT--an INTEGER*2 variable--to its corresponding phosphor

C excitation E--a REAL*B variable). IGUN is an INTEGER*2 variable that

C equals 1 for red phosphors, 2 for green phosphors, and 3 for blue

C phosphors. All internal calculations are in double precision.

C

C ** WARNING ** The parameter values in this subroutine should not be

C generalized to other video systems.

C

LOOKUP TABLES 511

APPENDIX A (Continued)

IMPLICIT REAL*8 (E,V)

REAL*8 VO(3),PO(3),Pl(3),P2(3),P3(3),QO(3),Ql(3),Q2(3)

DATA VO/O.11764310D+03,O.14000000D+03,O.10949059D+03/

DATA PO/O.15284195D+02,-.74795130D+02,O.39596094D+02/

DATA P1/-.11514202D+02,O.39700333D+02,-.24230622D+02/

DATA P2/0.25233193D+Ol,-.71598417D+Ol,O.48892751D+Ol/

DATA P3/-.15663061D+OO,O.45336301D+OO,-.30539627D+OO/

DATA QO/O.62875237D-Ol,O.51273829D-Ol,O.20635986D+Ol/

DATA Ql/0.17687158D-02,O.10497312D-02,0.100107970-02/

OATA Q2/0.136565990-03,0.169172820-03,0.436878620-03/

V=LUT

IF(V.LE.VO(IGUN)) THEN

E=QO(IGUN)+V*(Q1(IGUN)+V*Q2(IGUN))

ELSE

VLOG=LOG(V)

E=EXP (PO (IGUN)+VLOG* (Pl (IGUN)+VLOG* (P2 (IGUN)+VLOG*P3(IGUN))))

ENDIF

RETURN

END

APPENDIX B
Subroutine to Fill an LUT Using a Grid Search

SUBROUTINE GRID(XO,YO,ZO,XDIR,YDIR,ZDIR,APMAX,LENGTH,LUT)

C

C FORTRAN subroutine to fill an LUT using a grid search.

C

C Input variables (REAL*4):

C

C

C

XO

YO

= The X-coordinate of the initial color

= The Y-coordinate of the initial color

512 STANISLAW

APPENDIX B (Continued)

C ZO The Z-coordinate of the initial color

C XDIR The desired relative change in X

C YDIR The desired relative change in Y

C ZDIR = The desired relative change in Z

C APMAX The maximum acceptable quantization error

C

C Output variables (INTEGER*2):

C

C

C

C

C

C

C

C

LENGTH

LUT

The number of entries written to the LUT. If

LENGTH=O, the starting color cannot be displayed.

An array, with a minimum size of (3,LENGTH), in which

the LUT entries are returned. The initial LUT entry

is returned in LUT(1,1) to LUT(3,1), the next entry is

returned in LUT(1,2) to LUT(3,2), and 50 on.

C NOTE: The DIMENSION statement and statement 80 should be changed

C accordingly if the maximum number of LUT entries differs from 256.

C

REAL*8 ER(21),EG(21),EB(21)

DIMENSION LUT(3,256)

C

C Initialize LENGTH.

C

LENGTH=O

C

C Load the initial color into the LUT, returning if it

C cannot be displayed.

C

10 CALL XYZRGB(XO,YO,ZO,IERR,LUT1,LUT2,LUT3)

LOOKUP TABLES 513

APPENDIX B (Continued)

IF(IERR.NE.O) RETURN

LUT(l,l)-LUTl

LUT(2,l)=LUT2

LUT(3,l)=LUT3

C

C Calculate DENOM, the denominator for OP. If DENOM=O,

C return because no movement is desired.

C

DENOM=SQRT(XDIR*XDIR+YDIR*YDIR+ZDIR*ZDIR)

LENGTH=l

IF(DENOM.EQ.O.O) RETURN

C

C Initialize the old value of OP.

C

OPOLD=O.O

LENGTH=2

C

C Calculate the excitations, using the following indexing strategy:

C

C Ec(l) Excitation for the current LUT entry

C Ec(2) Excitation for the current LUT entry, plus 1

C Ec(3) = Excitation for the current LUT entry, minus 1

C Ec(4) Excitation for the current LUT entry, plus 2

C

C

C

C

C where c

C

R, G, or B (for red, green, and blue) .

514 STANISLAW

APPENDIX B (Continued)

20 CALL GAMMA(l,LUTl,ER(l))

CALL GAMMA(1,LUTl+l,ER(2))

CALL GAMMA(1,LUTl-l,ER(3))

CALL GAMMA(2,LUT2,EG(1))

CALL GAMMA(2,LUT2+l,EG(2))

CALL GAMMA(2,LUT2-l,EG(3))

CALL GAMMA(3,LUT3,EB(1))

CALL GAMMA(3,LUT3+l,EB(2))

CALL GAMMA(3,LUT3-l,EB(3))

C

C Initialize the grid depth (NGRID) and the size of the previous

C grid (NPREV).

C

NGRID=l

NPREV=l

C

C Search a new grid, or expand the current grid. NMAX is the grid size

C OPMIN is the smallest value of OP found so far, and APMIN is the

C smallest value of AP found so far.

C

30 NMAX=2*NGRID+l

OPMIN=999.9

APMIN=999.9

C

C Combine the excitations factorially, ignoring LUT entries that

C exceed the bounds of the apparatus.

C

DO 70 I=l,NMAX

IADJ=I!2

LOOKUP TABLES 515

APPENDIX B (Continued)

LUTR=LUT1+(2*(IADJ+IADJ-I)+1)*IADJ

IF(LUTR.LT.0.OR.LUTR.GT.255) GOTO 70

DO 60 J=l,NMAX

JADJ=J/2

LUTG=LUT2+(2* (JADJ+JADJ-J) +1) *JADJ

IF(LUTG.LT.0.OR.LUTG.GT.255) GOTO 60

DO 50 K=l,NMAX

c

C Ignore combinations that have already been examined.

C

IF (I.LE.NPREV.AND.J.LE.NPREV.AND.K.LE.NPREV) GOTO 50

KADJeK/2

LUTB=LUT3+(2* (KADJ+KADJ-K) +1) *KADJ

IF(LUTB.LT.0.OR.LUTB.GT.255) GOTO 50

C

C Post-multiply the excitations by the chromaticity coordinates, to

C convert them to tristimulus coordinates.

C

C ** WARNING ** The chromaticity coordinates listed below are specific

C to a Barco CDCT 5137 monitor, and should not be generalized to other

C monitors.

C

X=0.62DO*ER(I)+0.210DO*EG(J)+0.15DO*EB(K)

Y=0.33DO*ER(I)+0.675DO*EG(J)+0.06DO*EB(K)

Z=0.05DO*ER(I)+0.115DO*EG(J)+0.79DO*EB(K)

C

C Calculate OP for the candidate.

C

DX=X-XO

516 STANISLAW

APPENDIX B (Continued)

DY=Y-YO

DZ=Z-ZO

OP=(DX*XOIR+DY*YDIR+DZ*ZDIR)!DENOM

c

C Reject the candidate if OP did not increase.

C

IF(OP.LE,OPOLD) GOTO 50

c

C Reject the candidate if another acceptable candidate produced a

C smaller change in OP.

c

IF(OP.GT.OPMIN) GOTO 50

c

C Reject the candidate if AP is too large.

C

AP=SQRT(DX*DX+DY*DY+DZ*DZ-OP*OP)

IF (AP.GT.APMAX) GOTa 50

C

C If two candidates produce the same change in OP, keep the one

C with the smallest error.

C

IF(OP.LT.OPMIN) GOTO 40

IF (AP.GE.APMIN) GOTO 50

c

C Retain the current candidate, which is the best so far.

C

40 LUT(l,LENGTH)-LUTR

LUT(2,LENGTH)=LUTG

LUT(3,LENGTH)=LUTB

LOOKUP TABLES 517

APPENDIX B (Continued)

OPMIN=OP

APMIN=AP

50 CONTINUE

60 CONTINUE

70 CONTINUE

C

C Check whether a new LUT entry was found (in which case OPMIN will

C be less than its initial value). If not, expand the grid or--if

C the grid is already at its maximum size--exit from the routine.

C

IF(OPMIN.LT.999.9) GOTO 80

IF(NGRID.EQ.IO) GOTO 90

NPREV=NMAX

NGRID=NGRID+l

CALL GAMMA(l,LUTl+NGRID,ER(NMAX+l))

CALL GAMMA(1,LUTI-NGRID,ER(NMAX+2))

CALL GAMMA(2,LUT2+NGRID,EG(NMAX+l))

CALL GAMMA(2,LUT2-NGRID,EG(NMAX+2))

CALL GAMMA(3,LUT3+NGRID,EB(NMAX+l))

CALL GAMMA(3,LUT3-NGRID,EB(NMAX+2))

GOTO 30

c

C Exit from the routine if the LUT is full.

C

80 IF (LENGTH.EQ.256) RETURN

C

C Update the old value of OP and search for the next entry.

C

OPOLD=OPMIN

518 STANISLAW

APPENDIX B (Continued)

LUT1=LUT(1,LENGTH)

LUT2=LUT (2, LENGTH)

LUT3=LUT (3, LENGTH)

LENGTH=LENGTH+l

GOTO 20

c

C GRID only gets here if it was looking for an LUT entry, but

C couldn't find one. Adjust the value of LENGTH before returning.

c

90 LENGTH=LENGTH-l

RETURN

END

APPENDIX C
Subroutine to Fill an LUT Using Vector Addition

SUBROUTINE ADDM(XO,YO,ZO,XDIR,YDIR,ZDIR,APMAX,LENGTH,LUT)

c

C FORTRAN subroutine to fill an LUT using vector addition.

C Input and output variables are the same as for subroutine GRID.

c

C NOTE: The DIMENSION statement and statement 105 should be changed

C accordingly if the maximum number of LUT entries differs from 256.

C

DIMENSION LUT(3,256),OP(256)

C

C Initialize LENGTH.

c

LENGTH=O

c

LOOKUP TABLES 519

APPENDIX C (Continued)

C Load the initial color into the LUT, returning if it

C cannot be displayed.

C

10 CALL XYZRGB(XO,YO,ZO,IERR,LUT1,LUT2,LUT3)

IF(IERR.NE.O) RETURN

LUT(1,1)=LUT1

LUT(2,1)=LUT2

LUT(3,1)=LUT3

LENGTH=l

C

C Rescale the entries in the movement vector so that the most

C extreme entry has an absolute value of unity. Return if no

C movement is desired.

C

DELTAX=XDIR

DELTAY=YDIR

DELTAZ=ZDIR

SCALE=ABS(DELTAX)

IF(ABS(DELTAY) .GT.SCALE) SCALE=ABS(DELTAY)

IF (ABS(DELTAZ) .GT.SCALE) SCALE=ABS(DELTAZ)

IF(SCALE.LE.O.O) RETURN

DELTAX=DELTAX/SCALE

DELTAY=DELTAY/SCALE

DELTAZ-DELTAZ/SCALE

C

C Initialize the array containing values of OP, and the

C denominator for calculating OP.

C

OP(l)=O.O

520 STANISLAW

APPENDIX C (Continued)

DENOM=SQRT(XDIR*XDIR+YDIR*YDIR+ZDIR*ZDIR)

C

C Set the current color to the initial color.

C

X=XO

Y=YO

Z=ZO

C

C Add the movement vector for the first time, and find the

C corresponding LUT entry.

C

20 CALL XYZRGB(X+DELTAX,Y+DELTAY, Z+DELTAZ, IERR, LUTR, LUTG, LUTB)

C

C Check if the LUT entry changed. If it did not, add the movement

C vector a second time. Otherwise, scale the movement vector down.

C There is no need to check IERR, because one of the LUT entries

C will have changed if IERR is not O.

C

IF (LUT1.NE.LUTR) GOTO 30

IF (LUT2.NE.LUTG) GOTO 30

IF (LUT3.EQ.LUTB) GOTO 40

C

C Scale the movement vector down.

C

30 DELTAX=0.5*DELTAX

DELTAY=0.5*DELTAY

DELTAZ=0.5*DELTAZ

GOTO 20

C

LOOKUP TABLES 521

APPENDIX C (Continued)

C Add the movement vector a second time, and find the

C corresponding LUT entry.

C

40 XDESIR=XtDELTAXtDELTAX

YDESIR=YtDELTAYtDELTAY

ZDESIR=Z+DELTAZ+DELTAZ

CALL XYZRGB(XDESIR,YDESIR,ZDESIR,IERR,LUTR,LUTG,LUTB)

C

C Check whether the LUT entry changed.

C

IF (LUT1.NE.LUTR) GOTO 50

IF(LUT2.NE.LUTG) GOTO 50

IF (LUT3.NE.LUTB) GOTO 50

C

C The LUT did not change after 2 additions of the movement vector.

C Scale the movement vector up and proceed directly to the second

C addition (since it is already known that the first addition will

C not change the LUT) .

C

DELTAX=DELTAXtDELTAX

DELTAY=DELTAY+DELTAY

DELTAZ=DELTAZ+DELTAZ

GOTO 40

C

C The LUT entry changed. Return if the new entry exceeds the

C bounds of the apparatus.

C

50 IF(IERR.NE.O) RETURN

C

C The current LUT entry should be saved. Determine where to insert

522 STANISLAW

APPENDIX C (Continued)

C it into the sequence of previous entries so that OP increases.

C

CALL RGBXYZ(LUTR,LUTG,LUTB,X1,Y1,Zl)

DXcX1-XO

DY=Yl-YO

DZ=Z1-Z0

OPTEMP=(DX*XOIR+DY*YDIR+DZ*ZDIR)/DENOM

AP=SQRT(DX*DX+DY*DY+DZ*DZ-OPTEMP*OPTEMP)

IF (AP.GT.APMAX) GOTO 110

I=LENGTH

60 IF(OPTEMP.GT.OP(I» GOTO 80

C

C If OP is exactly the same as for a previous entry, keep the

C entry with the smallest quantization error.

C

IF(OPTEMP.NE.OP(I» GOTO 70

CALL RGBXYZ(LUT(1,I),LUT(2,I),LUT(3,I),X2,Y2,Z2)

DX=X2-XO

DY=Y2-YO

DZ=Z2-Z0

AP2=SQRT(DX*DX+DY*DY+DZ*DZ-OP(I)*OP(I»

IF (AP2.LE.AP) GOTO 110

LUT(l,I)=LUTR

LUT(2,I)=LUTG

LUT(3,I)=LUTB

GOTO 110

LOOKUP TABLES 523

APPENDIX C (Continued)

c

C If OP is shorter than for all previous entries, reject the

C current entry because OP must be negative.

C

70 IF(I.EQ.1) GOTO 110

1=1-1

GOTO 60

c

C Make room for the current entry by advancing the previous

C entries as needed.

C

80 1=1+1

LENGTH=LENGTH+1

IF (1.EQ.LENGTHl GOTO 100

DO 90 J=LENGTH,I+1,-1

LUT(1,J)=LUT(1,J-1)

LUT(2,Jl=LUT(2,J-1l

LUT(3,J)=LUT(3,J-1l

90 OP(J)=OP(J-1)

C

C Save the current entry.

C

100 LUT(l,1)=LUTR

LUT(2,1)=LUTG

LUT(3,1)"'LUTB

OP(Il-OPTEMP

C

C Exit from the routine if the LVT is full.

C

524 STANISLAW

APPENDIX C (Continued)

105 IF(LENGTH.EQ.2561 RETURN

110 LUTI-LUTR

LUT2=LUTG

LUT3=LUTB

c

C Update the desired coordinates and find the next entry.

c

X=XDESIR

Y=YDESIR

Z=ZDESIR

GOTO 20

END

(Manuscript received February 22, 1989;
revision accepted for publication August 8, 1989.)

