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Neighborhood effects in visual word recognition:
Facilitatory or inhibitory?

JOAN GAY SNODGRASS and MIRIAM MINTZER
New York University, New York, New York

In five experiments, in which subjects were to identify a target word as it was gradually clari­
fied, we manipulated the target's frequency of occurrence in the language and its neighborhood
size-the number of words that can be constructed from a target word by changing one letter,
while preserving letter position. In Experiments 1-4, visual identification performance to screen­
fragmented words was measured. In Experiments 1 and 2, we used the ascending method of lim­
its, whereas Experiments 3 and 4 presented a fixed-level fragment. In Experiment 1, there was
no relation between overall accuracy and neighborhood size for words between three and six let­
ters in length. However, more errors of commission (guesses) were made for high-neighborhood
words and more errors of omission (blanks) were made for low-neighborhood words. Letter errors
within guesses occurred at serial positions having many neighbors, and these positions were also
likely to contain consonants rather than vowels. In Experiment 2, a small faciiitatory effect of
neighborhood size on both high- and low-frequency words was found. In contrast, in Experiments
3 and 4, using the same set of words, inhibitory effects of neighborhood size, but only for low­
frequency words, were found. Experiment 5, using a speeded identification task, showed results
parallel to those of Experiments 3 and 4. We suggest that whether neighborhood effects are facilita­
tory or inhibitory depends on whether feedback allows subjects to disconfirm initial hypotheses
that the target is a high-frequency neighbor.

For visual word recognition, the size of a word's gra­
phemic neighborhood is usually measured with the N­
metric, proposed by Coltheart, Davelaar, Jonasson, and
Besner (1977). In their definition, the "N" of a letter
string is the number of different English words that can
be produced by changing just one of the letters in the string
to another letter, preserving letter positions.

In recent years, the effect of the size of a word's neigh­
borhood on its visual recognition has attracted attention
because the direction of the effect-inhibitory or facilita­
tory-would appear to sharply constrain models of lexi­
cal access. For example, Andrews (1989) has recently ar­
gued that her finding that large neighborhoods facilitate
visual word recognition rules out serial search models of
lexical access (Forster, 1976, 1987) and the activation­
verification model of Paap, Newsome, McDonald, and
Schvaneveldt (1982) in favor of an activation model such
as that proposed by McClelland and Rumelhart (1981;
Rumelhart & McClelland, 1982), in which top-down ac­
tivation occurs from the word to the letter level. How­
ever, a perusal of the visual word recognition literature
reveals that a variety of effects of neighborhood size have
been observed, from facilitatory (Andrews, 1989, 1992;
Laxon, Coltheart, & Keating, 1988), to zero (Coltheart
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et aI., 1977), to inhibitory (Grainger, 1990; Grainger,
O'Regan, Jacobs, & Segui, 1989; Grainger & Segui,
1990). In the auditory word recognition literature, the con­
sensus seems to be that neighborhood density (a combina­
tion of the size of a word's neighborhood and the frequency
of its neighbors) is inhibitory (Goldinger, Luce, & Pisoni,
1989; Luce, 1986; Luce, Pisoni, & Goldinger, 1990).

This paper was stimulated in part by a previous find­
ing that there was no relationship between word recogni­
tion thresholds and neighborhood size for the names of
the Snodgrass and Vanderwart (1980) pictures (Snodgrass
& Poster, 1992). In the following sections, we first review
the empirical literature on neighborhood effects and then
consider the implications of these results for models of
word recognition.

Neighborhood Size Effects: Empirical Results
In studies of neighborhood size, a variety of tasks have

been used to measure the speed of word recognition,
which is usually assumed to have the speed of lexical ac­
cess as one of its components. These tasks include the
lexical decision task, the pronunciation task, the tachis­
toscopic recognition task, and the reading task. In this
review, we focus on the lexical decision task because it
is in this task that contradictory results have been reported.

Using lexical decision, Coltheart et al. (1977) found that
neighborhood size had no effect on word classification
times, but had an inhibitory effect on nonword classifi­
cation times, Andrews (1989) reasoned that neighborhood
size might be expected to have a greater effect on low­
frequency than on high-frequency words, and that the lack
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of an effect for words found by Coltheart et al. might have
been due to incomplete control over frequency. Andrews
varied both neighborhood size and word frequency or­
thogonally and found that neighborhood size had efacilita­
tory effect on word classification times, but only for low­
frequency words. This effect was replicated in two lexical
decision tasks in which the task was either difficult (the
nonwords were very similar to the words) or easy (the
nonwords were very dissimilar from the words), and in
a pronunciation task. Andrews showed that the effects of
neighborhood size on pronunciation latencies were not due
to the production process itself by showing that neighbor­
hood size effects disappeared in delayed pronunciation
(after lexical access had presumably been accomplished).
Andrews concluded that her results could not be accom­
modated by serial search models of lexical access, because
these models predict that large neighborhoods should
inhibit lexical access and thus slow lexical decision times.
An activation model of word recognition in which bottom­
up activation from the letter to the word level predomi­
nates, such as that ofPaap et al. (1982), also predicts in­
hibitory effects of large neighborhoods because of com­
petition from neighbors receiving bottom-up activation
from common letters. According to Andrews's analysis,
only a model in which activation from candidate words
is fed back to the letter level, thereby increasing the acti­
vation of the target word, can predict that large neigh­
borhoods will facilitate word recognition.

Grainger et al. (1989) argued that the important dimen­
sion of neighborhood size with respect to serial search
models of lexical access was whether a word's neighbor­
hood contained higher frequency words than itself. Using
French words with native speakers of French, they com­
pared lexical decision latencies for four classes of words:
(1) words with zero neighbors, (2) words with neighbors
of only lower frequencies, (3) words with one neighbor
of higher frequency, and (4) words with more than one
neighbor of higher frequency. Grainger et al. found that
neighborhood size had an inhibitory effect on lexical de­
cision latencies, but only when the target had one or more
neighbors of higher frequency.

Recently, Grainger (1990) found that increasing the
number of higher frequency neighbors did not increase
the inhibitory effect of neighborhood size beyond the level
obtained for words with only one higher frequency neigh­
bor. These results contradict serial search models, which
would predict a cumulative effect of the number of higher
frequency neighbors because more words need to be veri­
fied before the target word can be identified. On the other
hand, a simulation based on the McClelland and Rumel­
hart (1981) interactive-activationmodel was able to predict
these results. But note that this model can predict either
facilitatory or inhibitory effects of neighborhood size.

It seems reasonable to assume that low-frequency words
have more higher frequency neighbors than high-frequency
words do. If this is true, then Andrews's (1989, 1992)
results are directly contradictory to those found by
Grainger and his collaborators (Grainger, 1990; Grainger

et al, 1989), because Andrews found facilitatory effects
for low-frequency words with large neighborhoods whereas
Grainger et al. found inhibitory effects for words with
high-frequency neighbors. Grainger (1990) attributed the
contradictory results to Andrews's (1989) failure to con­
trol for bigram frequency in her set of words. He sug­
gested that the facilitatory effects may not have been due
to neighborhood size, but rather merely to the higher bi­
gram frequency found in words with larger neighbor­
hoods. Recently, however, Andrews (1992) replicated her
results in a series of experiments in which she controlled
for bigram frequency. She replicated the facilitatory ef­
fect of neighborhood size on lexical decision latency for
low-frequency words, and found only a slight and non­
significant inhibitory effect of neighborhood size on lex­
ical decision latency for high-frequency words. Andrews
(1992) also manipulated bigram frequency and showed
that this frequency had no effect on lexical decision la­
tency. So we are still left with contradictory results from
two sets of studies, which cannot be resolved on the ba­
sis of stimulus differences.

Recently, Grainger and Segui (1990) introduced a new
task, which they found to be more sensitive to the effects
of neighborhood size. This task, which they call progres­
sive demasking ; is similar to Feustel, Shiffrin, and Sala­
soo's (1983) continuous threshold latency identification
task. The signal (i.e., word) to noise (i.e., pattern mask)
ratio is gradually increased until the subject, by pressing
a button, can identify the word. Using this technique,
Grainger and Segui (1990) found a strong inhibitory ef­
fect of neighborhood size on "masked identification" la­
tencies for low-frequency words. This replicated their lex­
ical decision results, and supported their position that
high-frequency neighbors inhibit recognition of low­
frequency targets.

For auditory word recognition, the best articulated
model of neighborhood effects is the neighborhood acti­
vation model (NAM), developed by Luce (1986; see also
Goldinger et aI., 1989; Luce et aI., 1990). This model
considers both neighborhood size (the number of neigh­
bors of a word) and neighborhood frequency (the frequen­
cies of the neighbors). The size of a word's neighborhood
is determined on the basis of confusion matrices between
the word's phonemes and phonemes of potential neigh­
bors. Luce et al. (1990) varied word frequency, neighbor­
hood density, and neighborhood frequency for four
tasks-perceptual identification, auditory lexical decision,
auditory word naming, and primed perceptual identifica­
tion-and found the usual advantage of high- over low­
frequency words. They also found an inhibitory effect of
both neighborhood size and neighborhood frequency;
words from sparse and/or low-frequency neighborhoods
were recognized more quickly and accurately than words
from dense and/or high-frequency neighborhoods. Gol­
dinger et al. (1989) replicated these effects in an audi­
tory priming paradigm. The inhibitory neighborhood ef­
fects are accounted for by NAM by the competition from
many and more frequent neighbors.
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As the preceding review makes clear, the results from
visual word recognition studies appear to be more con­
tradictory than the results from auditory word recogni­
tion studies. For visual recognition studies that used the
lexical decision task, Andrews (1989, 1992) obtained
facilitatory effects, Coltheart et aI. (1977) obtained no ef­
fects, and Grainger and his colleagues (Grainger, 1990;
Grainger et al., 1989; Grainger & Segui, 1990) obtained
inhibitory effects. For auditory recognition studies under
a variety of tasks, inhibitory effects have consistently been
obtained (Goldinger et aI., 1989; Luce, 1986; Luce et al.,
1990). We return to these contradictory findings, and our
proposal for reconciling them, in the general discussion.

The experiments reported in this paper used a more
direct method of measuring visual recognition-identifica­
tion of fragmented words presented either with the ascend­
ing method of limits, or at a single, moderately fragmented
level. Words are fragmented by a procedure we call screen
fragmentation. In this procedure, the image of a word is
fragmented by deleting blocks of pixels. The procedure
differs from other word fragmentation techniques in which
individual letters are deleted from the word (e.g., Tulv­
ing, Schacter, & Stark, 1982), and has the advantage of
being appropriate for both short and long words. It differs
from other perceptual identification techniques in which
a word is presented briefly and then masked (e.g., Jacoby
& Dallas, 1981), and has the advantage that each level
of the fragmented word is presented for as long as the
subject needs to generate a response.

In Experiment 1, we report an extensive analysis of
threshold data collected by Snodgrass and Poster (1992)
for the names of the Snodgrass and Vanderwart (1980)
pictures. In Experiment 2, we orthogonally manipulate
frequency and neighborhood size by using the set of four­
letter words studied by Andrews (1989). In Experiments 3
and 4, we use the Andrews words with a different psycho­
physical method, and in Experiment 5 we use those words
in a speeded perceptual identification task.

EXPERIMENT 1

Method
Apparatus and Materials. All subjects were tested individually

on an Apple Macintosh Plus microcomputer. Of the 260 original
pictures from the Snodgrass and Vanderwart set, 250 served as ex­
perimental stimuli to provide the names of the pictures. The set
of 250 experimental stimuli were divided into two sets of 125 by
assigning odd-numbered stimuli to one set and even-numbered stim­
uli to the other. Half of the subjects saw Set 1, and the other half
saw Set 2. Three pictures selected from the alternative set served
as practice stimuli. The experimental stimuli were presented in a
random order, which was different for each subject. Words varied
in length from 3 to 12 letters, and all two-word phrases were pre­
sented as one word.

The words were fragmented in the following manner. First, the
word was printed in uppercase Basel typeface in 28-point size, cen­
tered within a 246 x 246 pixel square window. No word was longer
than 12 letters, and all the words fit within the window. The words
were 22 pixels high, and ranged from 49 to 245 pixels long. The
fragmentation unit was an 8 x 8 pixel block, so the maximum num­
ber of blocks eligible for deletion was 120. The actual number of

blocks used by the fragmentation algorithm was determined by iden­
tifying those blocks within the window that contained black pixels.
Across the set of 250 words, this number varied from 26 to 118
(M = 60).

The words were fragmented to produce eight levels of fragmen­
tation. The fragmentation was accomplished by randomly deleting
blocks containing black pixels, according to the following exponen­
tial function: P = 0.85(8-1eve1), where P is the proportion of criti­
cal blocks retained in the image, and level ranges from I (most frag­
mented) to 8 (complete word). So, at Level I, 32 % of the blocks
were exposed, whereas at Level 4, 52 % of the blocks were exposed.
Fragments were added cumulatively from one level to the next, so
that an nth-level stimulus contained all fragments shown at Level
n - I. Figure I shows three examples of words fragmented at the
eight levels. The words were fragmented off line, and were stored
for subsequent presentation during the experiment proper. Thus,
each subject saw identical fragments of a particular word.

Subjects and Procedure. Forty-three students enrolled in an in­
troductory psychology course at New York University served as
subjects in Experiment I. They received course credit for their par­
ticipation in the study. The data of 3 subjects were discarded, be­
cause they had performed significantly more poorly than the others,
leaving a total of 40 subjects.

When the subjects arrived, they were given a brief description
of the experiment and then were asked to sign a consent form. In­
structions displayed on the screen of the computer explained that
they would be shown fragmented words and that their task was to
identify them as soon in the sequence of presentations as possible.
They were informed that the words were names of common ob­
jects and animals, that the first presentation of the word would be
the most fragmented, and that they were to try to identify it. If they
could not, they were to press the return key to go on to the more
complete version. They were also instructed to type the word in
lowercase, even though the word was presented in uppercase.

The word was presented at Level 1 first, and was gradually com­
pleted until the subject could correctly type it. The words had to
be typed absolutely correctly for the program to score the response
as correct. After the experiment, we examined the subjects' guesses
prior to their correct responses, and any errors that indicated to
the experimenters that the word had been identified were rescored
as correct. These included some misspellings, capital letters, punc­
tuation errors, and extra spaces. In particular, misspellings, which
when pronounced were judged identical to the pronunciation of the
correct spelling, were scored as correct. Nonletter symbols C, [,
etc.) were deleted when error responses were analyzed. The sub­
ject's threshold for each word was defined as the level of fragmen­
tation at which correct identification occurred.

The task took most of the subjects 45-60 min to complete. When
they had completed the experiment, they received a written debriefing
statement, and any questions about the experiment were answered.

Results
For the purposes of this paper, we report threshold data

for words of only three to six letters in length, because
only six-letter words or shorter varied in neighborhood
size. This constituted 68% (171) of the 250 words tested.
Results for the entire set of words are presented in Snod­
grass and Poster (1992).

Table 1 shows frequency in print (K-F), neighborhood
size (N), and percentage of correct identifications (T %)
for each of the four word lengths. Frequency-in-print
counts were obtained from Kucera and Francis (1967).
Frequency ranged from 0 (i.e., the word did not appear
in the counts at all) to 591 (for house). Neighborhood size
was obtained from the Franklin Computer Spelling Ace,
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Figure I. Examples of three fragmented words. Level I (the most fragmented stimulus)
is shown at the top, and Level 8 (the complete stimulus) is shown at the bottom.

which contains more than 88,000 words in its lexicon (in­
cluding proper names and abbreviations). The words were
entered with the wild-card character "T" in the target po­
sition, and all words in the lexicon with letters in that po­
sition were counted.

Thresholds were converted to a percent-correct mea­
sure by the following transformation: T% = 100 X
(9-T)/8, where T is the threshold, and varies between
1 (for identification at the most fragmented level) and 8
(for identification at the complete level). The T% mea­
sure can be literally interpreted as a percent-correct mea-

sure because it is the percentage of levels of the word that
can be identified, assuming that identification at a partic­
ular level ensures identification at all higher levels. There­
fore, subjects identifying a word at Level 1 would obtain
a T% score of 100, indicating that they would have iden­
tified that word at all more complete levels.

As shown in Table 1, although both frequency and
neighborhood size decreased with word length, identifi­
cation performance (T %) appears unaffected by word
length. Correlation coefficients were computed between
T% and each of the three variables-word length, log (fre-
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Table 2
Average Number of Errors, Percentage of Blanks, Percentage of

Guesses, and Percentage of Guesses Matching
tbe Target in Length in Experiment 1

In the following analyses, all guesses, regardless of
whether they matched the target in length, were included.
We looked separately at correlations between neighbor­
hood size and both absolute and relative error frequen­
cies for both types of errors. Although the correlation be­
tween neighborhood size and total errors was insignificant
(r = -.11), the correlation between neighborhood size
and absolute number of guesses was significant and posi­
tive (r = +.26), and the correlation between neighbor­
hood size and absolute number of blanks was significant
and negative (r = -.25). When the absolute numbers of
guesses were transformed into proportions by dividing by
total errors for each target, the correlation between
neighborhood size and guesses was even higher (r =
+.49); because the proportion of blanks was the inverse
of the proportion of guesses, the correlation between
neighborhood size and relative blanks was the same value,
but opposite in sign (r = -.49). These correlations thus
support the hypothesis that a large neighborhood produced
a particular type of error-a guess, whereas a small
neighborhood produced another type of error-a blank.

Serial position of neighborhood size. The neighbor­
hood size of a word can be broken down into components
by the serial position of the mismatching letter. For ex­
ample, the word hand has a neighborhood size of 9. There
are five words that can be formed by changing the first
letter (band, land, rand, sand, and wand), there is one
word that can be formed by changing the second letter
(hind), there is one word that can be formed by changing
the third letter (hard), and there are two words that can
be formed by changing the fourth letter (hang and hank).
So, the serial position of neighborhood size for this word
is U-shaped. As illustrated in this example, most neigh­
bors are formed by replacing consonants by consonants and
vowels by vowels. Because there are more consonants than
vowels, the serial position of neighborhood size tends to
be larger in positions occupied by consonants than in po­
sitions occupied by vowels.

When a guess is made, that guess can vary in the degree
to which it misses the target. A guess of form to the tar­
get word hand misses the target in all four serial posi­
tions, whereas a guess of sand misses the target in only
the first serial position. So any guess can be analyzed by
the serial position of the letters in the guess that mismatch
the letters in the target. We will call these mismatches
lettererrors to distinguish them from the more global class
of error, word errors, referred to earlier. A word error

Table I
Kucera-Francls (K-F) Frequencies, Neighborhood Size (N),

and Percentage of Correct Identifications
for the Four Word Lengths in Experiment I

Word Length K-F N* No. of Words
(No. of Letters) (Geometric Means) (M) T%t in Each Group

3 37.79 \4.44 64.6 32
4 20.57 9.41 66.2 5\
5 20.43 3.60 63.\ 50
6 8.79 2.18 61.7 38

*Number of words that can be constructed from a target word by chang­
ing one letter. tTransformed threshold, computed as T% = 100 x
(9 - Tl/8, where T is the level at which the word was identified.

quency + 1), and neighborhood size-across the 171
words. None of the three correlations approached signif­
icance (all ps > .22).

Predicting patterns of errors. In order to explore the
possible role of neighborhood size in more detail, we un­
dertook an extensive exploration of errors. The subjects
could make one of two types of errors-errors of omis­
sion ("blanks"), or errors of commission ("guesses").
A blank occurred when a subject failed to type any re­
sponse onto the keyboard and simply hit the return key
for the next most complete fragment. The occurrence of
a blank presumably reflects the absence of a sufficiently
strong hypothesis about the word's identity. A guess oc­
curred when a subject typed an incorrect response. Be­
cause typing a guess is more effortful than merely hitting
the return key to register a blank, we assumed that any­
time a subject typed a guess, this represented a legitimate
hypothesis about the word's identity.

On logical grounds, it would seem that words with many
neighbors should produce many guesses, and words with
few neighbors should produce many blanks. Therefore,
total errors (the sum of guesses and blanks) might not
show any relationship with neighborhood size, whereas
the components of total errors (guesses and blanks) might
show strong, but opposite, relationships with neighbor­
hood size.

In order to test the hypothesis that words with many
neighbors produced guesses, and words with few neigh­
bors produced blanks, we carried out the following anal­
ysis. There was a total of 9,875 errors. Of these, 7,275
(74%) were blanks, and 2,600 (26%) were guesses.
Guesses were classified as either those that matched the
target word in length, or those that did not. This classifi­
cation was made after all nonletter symbols were stripped
from each guess. Of the 2,600 guesses, 1,755 matched
the target word in length.

Table 2 shows the percentage of blanks and guesses for
each word length. The number of errors was approxi­
mately constant across word length (consistent with the
lack of correlation between word length and threshold).
There were far more blanks than guesses at each word
length (approximately a 3: 1 ratio), but both the percent­
age of guesses and the percentage that matched the target
in length decreased with word length.

Word Length No. of
(No. of Letters) Errors

3 55.1
4 55.1
5 59.0
6 61.9

% Blanks

66.2
71.3
76.6
78.5

% Guesses

33.8
28.7
23.4
21.5

% Matchl
Guess

75.4
74.2
60.8
56.6
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may be a guess or a blank, but a letter error can only oc­
cur in a guess that matches the target in length. A guess
that matches the target in length can contain from I to
n letter errors, where n is the target word length.

An interesting question is whether the frequency of let­
ter errors bears any relationship to neighborhood size. We
explored the relationship between the serial position of
neighborhood size and the serial position of letter errors
for guesses that matched the target in length..For three­
and four-letter targets, particularly, there was a striking
correspondence. For both three- and four-letter targets,
neighborhood size was a U'-shaped function of serial po­
sition, and so was the function for letter error frequen­
cies; that is, the subjects tended to make letter errors at
the ends of words and tended to be correct in the middle.
Furthermore, the probability that a word in our corpus
contained a consonant at a particular serial position was

3·Letter Words

0.6

also highly correlated with the neighborhood size of that
serial position. Pearson correlations ranged from +.76
(for six-letter words) to +.91 (for three-letter words).
Therefore, the likelihood that a particular serial position
will contain neighbors is conditioned by the possibility
that many other letters can occupy that position (i.e., by
the likelihoodthat the position is occupiedby a consonant).
This suggests that serial position of neighborhood size is
largely determined by whether a consonant or vowel is
likely to occupy a particular serial position. Having a con­
sonant in a particular serial position makes it likely that
the neighborhood size will be large. Conversely, having
a vowel in a particular serial position makes it likely that
the neighborhood size will be small.

Figure 2 shows serial position functions for neighbor­
hood size and letter error probability for three- and four­
letter words. Both functions have been normalized so that

0.4
• -- eighbors
X

Prob

X~ X Errors
0.2

0

PI 'I' 2 SI' 3

Serial Position

4-Letter Words

0.6

0.4

Prob

0.2

- - - I eighbors

Erro

(l +I-----,f----+-----+------i
51' I 1'2

Serial Position

1'3 SP4

Figure 2. A comparison of neighborhood serial position (SP) functions and error serial position functions
for three- and four-letter words for Experiment 1. Both functions have been nonnalized so that their sum across
serial positions equals 1.0.
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the sum of values across serial positions equals 1.0, so
these represent relative, rather than absolute, functions.
Letter error functions generally follow the neighborhood
size functions, except that they tend to be flatter; that is,
there are fewer errors at the beginnings and endings of
words than would be expected. If presentations had been
brief, one might attribute the flattening of the U-shaped
error functions to lateral masking of the inner letters by
the outer letters. However, the fragmented image was
available for as long as the subject wished to inspect it.
Alternatively, the fragmentation may make outer letters
more distinct than inner letters, because their beginnings
and endings are better defined. Finally, it is possible that
subjects are better at filling in beginning or ending let­
ters than middle letters, because of the organization of
the lexicon.

Discussion
Although no overall effect of neighborhood sizeon iden­

tification accuracy was observed, there were two impor­
tant effects of neighborhood size on identification perfor­
mance. First, the subjects were more likely to omit a
response when neighborhood size was small, and they
were more likely to guess when neighborhood size was
large. This makes perfect sense because words with many
neighbors, when not identified as themselves, can resem­
ble other words. In contrast, words with few neighbors,
when not identified as themselves, may resemble noth­
ing at all.

Second, the serial position of neighborhood size pre­
dicted the pattern of letter errors. Neighborhood size
showed strong serial position effects, which were gener­
ally U'-shaped and followed consonant probability func­
tions. Letter error functions were also U-shaped, show­
ing that the subjects were more likely to make errors at
serial positions where there were many neighbors (and
where there was likely to be a consonant), and to make
few errors at serial positions where there were few neigh­
bors (and where there was likely to be a vowel).

In order to more carefully control both frequency and
neighborhoodsize, word frequencyand neighborhood size
were orthogonally varied in Experiment 2. In addition,
only four-letter words were used and the subjects were
forced to type four-letter responses. This was expected
to increase the guessing rate and thereby to increase the
corpus of guess responses.

EXPERIMENT 2

Method
Apparatus and Materials. All the subjects were tested individ­

ually on an Apple Macintosh Plus microcomputer. There were four
groups of four-letter words: low frequency-small neighborhood
(low/small); low frequency-large neighborhood (low/large); high
frequency-small neighborhood (high/small); and high frequency­
large neighborhood (high/large). The four-letter words were taken
from Andrews (1989) and an additional word was added to each
set of 15 to create 16 four-letter words per group. Andrews's fre­
quency counts were based on Carroll, Davies, and Richman (1971).

According to these counts, high-frequency words had a minimum
frequency of 85, and low-frequency words had a maximum fre­
quency of 36. According to Kucera-Francis (1967) counts, how­
ever, this set of high- and low-frequency words overlapped some­
what; high-frequencywords had a minimum frequency of 4, whereas
low-frequency words had a maximum frequency of 29.

According to Andrews's measure of neighborhood size, the large­
neighborhood words had at least nine neighbors, whereas the small­
neighborhood words had no more than five neighbors. We mea­
sured neighborhood size with the Language Master'" Desk Acces­
sory from Proximity Technology, which contains more than80,000
words in its lexicon. Neighborhood size was counted by entering
each word with the wild-card character "T" in the desired posi­
tion, and by counting the number of words returned, excluding
proper names and abbreviations. According to this measure, the
ranges of small- and large-neighborhood words overlapped some­
what; the large-neighborhood words had a minimum size of eight,
and the small-neighborhood words had a maximum size of nine.
More statistics on the characteristics of the target words will be
presented below. An additional three words (bird, comb, and poem)
served as practice stimuli. The experimental stimuli were presented
in a random order, which was different for each subject.

Fragmented words were shown in uppercase Basel typeface in
28-point size, centered within a 246 x 246 pixel square window of
a computer screen. Each word fit within an area that was 96 pixels
long x 32 pixels high, or, when that area was divided into
8 x 8 pixel squares, into a 12x4 array of pixel blocks. The words
were fragmented in the same manner as those from Experiment I,
except that the exponential rate parameter was set at 0.82 rather
than 0.85 to make the words harder to identify. The words were
fragmented off line and were stored at eight levels of fragmenta­
tion. Thus, each subject saw identicalfragments of a particular word.

Subjects and Procedure. Sixteen students enrolled in an introduc­
tory psychology course at New York University served as subjects
in Experiment 2. They received course credit for their participa­
tion in the study.

The procedure was identical to that used in Experiment 1, with
the following exceptions. The subjects were told that all the words
were four letters long and that they would be required to type in
a four-letter response to each presentation of the word, even if they
had no idea what the word was. The program was modified to con­
tinue only when the length of the response typed by the subject was
exactly four letters. The subjects were instructed to type the re­
sponse "pass" if they had no idea what the word was. The "pass"
response was intended to correspond to the "blank" response of
Experiment 1.

The word was presented at Level 1 first, and was gradually com­
pleted until the subject correctly typed the word. The words had
to be typed absolutely correctly for the program to accept the re­
sponse as correct. The subject's threshold for each word was de­
fined as the level of fragmentation at which correct identification
occurred.

The task took most of the subjects 30-45 min to complete. When
they had completed the experiment, they received a written debrief­
ing statement,and any questions about theexperimentwere answered.

Frequency of neighborhood words. In addition to measuring
neighborhood size, we also measured Kucera-Prancis frequency of
each of the neighbors, as the results of Grainger and his colleagues,
reviewed in the introduction, suggest that the number of neighbors
of higher frequency than the target may be a more important mea­
sure of neighborhood size than the total number of neighbors.

Table 3 shows the means and ranges of target frequency and
neighborhood size for the four classes of words. In addition, Ta­
ble 3 presents four statistics on the frequency of neighbors of the
target word. Mean NF is the average of the geometric mean K-F
(Kucera-Francis) frequencies of neighbors of each target (exclud­
ing the single word having zero neighbors). There was no a priori
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Table 3
Characteristics of the Words Used in Experiments 2, 3, 4, and 5

Word Class TargetF RangeF MeanN RangeN MeanNF MaxNF %N > T # > T

Low Freq, Small N 4.3 (0-23) 3.88 (1-9) 8.44 60.9 87.5 1.69
Low Freq, Large N 5.5 (0-29) 13.44 (8-18) 12.73 524.5 100.0 7.19
High Freq, Small N 113.8 (4-1747) 3.13 (0-7) 19.12 177.3 31.3 0.47
High Freq, Large N 77.8 (5-1013) 13.50 (8-20) 15.96 713.2 87.5 3.69

Note-TargetF is the geometric mean Kucera-Francis (K-F) frequencyof target words; MeanN is the mean
neighborhood size; MeanNF is the averageof the geometric mean K-F frequency of neighborsof the target;
MaxNF is the average maximum K-F frequency of neighbors of the target; %N > T is the percentage of
target words having one or more neighborsof higher frequency; # > T is the average number of neighbors
exceeding the target word in frequency.

Table 4
Percentage of Correct Identifications by Frequency and

Neighborhood Size of the Words in Experiment 2

of frequency [F(l,59) = 14.82, P = .0003], and a marginally sig­
nificant interaction [F(1,59) = 3.46, MS. = 5.92, P = .07].

Taken together, these results support the idea that targets with
large neighborhoods will have more higher frequency neighbors
than targets with small neighborhoods. This, of course, is a neces­
sary condition for Grainger's inhibition mechanism to work.

Results
Table 4 shows the transformed threshold, T% [T%

100x (9- T)/8], for the four categories of words. In con­
trast to Experiment 1, high-frequency words were iden­
tified better than low-frequency words: T% for high­
frequency words was 51.1, and for low-frequency words
was 46.9, a difference that was highly significant when
the subjects were used as the units of analysis [F(1,15)
= 11.14, MS. = 26.21, p = .004]. In contrast to Exper­
iment 1, neighborhood size also had a significant effect.
Words with large neighborhoods were identified better
than words with small neighborhoods: T% for large­
neighborhood words was 50.5, and for small neighbor­
hoods was 47.6 [F(l,15) = 9.03, MS. = 14.95, p =
.008]. These two main effects replicate those found by
Andrews (1989). However, contrary to her results, there
was no interaction. The advantage of large over small
neighborhoods for low-frequency words (a difference of
2.4 %) was not greater than the advantage of large over
small neighborhoods for high-frequency words (a differ­
ence of 3.4 %) (F < 1). In fact, the difference, though
not significant, was in the opposite direction.

The significant effects of frequency and neighborhood
size were not replicated when items were used as the units
of analysis [for frequency, F(l,60) = 1.04, and for
neighborhood size, F < 1]. Because of the overlap be­
tween both frequency classes and neighborhood sizes
found with our measures, we also computed correlations
between the T % measure and both frequency and
neighborhood size. Neither correlation was significant.

reason to expect either frequency or neighborhood size to have an
effect on this statistic. Surprisingly, however, high-frequency tar­
gets have higher frequency neighbors than low-frequency targets,
whereas the effects of neighborhood size are inconsistent. The re­
sults of a 2 x2 between-items analysis of variance (ANOVA) re­
vealed that the main effect of frequency was reliable [F(l,59) =
5.30, MS. = 143.57, P = .025], but there was no effect of neighbor­
hood size and no interaction. This tendency for high-frequency
words to have high-frequency neighbors may be a peculiar prop­
erty of this set of words, or it may be due to some more basic struc­
tural difference between high- and low-frequency words, such as
consonant-vowel pattern. lfit is a basic property of high-frequency
words, here is yet another instance of differences between high­
and low-frequency words that are not controlled by various match­
ing strategies (Landauer & Streeter, 1973).

The second statistic is MaxNF, which is the maximum K- F fre­
quency of the highest frequency neighbor of each target. On statis­
tical grounds alone, we expect large-N targets to have higher scores
than low-N targets, because the expected maximum value of a sam­
ple increases with its size (Gumbel, 1958). And, because high­
frequency words have higher frequency neighbors than low­
frequency words, we expect high-frequency targets to have higher
scores than low-frequency targets. Both of these effects are evi­
dent in the data shown in Table 3. A 2 x 2 between-items ANOV A
performed on the log frequency of MaxNF showed a significant
effect of neighborhood size [F(l,59) = 35.62, P < .001], and a
marginally significant effect of frequency [F(l,59) = 3.54, P =
.06], but no interaction (MS. = 2.03, for both).

The crucial question concerns the relation between the frequency
of a target and the frequencies of its neighbors; specifically, the
degree to which a neighbor will dominate a target in frequency.
On the basis of statistical sampling, we expect that the neighbors
of low-frequency targets will dominate their targets more often than
the neighbors of high-frequency targets will. In the simplest possi­
ble case, consider a low- and a high-frequency target word that have
a neighbor in common. If the neighbor lies between the two tar­
gets in frequency (e.g., have, cave i pave, where cave is the neigh­
bor and have is the high-frequency target), then cave will domi­
nate pave, but not have. According to Grainger's (1990) hypothe­
sis, this neighbor will interfere with recognition of the low-frequency
target, but not with recognition of the high-frequency target.

The likelihood that a target will have a higher frequency neighbor
is indexed by two statistics in Table 3. %N > T gives the percent­
age of target words havingone or more neighborsof higher frequency.
As can be seen, both frequency and neighborhood size have an ef­
fect on this measure. In particular, all of the low-frequency large­
neighborhood words have at least one neighbor of higher frequency.

The second measure is # > T, which gives the average number
of neighbors exceeding the target word in frequency. This statistic
shows even more extreme effects of neighborhood size, particularly
for low-frequency words. The results of a 2 x 2 between-items
ANOVA on # > T shows a highly significant effect of neighbor­
hood size [F(l,59) = 50.58, P < .0001], a highly significant effect

Frequency

Low
High
M

Neighborhood Size

Small Large

45.7 48.1
49.5 52.9
47.6 50.5

M

46.9
51.1
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The lack of an effect for items was largely due to their
high variability. Items varied in difficulty from a high of
89% for game, a high-frequency, large-neighborhood
word, to a low of20% for raft, a high-frequency, small­
neighborhood word. Some of the variability in word iden­
tification performance can be attributed to the accidents
of the fragmentation used. Some fragmentations were sim­
ply easier than others, over and above any effect of the
word itself. This problem will be addressed in subsequent
experiments by using fragmentation series that are ran­
domly generated on each trial.

The main focus of interest was an analysis of error types
(blanks and guesses). The subjects were instructed to type
"pass" when they could not tell what a word was, so a
pass response corresponded to the blank of Experiment 1.
We expected that words with small neighborhoods would
produce more pass responses than words with large neigh­
borhoods, simply because there are fewer competitors for
small-neighborhood words than for large-neighborhood
words.

The overall percentage of blanks was much lower in
Experiment 2 (20 %) than in Experiment 1 (74%). This
is presumably because typing the word "pass" was as
difficult as typing any other four-letter response. The per­
centage of passes for high-frequency words was virtually
identical to that for low-frequency words (20.1 % and
20.0%, respectively) but, as predicted, words with small
neighborhoods received more passes (21.6 %) than those
with large neighborhoods (18.6%). This difference was
significant for both subjects [1(15) = 2.38] and items
[t(62) = 1.92] (both one-tailedps < .05). However, the
subjects differed widely in their use of the pass response.
One subject responded with a total of 300 passes across
the 64 words, but 5 subjects made no passes at all.

An examination of the responses made by the subjects
who failed to use the pass response revealed that some
of their responses might be viewed as stand-ins for the
pass response in that they were nonwords that often con­
tained repeating or easy-to-type sequences (e.g., "sqss"
or "kdla"). In order to identify responses that were likely
stand-ins for pass responses, we classified all guesses by
their patterns of consonants (C) and vowels (V), and clas­
sified the two patterns CCCC and CCCV as stand-ins for
passes.

Adding pass stand-ins added about 10% overall to the
percentages, but did not change the pattern of results.
Small-neighborhood words continued to produce more
passes than large-neighborhood words, but there was no
effect of frequency. The difference between large- and
small-neighborhood words remained significant for sub­
jects [1(15) = 1.90, P < .05], but failed to reach signifi­
cance for items [1(62) = 1.52].

Serial position of neighborhood size. In Experiment 2,
as in Experiment 1, a comparison of serial position (SP)
functions for consonant probability, neighborhood size,
and letter error frequencies showed remarkably similar
profiles. Table 5 shows these three measures separately
for small- and large-neighborhood words. Errors, exclud-

Table 5
Proportion of Consonants, Average Number of Neighbors,

and Average Number of Letter Errors as a Function
of Serial Position (SP) in Experiment 2

Measure!
Neighborhood Size SP 1 SP 2 SP 3 SP 4

Consonants (large) 1.00 0.09 0.75 0.69
Consonants (small) 0.84 0.31 0.69 0.78
Neighbors (large) 6.50 1.59 2.59 2.78
Neighbors (small) 0.94 0.63 0.78 1.16
Letter Errors (large) 26.4 17.6 23.6 25.2
Letter Errors (small) 27.5 19.5 25.1 29.8

Note-Consonants refers to the probability of a consonant in each serial
position in this set of words. Neighbors refers to the average number
of neighbors at each serial position across the set of words. Letter Er­
rors refers to the average number of letter errors in the subjects' guesses
at each serial position of the targets.

ing passes (as defined above), were considered to be
"true" guesses; that is, responses based on some stimu­
lus information. The frequency of letter errors within
guesses was counted by determining which positions
within the guess did not match the corresponding letters
in the target.

The consonant probability functions are similar to those
for four-letter words from Experiment 1; that is, the
predominant type of word is CVCC, regardless of whether
the word has many or few neighbors. Consistent with this
function, there are more neighbors for words in the con­
sonant positions (SP 1, SP 3, and SP 4) than in the vowel
positions, and the profiles are the same for large- and
small-neighborhood words, even though the average num­
ber of neighbors is higher for large-neighborhood words.

Finally, the letter error functions follow the shape of
the neighborhood size functions; that is, they show a U­
shaped function with a minimum at SP 2, the serial posi­
tion that is most likely to contain a vowel, and therefore
is most likely to have few neighbors. Table 5 shows that
the difference in average number of letter errors between
large- and small-neighborhood words is quite small com­
pared with the much larger differences between serial po­
sitions ofletter errors. A 2 (neighborhood size) X 4 (serial
position) mixed ANOVA on letter error frequencies for
individual items failed to produce a significant difference
between large- and small-neighborhood words (F < 1),
although it did produce a highly significant effect of serial
position [F(3,186) = 7.34, MSe = 145.78, P < .001],
and no interaction (F < 1). Of course, frequency of let­
ter errors is not perfectly related to frequency of guesses.
However, frequency of guesses also did not differ between
words with large neighborhoods and words with small
neighborhoods (means of 40.7 and 41.0, respectively,
1 < 1.0). The fact that frequency of guesses did not differ
between small- and large-neighborhood words means that
the effect of neighborhood size on thresholds is due en­
tirely to differences in frequency of passes.

Further analysis of guesses. The serial position anal­
ysis described above suggests that incorrect guesses tend
to share one or more letters with the target in correspond­
ing serial positions. However, this analysis does not tell
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us which guesses are neighbors. To bea neighbor, it guess
must be a word and must share exactly three letters with
the target in corresponding serial positions. In order to
determine whether there were more guesses that were
neighbors for the high- than the low-neighborhood words,
guesses were classified by whether they were neighbors
of the target, and by whether that neighbor had a higher
frequency than the target.

In order to carry out this analysis, all responses up to
and including the correct response were classified into the
following four categories: correct responses, passes (as
defined previously), guesses that are neighbors of the tar­
get (NGuesses), and neighbors that dominate the target
in frequency (NFreq > TFreq). The remaining errors fall
into a default category, - NGuesses, which includes all
other errors such as words that are not neighbors, neigh­
bors that are not words, and nonwords that are not neigh­
bors. Frequencies were converted to per-item percentages
by dividing by the total number of opportunities. This
number has a theoretical minimum of 16 (if all 16 sub­
jects identified the target correctly at Levell), and a the­
oretical maximum of 16X 8 = 128 (if all 16 subjects failed
to identify the word until Level 8). In fact, total per-item
opportunities ranged from 31 to 1I8.

Table 6 shows these average percentages by word class.
Note that because correct responses were computed differ­
ently from Table 4, the absolute values differ, but the pat­
tern remains the same. I We also show the NFreq >
TFreq category conditionalized against the number of op­
portunities, NGuesses. This was done by dividing the
NFreq > TFreq percentage by the NGuess percentage
and multiplying by 100 within each word class. However,
we did not conduct statistical analyses on this measure
because so many of the subject-based and item-based
NGuess means were zero, thereby producing many in­
determinate values.

For our purposes, the important categories are NGuesses
and NFreq > NTarget. As we might expect, more
NGuesses were made to large- than to small-neighborhood
words [F(I,6O) = 14.94, MSe = 72.73, P < .001].
There was no significant effect of frequency, and no inter­
action (both Fs < 1).

Given that NGuesses do not differ between frequency
classes, and that low-frequency targets have more high-

frequency neighbors than high-frequency targets do (see
Table 3), we would expect both neighborhood size and
target frequency to have effects on NFreq > TFreq. This
is exactly the pattern we find in Table 6, for NFreq >
TFreq responses [for frequency, F(1,6O) = 6.41, P =

.014, and for neighborhood size, F(I,6O) = 10.57,
MSe = 45.92, P = .002, for both]. The interaction was
not significant. We conclude from this analysis that, as
the serial position analysis suggested, incorrect guesses
are more likely to beneighbors of large-neighborhood than
small-neighborhood targets, and neighbor guesses are more
likely to dominate low-frequency, large-neighborhood
targets.

Discussion
In Experiment 2, unlike Experiment I, there were sig­

nificant effects of both frequency and neighborhood size
on overall identification accuracy. However, these effects
were quite small and did not generalize across items.

These effects replicated those reported by Andrews
(1989) in lexical decision, except for the lack of inter­
action. There was not a greater effect of neighborhood
size on low-frequency than on high-frequency words; the
effects were equivalent. Because the effects of neighbor­
hood size were facilitatory, they are contrary to those re­
ported by Grainger et al. (1989) for lexical decision and
gaze duration, and by Goldinger et al. (1989) for audi­
tory word identification.

As in Experiment 1, much larger effects of neighbor­
hood size were observed when error types were analyzed,
and when the serial positionsof letter errors were analyzed.
The subjects made more passes for small-neighborhood
than for large-neighborhood words and serial position
functions of letter errors within guesses showed the same
U-shaped function evident in the neighborhood serial po­
sition function, which in turn followed the consonant prob­
ability function.

Our results directly contradict the results and hypothesis
of Grainger et al. (1989). Our low-frequency, large­
neighborhood words do have more neighbors that domi­
nate them in frequency than our high-frequency, large­
neighborhood words do. Therefore, we would expect, on
the basis of the Grainger hypothesis, that these higher fre­
quency neighbors of low-frequency words would inhibit

Table 6
Percentage of Responses per Item in Experiment 2 in Each Response Category

Response Category

Correct NFreq > TFreq/
Word Class Responses* Passes* NGuesses* NFreq > TFreq NGuess

Low Freq, Small N 19.9 29.5 5.0 4.2 84.0
Low Freq, Large N 21.8 27.8 13.5 10.4 77.0
High Freq, Small N 21.3 30.2 5.7 0.6 10.5
High Freq, Large N 23.9 25.5 13.6 5.4 39.7

Note-Passes include CCCCs and CCCYs. NGuesses are neighbors of the target word that are also words.
NFreq > TFreq is the percentage of total responses having higher frequencies than the target, and
NFreq > TFreq/NGuess is the percentage of neighbor responses having higher frequencies than the target
(based upon word class means). *The sum of these categories equals 100% minus the percentage in the
default category, - NGuess.
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their recognition. Instead, we get a small facilitation ef­
fect of neighborhood size.

However, more guesses were neighbors of the target
for large- than for small-neighborhood words. We assume
that when subjects guess the neighbor of a target word
and are told that they are wrong, they eliminate this neigh­
bor from further consideration. Therefore, guessing
neighbors early in the ascending sequence of presenta­
tions could act to remove their inhibitory effect. Thus,
one way to account for the lack of an inhibitory effect
of neighborhood size is to assume that the subjects were
able, through guessing, to eliminate more competitors for
high-neighborhood than for low-neighborhood words.
This explanation does not, of course, account for the small
facilitatory effect of neighborhood size that was found in
this experiment.

In the next two experiments, we introduce a single-trial
procedure, in which the subjects were given only one op­
portunity to identify the stimulus. This procedure rules
out the possibility of eliminating high-frequency-neighbor
competitors of the target by the judicious use of guess­
ing. If these early guesses prevented the subjects from
showing inhibitory effects of large neighborhoods for low­
frequency words in Experiment 2, the next two experi­
ments should show the inhibition.

In addition, we compared two methods of presenting
the words. In the fixed condition, the subjects were shown
a single level of a moderately fragmented stimulus. In the
ascending condition, the subjects were shown the same
moderately fragmented stimulus, preceded by brief pre­
sentations of three less complete versions of the word,
presented in an ascending series. In previous research
(Snodgrass & Hirshman, 1991), we found that subjects
did more poorly in identifying an ascending than a fixed
presentation, and we attributed this to the activation of
competitors of the target stimulus. The reason for in­
troducing this manipulation here was to determine whether
words with large neighborhoods would show relatively
greater interference in the ascending versus fixed condi­
tions, compared with words with small neighborhoods.

Finally, in order to eliminate extraneous sources of item
variability caused by using identical fragmentation se­
quences, the words were fragmented on-line with a dif­
ferent random selection of pixel blocks on each trial. This
random method of presentation is more comparable to on­
line masking procedures in its introduction of variability
at the point of stimulus presentation.

condition, and was fixed at 4 for the fixed condition. So at Level I.
25% or 12blocks were displayed, and at Level 4, 45% or 22 blocks
were displayed. On each trial, the sequence of blocks was randomly
permuted, so that each trial typically displayed a different subset
of fragments. On ascending trials. the fragments were shown cu­
mulatively; that is, the same subset of fragments shown at Level I
were included in the fragments shown at Level 2, and so on.?

Subjects and Procedure. Thirty-one students enrolled in an in­
troductory psychology course at New York University received
course credit for their participation. The data for I subject were
lost due to a technical malfunction, leaving a total of 30 subjects.

When the subjects arrived, they were given a brief description
of the experiment, and then were asked to sign a consent form. In­
structions displayed on a screen of the computer informed them
that they would be shown four-letter words that would be frag­
mented, and that their task was to identify them. They were also
informed that some of the words would be slowly completed on
the screen, but others would immediately be shown in their most
complete form.

Half of the words were shown in the ascending condition, and
the other half were shown in the fixed condition. Two counter­
balancing series were constructed so that each word would be seen
in each condition an equal number of times. The subjects were in­
structed to type the word onto the computer keyboard in lower­
case, even though the word was presented in uppercase, and were
required to type a four-letter response, even if they had no idea
what the word was. They were instructed to type the response
"pass" if they had no idea what the word was. Words had to be
typed absolutely correctly for the program to accept the response
as correct. Because only one opportunity for a correct response oc­
curred, the dependent variable was proportion correct.

In the ascending condition, fragments at Levels 1-3 were each
presented for I sec. In both the ascending and fixed conditions,
the fragment at Level 4 was presented until the subject responded.
If the subjects typed a response that was not four letters long. they
were instructed to try again. They were given feedback about
whether their response was correct or not. and were told the cor­
rect name of the word. The feedback was displayed for I sec and
was followed immediately by the next word.

The task took most of the subjects 30-45 min to complete. When
they had completed the experiment, they received a written debrief­
ing statement, and any questions about the experiment were answered.

Results and Discussion
The two presentation conditions, ascending and fixed,

produced statistically equivalent performance (30% for
ascending, and 33% for fixed), and presentation condi­
tion did not interact with any other variable, so the two
conditions were combined. The lack of an effect for pre­
sentation condition is contrary to the results of Snodgrass
and Hirshman (1991), who found that the fixed condi­
tion produced performance superior to that of the ascend­
ing condition. The lack of an effect here is most likely

Note-Data have been combined across ascending and fixed presen­
tations.

Table 7
Percentage of Correct Identifications by Frequency and

Neighborhood Size of the Words in Experiment 3

EXPERIMENT 3

Method
Apparatus and Materials. All the subjects were tested individ­

ually on an Apple Macintosh Plus microcomputer. We used the same
set of 64 experimental and 3 practice words that were used in Ex­
periment 2.

To accomplish on-line fragmentation, the set of 48 pixel blocks
was permuted and successive subsets of pixel blocks were selected
for display according to the following exponential function: P =
0.82(8-I<v<I), where level was varied from I to 4 for the ascending

Frequency

Low
High
M

Neighborhood Size

Small Large

35.2 20.4
35.4 35.6
35.3 28.0

M

27.8
35.5
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due to the low level of performance. Subsequent investi­
gations of the perceptual interference effect have revealed
that it only occurs for the conditions used here when iden­
tification performance is well above 50% (Luo & Snod­
grass, 1993).

Table 7 shows the percentage of correct identifications
for each of the four classes of words combined across the
ascendingand fixedconditions. In Experiment 3, unlikeEx­
periment 2, neighborhood size had an inhibitory rather than
a facilitatory effect on word identification. Furthermore,
the expected interaction between frequency and neighbor­
hood size was obtained; that is, the inhibitory effect of
neighborhood size only occurred for low-frequency words,
just as Grainger's (1990) inhibition hypothesis predicts.

A 2 (presentation condition) x 2 (neighborhood size)
x 2 (frequency) within-subjects ANOVA was carried out
on the percentage of correct identifications. There was
no main effect of presentation condition [F(1,29) = 1.69,
MSe = 259.61, P = .20], a significant main effect of
neighborhood size [F(1,29) = 12.19, MSe = 261.76,p =
.002], and a significant main effect of frequency [F(l ,29)
= 14.48, MSe = 246.14, p < .001]. Most important,
there was a significant interaction between neighborhood
size and frequency [F(1,29) = 7.70, MSe = 438.60, P =
.010]. Simple effects tests confirmed that the source of
that interaction was a significant difference between large
and small neighborhoods for low-frequency words, and
no effect of neighborhood size for high-frequency words.
No other interactions were significant.

The most striking finding in the present experiment is
that large neighborhoods inhibit identification perfor­
mance, but only for low-frequency words. The finding
of inhibition rather than facilitation is contrary to the re­
sults reported by Andrews (1989, 1992), and to the re­
sults reported here in Experiment 2. It is, however, con­
sistent with the results reported by Grainger and his
colleagues (1989, 1990), and suggests that Andrews's re­
sults were not, contrary to the suggestions of Grainger
(1990), due to the fact that bigram frequency was higher
in words with large neighborhoods than those with small
neighborhoods. As mentioned previously, Andrews
(1992) showed that bigram frequency had no effect on
lexical decision latency.

Before considering possible explanations for the effect,
including those based on analyses ofthe errors from Ex­
periment 3, we first present the next experiment. In Ex­
periment 4, the design of Experiment 3 was replicated,
with the following two changes. First, in order to boost
performance somewhat, we increased the completion rate
from .82 to .85. Second, in order to obtain more data on
each trial, we continued the ascending and fixed series
of presentations beyond Level 4 to whatever level was
required for correct identification.

EXPERIMENT 4

Method
Apparatus and Materials. The same apparatus and materials that

were used in Experiment 3 were used in Experiment 4, with the ex-

ception that the rate-of-completion parameter was changed from .82
to .85, so the exponential function used was P = 0.85 (8 -level). This
meant that at Level I, 32 % or 15 blocks were displayed, and at
Level 4, 52% or 25 blocks were displayed. As before, fragmenta­
tion was accomplished on line, and the series of blocks was per­
muted randomly each time, so a unique fragmentation series was
presented on each trial. And as before, on ascending trials the frag­
ments were shown cumulatively.

Subjects and Procedure. Twenty-two students enrolled in an in­
troductory psychology course at New York University served as
subjects. They received course credit for their participation in the
study. The data for I subject were lost due to a technical malfunc­
tion, leaving a total of21 subjects. They were divided approximately
equally between the two counterbalancings,

The procedure was identical to that used in Experiment 3, with
the following additional step. After the word was presented at
Level 4, it was gradually completed (up to Level 8, if necessary)
until the subject correctly typed it. All prerecognition guesses were
recorded. This change in procedure permitted us to analyze two
dependent variables: identification accuracy at Level 4 (as in Ex­
periment 3), and the subject's threshold, defined as the level of frag­
mentation at which correct identification occurred (as in Experi­
ment 2) .

The task took most of the subjects 30-45 min to complete. When
they had completed the experiment, they received a written debrief­
ing statement, and any questions about the experiment were answered.

Results and Discussion
Two measures of performance were analyzed in this

experiment. The first, identical to the measure used in
Experiment 3, was the percentage of correct identifica­
tions at Level 4. The second was the percentage of iden­
tifications based on thresholds, in which the threshold was
converted by the formula T% = 1ooX(9-T)/8, where
T is the threshold (the level at which the subject first iden­
tified the stimulus). This T% measure is comparable to
the T % measure used in Experiment 2, except that here
the minimum threshold is 4, so the maximum value of
T% is 62.5%, rather than 100%.

The overall levels of performance in the two presenta­
tion conditions were virtually identical, as was the pat­
tern of results across neighborhood and frequency con­
ditions. Accordingly, the data were collapsed across the
two presentation conditions. Table 8 shows the percent­
age of correct identifications for the four types of words
and two dependent variables. As can be seen, neighbor­
hood size again had an inhibitory effect on identification
performance, but only for low-frequency words. This
same pattern was evident in both dependent measures.

The results of two 2 (neighborhood size) x 2 (fre­
quency) within-subjects ANOVAs on the two dependent
variables revealed approximately the same effects. For
percent correct at Level 4, there was a significant main
effect of neighborhood size [F(l,20) = 8.12, MSe =
105.93, p < .001], no main effect of frequency (F < 1),
and no interaction between neighborhood size and fre­
quency [F(1,20) = 1.96, p = .18]. However, because
the interaction had been significant in Experiment 3, we
carried out simple effects tests, which showed that neigh­
borhood size was significant for low-frequency stimuli
[F(1,20) = 9.75, MSe = 110.31, P = .005], but not for
high-frequency stimuli.



NEIGHBORHOOD EFFECTS IN VISUAL WORD RECOGNITION 259

Note-Data have been combined across ascending and fixed presenta­
tions. Transformed threshold was computed as T% = 100 x (9-T)/8,
where T is the level at which the word was identified.

Table 8
Percentage of Correct Identifications by Frequency

and Neighborhood Size of the Words in Experiment 4

leagues (Grainger, 1990; Grainger et al., 1989). The only
difference between Experiment 2 and Experiments 3 and
4 was the fact that the subjects had no opportunity to guess
until Level 4 in Experiments 3 and 4. We speculated
earlier that this might prevent them from eliminating high­
frequency competitors of low-frequency words early in
the sequence. If this were true, we would expect to ob­
serve more high-frequency-neighbor guesses for low­
frequency, high-neighborhood words in Experiments 3
and 4 than we had in Experiment 2. To test this conjec­
ture, exactly the same analysis of incorrect responses that
was used in Experiment 2 was carried out for Experiments
3 and 4.

Analysis of types of errors. Responses were divided
into four classes: correct responses, passes (including
stand-ins for passes, CCCCs, and CCCVs), guesses that
are neighbors of the target (NGuesses), and neighbors that
dominate the target in frequency (NFreq > TFreq). The
remaining errors fall in the default category, - NGuesses,
which includes words that are not neighbors, neighbors
that are not words, and nonwords that are not neighbors.
The NFreq > TFreq measure is presented both as a per­
centage of total trials and as a percentage of NGuesses.
As for the previous analysis, the latter measure was com­
puted on the averages for each word class, because of the
large number of individual subject or item means with
zero NGuesses. For comparison, a similar analysis of Ex­
periment 2, only for responses made at Level 4, is also
shown. Table 9 presents these results.

Pass responses. In Experiment 3, as in Experiments
1 and 2, small-neighborhood words received more passes
than large-neighborhood words. A 2 (neighborhood size)
X 2 (frequency) ANOVA was conducted on the mean per­
centage of passes for both subjects and items. As expected,

50.6
52.2

50.3
51.9

Transformed Threshold (T%)

52.1 49.1
52.1 52.3
52.1 50.7

Low
High
M

Low
High
M

Neighborhood Size.

Frequency Small Large M

Percentage Correct at Level 4
55.4 45.2
53.3 50.6
54.3 47.9

The same ANOVA on T% also showed a significant
effect of neighborhood size [F(1 ,20) = 7.16, MSe = 5.87,
P = .015), a marginally significant effect of frequency
[F(1,20) = 3.53, MSe = 15.96, P = .075), and a signif­
icant interaction [F(I,20) = 4.35, MSe = 12.93, P =
.05]. Simple effects tests on T% also showed that neigh­
borhood size was significant for low-frequency words
[F(1,20) = 15.12, MSe = 6.47, P = .001], but not for
high-frequency words (F < 1).

Accordingly, two experiments with somewhat differ­
ent levels of performance (32% in Experiment 3 compared
with 51% at Level 4 in Experiment 4) both show an in­
hibitory effect of neighborhood size on word identifica­
tion, but only for low-frequency words.

This pattern of results differs from our results in Ex­
periment 2 and from Andrews's (1989, 1992) results, but
is consistent with those found by Grainger and his col-

Table 9
Mean Percentages of Responses per Item in Experiments 3 and 4

Falling Into Each Response Category as
a Function of Word Class, Compared With the Same Measures at Level 4 for Experiment 2

Response Category

Correct NFreq > TFreq/
Word Class Responses* Passes* NGuesses* NFreq > TFreq NGuess

Experiment 3

Low Freq, Small N 35.2 18.3 12.5 8.8 70.0
Low Freq, Large N 20.4 16.3 32.3 24.4 75.5
High Freq, Small N 35.4 20.6 5.6 1.5 25.9
High Freq, Large N 35.6 11.7 24.2 11.0 45.7

Experiment 4 at Level 4

Low Freq, Small N 55.4 7.7 11.6 7.7 66.7
Low Freq, Large N 45.2 8.3 22.9 16.1 70.1
High Freq, Small N 53.3 8.3 9.5 2.1 21.9
High Freq, Large N 50.6 4.2 27.1 12.8 47.3

Experiment 2 at Level 4

Low Freq, Small N 25.0 29.3 6.6 5.5 82.4
Low Freq, LargeN 31.3 23.4 16.4 9.4 57.1
High Freq, Small N 29.7 28.5 3.1 0.4 12.5
High Freq, Large N 38.7 19.1 9.4 3.9 41.7

Note-Passes include CCCCs and CCCVs. NGuesses are neighbors of the target word that are also words.
NFreq > TFreq is the percentage of total responses having higher frequencies than the target, and
NFreq > TFreq/NGuess is the percentage of neighbor responses having higher frequencies than the target
(based on averages by word class). *The sum of these categories equals 100% minus the default category,
- NGuess, within each word class.
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words with small neighborhoods received more passes
(19.5 %) than words with large neighborhoods (14.0%).
This difference was significant both by the subject analy­
sis [F(1,29) = 18.43, MSe = 49.62, p < .001] and by
the items analysis [F(l,60) = 5.24, MSe = 51.70, p =
.03]. Neither the main effect of frequency nor the inter­
action were significant in either analysis.

In Experiment 4, the percentage of passes out of total
wrong answers was computed at Level 4 in order to make
the measure comparable to that used in Experiment 3.
Overall, the mean percentage of passes at Level 4 was
only 7.1 %, which was much lower than in Experiment 3
(16.6%). This reduction in passes is probably due to the
higher performance in Experiment 4 (although a similar
decrease in incidence ofNGuesses was not observed). In
Experiment 4, neither neighborhood size nor frequency
were significant in either the subject-based or the item­
based ANOVAs on passes.

NGuess and NFreq > TFreq responses. Our major
interest is whether the inhibition observed for low­
frequency, large-neighborhood words can be attributed
to a greater frequency of guesses that are neighbors of
the target (NGuess responses), particularly those that sur­
pass the target in frequency (NFreq > TFreq responses).

In both experiments, the percentage of NGuesses is
higher for large- than for small-neighborhood words, and
more NGuesses surpass the target in frequency for large­
than for small-neighborhood words. Our claim here is that
the low-frequency, large-neighborhood words are being
inhibited by competition from high-frequency neighbors,
which are still viable candidates because they have not
been eliminated from contention. This claim is supported
by the fact that, even though Experiments 3 and 4 dif­
fered in level of performance, both showed the greatest
percentages of NFreq > TFreq responses for the low­
frequency, large-neighborhood words.

In the following analyses, all ANOVAs are based on
subjects, unless indicated otherwise. For Experiment 3,
both neighborhood size and frequency had significant ef­
fects on percentage of NGuesses [for neighborhood size,
F(I,29) = 156.24, MSe = 70.54, P < .001; for fre­
quency, F(1,29) = 23.51, MSe = 71.79,p < .001]. The
interaction was not significant.

For Experiment 4, only neighborhood size had a sig­
nificant effect on percentage of NGuesses [F(1,20) =
68.43, MSe = 63.94, p < .001). There was no effect of
frequency and no interaction.

For Experiment 3, both neighborhood size and fre­
quency had significant effects on percentage of NFreq >
TFreq responses, and the interaction was significant [for
neighborhood size, F(1,29) = 74.90, MSe = 63.63, p <
.001; for frequency, F(1,29) = 61.40, MSe = 51.96,p <
.001; for the interaction, F(1,29) = 4.30, MSe = 63.63,
p = .05). As shown in Table 9, the effect of neighbor­
hood size on NFreq > TFreq responses is larger for low­
frequency than for high-frequency words. The interaction
between neighborhood size and frequency was exactly as

predicted, with low-frequency, large-neighborhood words
receiving a particularly large percentage of responses.

In Experiment 4, the NFreq > TFreq measure was sig­
nificant for both neighborhood size and frequency, but
not for their interaction [for neighborhood size, F( 1,20)
= 40.24, MSe = 47.34, p < .001; for frequency, F(1,20)
= 11.11, MSe = 37.67, p = .003; for the interaction,
F < 1]. The lack of an interaction for Experiment 4 is
not consistent with our predictions; the fact that low­
frequency, high-neighborhood words had the highest per­
centage of NFreq > TFreq responses stems from the fact
that both frequency and neighborhood size were signifi­
cant in the analysis.

Comparison of error patterns in Experiment 3 with
those in Experiment 2. For comparison, the distribution
of responses at a comparable level in Experiment 2 is also
shown at the bottom of Table 9. Only responses that oc­
curred at Level 4 were analyzed. Correct responses in­
clude all trials in which the item was identified prior to
Level 4. Because the level of accuracy was approximately
the same for Experiments 3 and 2 at Level 4, we concen­
trate on this comparison.

Figure 3 shows the difference in percentage of re­
sponses between Experiments 3 and 2 for the four re­
sponse categories by word class. The low-frequency,
large-neighborhood condition has been highlighted, be­
cause it shows the biggest difference in percentage of cor­
rect responses. For correct responses, Experiment 3
differs from Experiment 2 in showing lower performance
for low-frequency, large-neighborhood words and higher
performance for low-frequency, small-neighborhood
words. Experiment 3 produced a smaller percentage of
passes than Experiment 2, but this effect is seen uniformly
across word classes. We assume that fewer passes oc­
curred in Experiment 3 than in Experiment 2, because the
subjects in Experiment 3 knew they had only one oppor­
tunity to identifythe target, whereas those in Experiment 2
knew they would eventually identify the item. But the fact
that this difference in passes occurs evenly across word
class suggests that passes are not responsible for the dif­
ferent pattern of correct responses in the two experiments.

In contrast, Experiment 3 differs from Experiment 2
in both the NGuess and NFreq > TFreq categories, par­
ticularly for low-frequency, large-neighborhood words.
Similar effects, but of smaller magnitude, are shown for
high-frequency, large-neighborhood words. We would ar­
gue that these differences are attributable to subjects' hav­
ing eliminated likely guesses earlier in the sequence, re­
sulting both in better performance in Experiment 2 for
the large-neighborhood words (particularly those of low
frequency), and a higher incidence of NGuess and
NFreq > TFreq responses in Experiment 3.

The resultsof the last two experiments suggest that high­
frequency neighbors are fundamentally inhibitory and in­
terfere withperceptual accuracy. However, much of the
contradictory data on neighborhood size uses lexical de­
cision latency, rather than error rates, as the dependent
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Figure 3. Differences in response patterns between Experiments 3 and 2 measured at Level 4 for each of
the four response categories for each word class. Bars below the 0% line mean that Experiment 2 exceeded
Experiment 3 on the measure, and those above the 0% line mean that Experiment 3 exceeded Experiment 2.

variable . Accordingly, in the next experiment, we used
a latency measure in a speeded identification task . This
task was similar to Feustel er aI. 's (1983) continuous
threshold latency identification task, and Grainger and
Segui's (1990) progressive demasking task. In the speeded
identification task, the subjects were presented with an
ascending series of fragmented images, each presented
for a fixed duration. They pressed a key as soon as they
recognized the word , and the total duration of presenta­
tion (a latency measure) was the dependent variable .

EXPERIMENT 5

Method
Apparatus and Materials. Exactly the same apparatus and ma­

terials that were used in Experiment 4 were also used in Experi­
ment 5. The rate of completion was kept at .85. As before, frag­
mentation was accomplished on line, and the series of blocks was
permuted randomly each time, so a unique fragmentation series was
presented on each trial . However, in contrast to Experiments 2 and
3, the series was presented rapidly and the subjects' task was to
stop the series as soon as they could identify it.

Subjects and Procedure. Twenty-three students enrolled in an in­
troductory psychology course at New York University served as sub­
jects . They received course credit for their participation in the study.

When the subjects arrived , they were given a br ief description
of the experiment, and then were asked to sign a consent form . In­
structions displayed on the screen of the computer informed them
that they would be shown common four-letter words that would
be fragmented, and that their task was to identify them . They were
informed that each word would be presented as a series of frag­
mented images that would be quickly completed. The subjects were
instructed to hit the space key on the keyboard as soon as they could
ident ify the word. As soon as a subject hit the space key, the word
was erased , and the subject was prompted to type in the word. They
were urged to hit the space bar as soon as they could, but not be­
fore they could identify the word .

In order to motivate them to respond quickly and accurately , the
subjects were awarded points accord ing to how quickly in the se­
ries they hit the space key . They were given 8 points for stopping

the series at Level I , 7 points for stopping it at Level 2, down to
I point for stopping it at Level 8, but only if their subsequent re­
sponse was correct. They did not receive any points if they did not
correctly identify the word . After each word, the subjects were told
the number of points they had received. The subject with the highest
total number of points was awarded a prize of $25.

The subjects were instructed to type the word in lowercase, even
though the word was presented in uppercase, and were also required
to type a four-letter response, even if they had no idea what the
word was . The words had to be typed absolutely correctly for the
program to accept the response as correct.

Before the experimental trials began , the subjects were permit­
ted to practice on the word bird for as many trials as they wished.
Dur ing this practice trial , they were given feedback about whether
they were correct or incorrect, and were told the number of points
they had earned when they were correct.

The speeded identification test consisted of 66 trials. The first 2
were practice trials and were not scored ; the remaining 64 presented
the words in the four classes of frequency and neighborhood size .
Prior to each speeded trial, the message " get ready" appeared in
the center of the screen, and was erased after 0.5 sec. Each level
of fragmented image was then presented for 167 msec so that the
entire series of eight fragmented images required 1,336 msec for pre­
sentation. As soon as the subject hit the space key, the level of frag­
mentation being shown at that instant was recorded, and the image
was erased . The subject was then instructed to type the word .

Two dependent measures were obtained on each trial-the frag­
mentation level at which the clock was stopped (stop level) and
whether the word was identified correctly (nami ng accuracy) . The
feedback was displayed for I sec, followed by a 2-sec intertrial
interval.

The task took most of the subjects 15-20 min to complete. At
the end of the experiment, the subjects were shown the total num­
ber of point s they had won, and were thanked and given a written
debriefing statement.

Results
Table 10 shows stop level (our measure of identifica­

tion speed) for correct responses only, and the percent­
age of naming errors for each category of word. Identifi­
cation was slower for large-neighborhood, low-frequency
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Table 10
Stop Level for Correct Responses and Naming Accuracy by

Frequency and Neighborhood Size of the Words in Experiment 5

Neighborhood Size/Frequency

Large/ Large/ Small/ Small!
Measure High Low High Low

Stop Level 6.45 7.16 6.68 6.89
Naming Errors (%) 14.9 18.8 9.5 17.1

words than for the other classes, which replicates the pat­
tern of accuracy data from Experiments 3 and 4. In con­
trast to the accuracy data, however, identification was
faster for large-neighborhood, high-frequency words. The
pattern of naming errors shows similar, but not identi­
cal, effects.

A 2 (neighborhood size) X 2 (frequency) within­
subjects ANOYA on stop level showed no main effects
of neighborhood (F < 1), a main effect of frequency
[F(1,22) = 45.63, MSe = .105, p < .001], and a sig­
nificant interaction [F(1,22) = 20.98, MSe = .068,
p < .001]. Simple effects showed that neighborhood ef­
fects were significant at each frequency level: For low­
frequency words, high-neighborhood words were identi­
fied slower than low-neighborhood words [F(1,22) =
II. 73, MSe = .072, p = .002], but for high-frequency
words, high-neighborhood words were identified faster
than low-neighborhood words [F(1,22) = 7.13, MSe =
.085, p = .014]. A comparable 2x2 between-items
ANOY A on stop level showed essentially the same ef­
fects. Again, there was no main effect of neighborhood
(F < 1), a main effect of frequency [F(1,6O) = 24.38,
p < .001], and a significant interaction [F(1,6O) = 6.73,
MSe = .144,p = .012; for both]. However, for the item
analysis, simple effects showed that neighborhood effects
were significant only for low-frequency words [F(I,6O)
= 4.05, MSe = .144, p = .05]. Taken together, then,
these results show that large-neighborhood, low-frequency
words were identified more slowly than the other cate­
gories of words, and large-neighborhood, high-frequency
words were identified more quickly (but only in the sub­
ject analysis). So, we replicated the inhibitory effects of
neighborhood size for low-frequency words, but there was
some evidence that size was facilitatory for high-frequency
words.

A somewhat different pattern of results was obtained
for narning errors. A 2 (neighborhood size) x 2 (fre­
quency) within-subjects ANOYA on percentage of nam­
ing errors showed a significant main effect of neighbor­
hood size, with small-neighborhood words identified more
accurately than large-neighborhood words [F(1,22) =
4.53, MSe = 63.30,p = .05], a main effect of frequency
[F(1,22) = 9.62, MSe = 77.81,p = .005], and no inter­
action (F < 1). However, a comparable 2x2 between­
items ANOYA on narning errors showed no main effect
of neighborhood size (F < 1), a main effect of frequency
[F(1,6O) = 6.87,MSe = 75.85,p = .01], and no inter­
action (F < 1). Taken together, these results show that

high-frequency words were identified more accurately
than low-frequency words after their series was stopped,
but no other effects were significant in both analyses.

We hoped through instructions and payoffs to keep
narning errors at a low and uniform rate across the four
word categories, so that only speed need be considered.
However, because only the frequency variable was sig­
nificant for narning errors, and both measures showed
an advantage for high- over low-frequency words, we
do not need to qualify our conclusion that large­
neighborhood, low-frequency words are inhibited in the
speed of their identification.

GENERAL DISCUSSION

As we noted in the introduction, there are major dis­
crepancies in the literature regarding the effect of
neighborhood size on word recognition. Although a siz­
able amount of evidence has accumulated to show that
neighbors, particularly high-frequency neighbors, inhibit
recognition of a target, other evidence exists showing that
neighbors facilitate target recognition, particularly for
low-frequency words. Using the same set of words that
Andrews (1989) used, we found facilitatory effects of
neighborhood size in Experiment 2. In contrast, we found
inhibitory effects of neighborhood size in Experiments 3,
4, and 5. These inhibitory effects only occurred for low­
frequency words, and were observed for both an accuracy
measure in Experiments 3 and 4 and for a speed measure
in Experiment 5.

The major question, then, is what differences among
the four experiments led to facilitation in one situation
and inhibition in the others? Recall that in Experiment 2,
we used the ascending method of limits, beginning with
Levell, and forced the subjects to make some response
on each presentation. In contrast, in Experiments 3 and
4, the subjects only responded at Level 4. Therefore, we
believe that the operative difference among the experi­
ments was the opportunity, in Experiment 2, to eliminate
likely competitors of the target as sources of interference.
These likely competitors tended to be high-frequency
neighbors of the target, particularly for low-frequency,
large-neighborhood words. In Experiments 3 and 4, in
which the subjects did not guess until Level 4, these high­
frequency neighbors were still viable responses to the low­
frequency, high-neighborhood targets. Therefore, the sub­
jects in Experiments 3 and 4 guessed high-frequency
neighbors, because they had no opportunity to eliminate
them in previous responses.

This hypothesis is supported by several of the statistics
we have already considered. First, high-neighborhood
words typicallylead to more guesses thanlow-neighborhood
words. This is a necessary condition for the mechanism
to work. Second, these guesses are more likely to be neigh­
bors of the target and, for low-frequency words, are more
likely to be of higher frequency than the target.
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Lexical Decision Results
In the preceding section, we were able to account for

both facilitatory and inhibitory effects of neighborhood
size by differential opportunities for guessing. Is it also
possible to account for contradictory effects of neighbor­
hood size in lexical decision? We think so, but for en­
tirely different reasons.

Lexicaldecision may be a particularly inappropriate task
to study neighborhood effects in word identification.
Balota and Chumbley (1984) have criticized the lexical
decision task as a tool for investigating word frequency
effects in lexical access, and their arguments could also
apply to its use in studying neighborhood effects. Balota
and Chumbley point out that the lexical decision task is
really a discrimination task between words and nonwords.
They propose a hybrid model for lexical decision, inspired
in part by the Atkinson and Juola (1974) model of mem­
ory search, in which extreme values along a global fa­
miliarity/meaningfulness continuum produce fast, but
error-prone, word and nonword decisions, whereas in­
termediate values of familiarity/meaningfulness produce
slower, but accurate, decisions based on lexical search.
In this model, subjects set two criteria for word/nonword
decisions. If the familiarity/meaningfulness of a target falls
above the upper criterion, the subject makes a fast
"word" response, and if the familiarity/meaningfulness
of a target falls below the lower criterion, the subject
makes a fast "nonword" response. If the target value falls
between the two criterion, the subject carries out a more
time-consuming analysis, such as a lexical search. Balota
and Chumbley argue that, because the slower search pro­
cess is more likely for low-frequency than for high­
frequency words, the difference between low- and high­
frequency words in lexical decision latencies may be
exaggerated by differences in the decision process, rather
than by differences in speed of lexical access.

Balota and Chumbley's analysis depends primarily on
the assumption that lexical search takes longer than
criterion-based decisions. Thus, their model can predict
that the advantage of high- over low-frequency words will
vary, but never that low-frequency words will be faster
than high-frequency words. We have the somewhat more
difficult job of showing that a model like this could pre­
dict a reversal of reaction times (RTs) between small­
neighborhood and large-neighborhood words. We use a
neglectedfeature of the originalAtkinson and Juola (1974)
model-that criterion-based decisions are faster for tar­
gets whose values on the familiarity/meaningfulness con­
tinuum fall farther from the criterion. 3 This feature of the
model predicts that criterion-based decisions to large­
neighborhood words will be faster than criterion-based
decisions to small-neighborhood words, because large­
neighborhood words are more familiar/meaningful than
small-neighborhood words. So, in a case where subjects
make predominantly criterion-based decisions (by mov­
ing their two response criteria close together), the model
predicts that large-neighborhood words will have faster
correct RTs than small-neighborhood words.

However, we assume that when subjects engage in lex­
ical search, large-neighborhood words will take longer
to locate than small-neighborhood words, particularly
when the neighbor is of higher frequency. This follows
either from a frequency ordered serial search model or
from a parallel search model, in which high-frequency
neighbors compete with the target for limited resources.
Therefore, when subjects make predominantly search­
based decisions (by moving their two response criteria
far apart), large-neighborhoodwords will have slower cor­
rect RTs than small-neighborhood words, because words
with many neighbors will take longer to locate than words
with few neighbors.

According to this hybrid model for neighborhood size
effects, the subject's placement of the two criteria divid­
ing the search from nonsearch spaces for words and non­
words can determine whether neighborhood size will
facilitate or inhibit lexical decision times. Neighborhood
size could have a facilitatory effect if the criterion for word
decisions was set low on the familiarity/meaningfulness
dimension (so that most decisions were based on fast
global judgments), and could have an inhibitory effect if
the criterion for word decisions was set high on the fa­
miliarity/meaningfulness dimension (so that most deci­
sions were based on lexical search).

Because criterion-based decisions will produce higher
error rates than search-based decisions, this analysis
predicts that studies in which facilitation from neighbor­
hood size was observed should have higher error rates
than studies in which inhibition was observed. Lowering
the upper (word) criterion will increase errors on non­
words, and raising the lower (nonword) criterion will in­
crease errors on words, particularly errors on low­
frequency, low-neighborhood words. It seems reasonable
to assume that subjects wishing to be fast at the expense
of accuracy will move both criteria together, simulta­
neously lowering the word criterion while raising the non­
word criterion. Similarly, subjects wishing to be accurate
at the expense of speed will likely raise the word crite­
rion and lower the nonword criterion. Thus, error rates
are expected to be roughly symmetric.

Andrews's (1989) subjects, who showed facilitation
from large neighborhoods, showed a particularly high er­
ror rate for low-frequency words (16.3% in Experiment 1
and 9.4% in Experiment 2), whereas the subjects of
Grainger et al. (1989), who showed inhibition from large
neighborhoods, had a much lower error rate (5.5%) for
words with high-frequency neighbors (the comparable
class of stimuli). Andrews's subjects also showed a high
nonword error rate (8.0% in Experiment 1, unreported
in Experiment 2), whereas the nonword error rates for
Grainger et al.'s subjects are also unreported.

The change in error rates from Experiments 1 to 2 in
Andrews's data is also consistent with the model. In Ex­
periment 1, nonwords that were similar to the target
words were used, whereas nonwords that were dissimilar
to the target words were used in Experiment 2. If subjects
continued to use a primarily criterion-based strategy, this
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would produce the same amount of facilitation on the RTs
(as found), but a lowered error rate on the words because
of less overlap between the word/nonword distributions.
This model also accounts for the inhibitory effect of
neighborhood size on nonword lexical decisions, found
by Coltheart et al. (1977), because nonwords with few
word neighbors will be low on the familiarity/meaning­
fulness continuum and thus can be quickly rejected as
words, whereas nonwords with many word neighbors will
be higher on the familiarity/meaningfulness continuum
and thus will have slower criterion-based RTs and also
may require a lexical search, which will produce even
longer RTs.

Pronunciation Results
As discussed in the introduction, Andrews (1989, 1992)

showed that large neighborhoods facilitated pronuncia­
tion. Grainger (1990) also found a slight facilitatory ef­
fect of neighborhood size on pronunciation latencies for
words with one or more higher frequency neighbors. Yet,
if large neighborhoods slow access to the lexicon, and if
pronunciation depends upon lexical access, then large­
neighborhood words, particularly those of low frequency,
should show slower naming times than small-neighborhood
words. As in the lexical decision task, it is possible to
account for facilitatory effects of neighborhood size on
pronunciation by assuming that subjects do not always ac­
cess the lexicon.

Grainger (1990) discusses two models that specify non­
lexical mechanisms unique to the pronunciation task,
which could accommodate facilitatory effects of neighbor­
hood size on pronunciation latency. According to anal­
ogy models of word naming, pronunciation is thought to
be accomplished by synthesizing the phonological con­
tributions of all activated lexical representations (Glushko,
1979; Taraban & McClelland, 1987). The neighbors,
which share part of the target's phonology, therefore pro­
vide support for the activation of the target's representa­
tion. The facilitatory effect is stronger for a low-frequency
word than a high-frequency word, because the initial ac­
tivation level of the low-frequency word is lower, forc­
ing the synthesis to rely more on the representations of
the neighbors. Models that incorporate the analogy mech­
anism with the spelling-to-sound correspondences of dual­
route theory are also able to account for facilitatory ef­
fects of neighborhood size.

Yet another model that could accommodate facilitatory
effects is an extension to the Paap et al. (1982) activation­
verification model (Paap, McDonald, Schvaneveldt, &
Noel, 1987). This model assumes that there are both lex­
ical and nonlexical pathways to pronunciation, that pro­
nunciation of low-frequency words is often accomplished
by spelling-to-sound translation rules (the nonlexical path­
way), and that, in consequence, the difference between
high- and low-frequency words is often underestimated
by the pronunciation task. These authors argue, in con­
trast to Balota and Chumbley (1984), that lexical deci­
sion is the better task to investigate frequency effects

because the pronunciation task may underestimate fre­
quency effects. It seems reasonable to assume that high­
neighborhood words share more pronunciation patterns
with their neighbors than low-frequency words, and thus
that their pronunciation is more likely to be accomplished
by the nonlexical route. This could produce a reversal of
the neighborhood-size effect, thereby underestimating (in­
deed reversing) the advantage that small-neighborhood
words have in the lexical access pathway to pronunciation.

Conclusions
It is a peculiar comment on the history of research in

word recognition that, although the process was initially
studied by use of the perceptual identification task, typi­
cally using tachistoscopic recognition thresholds as the
dependent variable (e.g., Howes & Solomon, 1951), to­
day the most popular tasks for measuring word recogni­
tion are lexical decision and pronunciation. Yet, as the
preceding discussion makes clear, questions have been
raised about both the lexical decision and pronunciation
tasks as viable ways of measuring lexical access. We
believe that the two tasks used in this paper-perceptual
identification and speeded identification-can provide im­
portant converging evidence about the roles of target fre­
quency, neighborhood size, and neighbor frequency on
the process of word recognition. Although we admit that
perceptual identification is not free of response bias ef­
fects, the identification technique has the advantage of re­
vealing something about the nature of errors on both the
perceptual and response sides. And, as detailed below,
we believe that there are important reasons for wanting
to study both speed and accuracy as types of dependent
measures.

Investigators often assume that speed and accuracy of
responses index the same underlying process and are sen­
sitive to the same manipulations. Elsewhere, we have
called this assumption Cattell equivalence (Snodgrass,
1991). Cattell equivalence proposes that speed of response
to a suprathreshold stimulus will show the same functional
relationship to some manipulation of an independent vari­
able that accuracy of response to a threshold stimulus
does. The speeded identification task, in which the per­
ceptual features of a stimulus are slowly revealed until
identification is achieved, would appear to yield a mea­
sure of speed that is more comparable to the accuracy
measure obtained in classical threshold studies than either
the lexical decision or pronunciation task.

As mentioned previously, Grainger and Segui (1990)
found that their progressive demasking procedure yielded
latency data that was much more sensitive to both fre­
quency and neighborhood effects than lexical decision la­
tencies were. In the present studies, the results from
speeded identification obtained in Experiment 5 parallel
those from perceptual identification obtained in Experi­
ments 3 and 4.

This paper would argue for a return to the more
"direct" method of measuring word recognition of per­
ceptual identification, by using either an accuracy or a
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speed measure, or, preferably, both. It is a particularly
instructive method when subjects' guesses are recorded,
because one can then determine what they thought the
word was (if anything) when they did not correctly iden­
tify the target. Such erroneous guesses can be a rich source
of hypothesis testing for the many models of word rec­
ognition extant today in the literature.
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NOTES

I. The T% measure is computed as T% = loox(9-T)/8, where T
is the threshold. This was themeasure used in Table 4 to describe levels
of correct performance. Note that because T% is a linear transforma­
tion of threshold, analyses based on T% measures would be identical
to those based on raw T values. The percentage correct measure in Ta­
ble 6, in contrast, is computed for a single trial as 100 x liT (i.e., the
number of correct responses on that trial, which equals I, divided by
the number of opportunities, which equals the threshold, T). These two
measures are not linearly related to one another. In fact, for items, the
correlations between the two measures are very high (r = +.95). For
evaluating overall correct performance, we believe the T% (or T) mea­
sure is the appropriate one. However, when describing the distribution
of responses across possible opportunities, as was done in Table 6, the
only appropriate measure for percentage correct is the one we used.

2. There are at least two senses in which a fragmentation series can
be random. In our intended sense, the pixel blocks for each word were
randomly permuted at the beginning of each trial and then the appropriate
proportion was selected for display. So, for example, although 52% of
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pixel blocks were always shown at Level 4, the particular subset that
was selected varied randomly from subject to subject. A second sense
is one in which each subset of pixel blocks at each level is randomly
selected from the entire populationof pixel blocks. This was never done
in any of theexperiments reportedhere. Instead, in theascending method
of presentation, pixel blocks were always added cumulatively, so that
the blocks shown at Levell were included in those shown at Level 2,
and so on.

3. Although Atkinson and Juola (1974) included a parameter in their
original model for the rate at which RT decreased with distance from
the criterion, in a simulation of their memory data they found that the
model fit as well when the parameter was omitted, so that all responses
that exceeded the criteria were assumed to have the same (fast) RT.
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