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Varieties of working memory as seen in biology
and in connectionist/control architectures

WALTER SCHNEIDER
University of Pittsburgh, Pittsburgh, Pennsylvania

Biological and computational concepts that underlie the nature of working memory are briefly
reviewed. The conceptualization of working memory has changed dramatically in the last 30 years.
Current biological work has monitored several aspects of memory, including activation decay,
sustained activation, long-term connection change, and differential structures for episodic (hippo-
campal formation) and procedural learning. Current connectionist modeling has identified fac-
tors including multiple-region-based processing, control processing as well as data storage, tradeoffs
between fast- and slow-connection-change learning effects, and the speeding of acquisition via
multiple levels of learning. The need to relate the biological, behavioral, and computational con-
straints into models of working memory is discussed. Finally, conceptualizations of working mem-
ory must acknowledge the need for human learning systems to be robust enough to operate in

a dynamic world.

In the nearly 30 years since the seminal models of work-
ing memory were introduced (Atkinson & Shiffrin, 1968;
Waugh & Norman, 1965), we have learned that the phe-
nomena and mechanisms of working memory are far more
complex than what the simple views of the 1960s sug-
gested. In recent years, there has been important progress
in the biological measurement of memory and in the com-
putational modeling of memory effects. These new re-
sults have provided an important foundation for the study
of short-term memory in its many facets. To deal with
the complexity of human brain memory systems, we must
incorporate a diversity of memories and utilize multiple
behavioral and biological constraints to model the result-
ing systems.

In the 1960s, buffer models became the predominate
structure for the understanding of memory. These por-
trayed a fairly simple view of memory as including sev-
eral stages—sensory register, short-term store, and long-
term store (Atkinson & Shiffrin, 1968). The models pro-
duced excellent fits to the results of laboratory tasks, as
in the case of serial position curves obtained when sub-
jects learned random word lists. However, the models
missed critical qualitative features in the data (e.g., load-
ing up short-term memory produced only minor deterio-
ration in long-term learning; see Baddeley, 1986; Klapp,
Marshburn, & Lester, 1983). Normal human performance
was far more robust than that expected in the simple buffer
models. (For example, how do humans recover from in-
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terruptions that would clear small size buffers?—for an
extended discussion, see Schneider & Detweiler, 1987.)

During the past 30 years, the behavioral data have be-
come more complex, leading some researchers to ques-
tion whether there even is an identifiable short-term mem-
ory (see Crowder, 1993). The behavioral data alone do
not allow us to distinguish a single memory system with
multiple time constants from several memory systems with
different time constants. The researcher is faced with mul-
tiple models, all of which make equally good predictions.
Appeals to parsimony have often encouraged researchers
to utilize simple models, because the more complex
models produce little improvement in the predictions and
there are no sharp discontinuities in the behavioral data.

It is important to be very cautious about applying a par-
simony criterion to the understanding of nervous systems.
Neural systems have evolved through variations on a
theme whereby new systems do not replace old systems
but often arise through mutation in multiple ways to ex-
tend the range of cognitive function. When this mutation
occurs, the multiple systems that coexist display a vari-
ety of qualitative differences, but they also overlap sub-
stantially during operation. In vision, for example, hu-
mans have both a rod system and a cone system, both of
which respond to light, with the one more specialized for
low-luminance monochrome, and the other, for high-
luminance color. The visual system is also divided be-
tween the magno- and parvocellular pathways (see Van
Essen & Anderson, 1990). Again, both respond to light,
but one is more specialized for changing stimuli, whereas
the other is more specialized for fine shape discrimina-
tion. It is likely that the biology of memory is analogously
composed of multiple overlapping memory systems that
are optimized for different classes of information stor-
age. Indeed, this argument is becoming increasingly
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prevalent in the memory literature (e.g., Squire, 1986;
Tulving & Schacter, 1990).

In the 1990s we now have substantial biological data
and simulation data illustrating a large variety of mem-
ory effects. Over the remainder of the decade, it will be
a challenge to relate these data to mechanisms and from
there to predictions of human learning in laboratory and
nonlaboratory settings.

Biological Forms of Memory

The biology of memory works at substantially differ-
ent time scales, employing quite different mechanisms.
The neurobiological data illustrate activity decay, a main-
tainable short-term store, and a long-term store. Each of
these operates by means of a different mechanism.

Activity decay is inherent in all biological signals. When
a transmitter is released, there is a process of biological
uptake at the receptive site, alteration of the membrane
potential, passive decay of the membrane, and possibly
active propagation of the potential. These operations oc-
cur at a variety of time scales, depending on the trans-
mitters involved (see Hille, 1992; McCormick, 1990). It
is important that some of these decays at the membrane
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level occur over a range of hundreds of milliseconds. Slow
inactivating Na' and K" channels can require decay over
several seconds (see, e.g., Surmeier, Stefani, Foehring,
& Kitai, 1991). Activity decay at multiple time constants
from milliseconds to seconds is probably fairly generic
throughout many areas of the cortex. The decay occurs
over a time course that would be typical of sensory register
type decay (see Long, 1980, for a review).

Sustained recurrent activation is a form of short-term
memory observed in multiple memory areas that is con-
sistent with an actively maintained short-term store. Funa-
hashi, Bruce, and Goldman-Rakic (1989) have presented
primate monkeys with an oculomotor delayed response
task (see Figures 1A and 1B). The monkey was required
to fixate a central stimulus, one of eight possible periph-
eral cues was then blinked for 40 msec, the fixation stim-
ulus then disappeared after a delay period (1.5-6 sec after
the peripheral blink), and the monkey moved fixation to
the location of the peripheral cue for a reward. The mon-
key had to maintain in memory the location of the cue
during the fixation time. Figure 2 shows the basic results
as a function of delay periods. Of the 288 principal sulcus
neurons, 59% had task-relevant discharge and 30% had
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Figure 1. (A) Temporal sequence of events in the oculomotor delayed-response task. (B) Eye movements
and single neuron activity during an oculomotor delayed-response trial. ITI, intertrial interval; F, fixation
period (0.75 sec); C, cue period (0.5 sec); D, delay period (3 sec); R, response period (0.5 sec). From “Mne-
monic Coding of Visual Space in the Monkey’s Dorsolateral Prefrontal Cortex,” by S. Funahashi, C. J. Bruce,
and P. S. Goldman-Rakic, 1989, Journal of Neurophysiology, 61, pp. 331-349 (Figure 1). Copyright 1989
by the American Physiological Society. Reprinted by permission.
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Figure 2. Directional delay period activity of a principal sulcus neuron (5070, right
hemisphere) for three different delay durations (1.5-sec delay in A, 3-sec delay in B,
and 6-sec delay in C). The data are from an experiment with 12 different types of trials:

the three delay durations crossed with 4 visual cue locations (0° =

right, 90° = up,

180° = left, and 270° = down). All cue eccentricities were 13°. Only the three histo-
grams from the preferred direction (180° location) are shown. From “Mnemonic Cod-
ing of Visual Space in the Monkey’s Dorsolateral Prefrontal Cortex,” by S. Funahashi,
C. J. Bruce, and P. S. Goldman-Rakic, 1989, Journal of Neurophysiology, 61, pp. 331-
349 (Figure 12). Copyright 1989 by the American Physiological Society. Reprinted by

permission.



significant delay-period activity. The responding neurons
responded for longer periods of time when the delay was
extended. If the activity of these units decayed during the
delay interval, the animal was more likely to make an er-
ror (see Figure 3). If a second peripheral cue occurred
during the fixation period, and the monkey had to change
the content of memory, some of the units altered their
response. These data indicate that a form of short-term
memory has been directly monitored. It is of relatively
short duration (less than 10 sec), under direct control of
the subject, and it occurs in several areas of the cortex

A. Correct trials
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(e.g., frontal eye fields, Bruce & Goldberg, 1985; tem-
poral cortex, Miyashita & Chang, 1988; inferomedial tem-
poral cortex, Brown, Wilson, & Riches, 1987; parietal
cortex, Gnadt & Andersen, 1988; and prefrontal cortex,
Funahashi et al., 1989). New results in this area will pro-
duce detailed specification of the duration over which such
information is maintained.

This type of memory has been modeled by Zipser
(1991) in a connectionist network in which the informa-
tion is stored in the dynamic interaction within the neural
population. The units excite one another, thereby main-
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Figure 3. Comparison of delay period activity for correct trials with activity for error trials. The
first correct trial and the first error trial were taken from each of the nine principal sulcus neurons
that had excitatory directional delay period activity and for which the monkey made at least one
error on a trial in the neuron’s preferred direction. The top histogram sums the nine correct trials;
the bottom histogram sums the nine error trials. From “Mnemonic Coding of Visual Space in the
Monkey’s Dorsolateral Prefrontal Cortex,” by S. Funahashi, C. J. Bruce, and P. S. Goldman-Rakic,
1989, Journal of Neurophysiology, 61, pp. 331-349 (Figure 14). Copyright 1989 by the American

Physiological Society. Reprinted by permission.
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taining an active pattern. Shedden and Schneider (1990)
have utilized a positive feedback circuit to produce this
type of memory buffer.

Connection change provides a long-term memory. Since
the time of Hebb (1949), psychologists have generally as-
sumed that long-term memory involves the change in con-
nection weights between neurons. In the last decade, neu-
roscientists have tracked long-term changes in connection
strength that last for durations of weeks in hippocampal
neurons. The paradigm is referred to as long-term poten-
tiation, or LTP (see Gustafsson & Wigstrom, 1988). It
typically involves stimulating both a weak and a strong
input to a pyramidal cell, and then showing that the evoked
potential of the weak cell increases only if it is paired with
the strong input, the one that is assumed to fire the cell.
One type of LTP occurs after a modest number of pair-
ings, occurring in a time scale of 20 sec and lasting for
days and perhaps weeks, though not necessarily perma-
nently. In the hippocampus, this change can produce dra-
matic changes in synaptic efficiency (e.g., doubling the
excitatory effect of the connections).

One type of connection change appears to be modulated
via the NMDA receptors. These receptors vary in con-
centration across cortical and subcortical areas, suggest-
ing that some areas may have faster learning rates than
others. Hippocampal areas showing high concentrations
perhaps encode episodic information requiring fast learn-
ing, whereas cortical neurons having lower concentrations
perhaps encode more procedural information.

Hippocampally based and cortically based memory ef-
Jects show qualitative differences and differential loca-
tions of effects. Squire (1992) has provided an extensive
review of the hippocampal literature. The hippocampus
and perirhinal and parahippocampal cortices mediate a
declarative memory system encoding episodic and seman-
tic fact events, maintaining information for modest periods
of time (from greater than 10 sec to minutes to perhaps
days). This system is particularly important for episodic
memory of recent events. Damage to the hippocampal for-
mation causes severe amnesic responses in recognition
tasks but still spares nondeclarative learning, such as that
of skills, of priming conditions, and in habituation.

Physiological structures in different locations are in-
volved in learning alternative information. Paller (1990)
showed with evoked response potentials (ERPs) that a task
involving completing partial word stems with words from
a previously learned list produced anterior positive ERPs,
whereas simple stem completion without such recollec-
tion produced less positive ERP responses. Simple prim-
ing did not produce the large anterior positivity, but did
produce more effects on posterior electrodes. Recent PET
blood flow studies (Squire et al., in press) have shown
increased activity in the right hippocampal region for
recall-based stem completion in contrast with priming
tasks not requiring recall. A particularly exciting new de-
velopment in the domain of functional MRI-based blood
flow methodology is likely to allow detailed within-subject

mapping of the locations of different types of memory pro-
cessing in the future (McCarthy, personal communication).
The variety of identified biological memories described
above provides psychology theorists with a range of mech-
anisms for working memory. Memory is not one mecha-
nism in one place. Activation decay and long-term
change probably occur in all areas, since activation and
connection-based transmission occur in all areas. In con-
trast, sustained activation and storage of declarative in-
formation may occur in more limited areas. These effects
have been observed in only a few areas of the brain.

Connectionist-Based Conceptualizations
of Working Memory

Recent changes in simulation trends have widened the
range of conceptualizations of working memory. In the
1960s, analogies to computers produced the basic view
of a short-term memory (analogous to the computer core
memory) through which all information passed, a por-
tion of which altered long-term memory (analogous to
computer disk memory) as in Atkinson and Shiffrin (1968)
and Waugh and Norman (1965). This view has been
elaborated by Baddeley and his colleagues (Baddeley,
1983, 1986; Baddeley & Hitch, 1974) to include separa-
ble subsystems consisting of an articulatory loop, a visuo-
spatial scratchpad, and a central executive. In the late
1980s, interest in connectionist modeling grew greatly (see
Rumelhart & McClelland, 1986; Schneider, 1987). This
provided a novel class of information storage analogies
that can more directly implement the parallel distributed
nature of storage that is expected to occur in biological
systems. Schneider and Detweiler (1987) have reviewed
the traditional models of short-term memory and discussed
alternatives suggested from connectionist processing.
Connectionist modeling suggests a number of themes that
are biologically inspired and that can be implemented in
connectionist simulations.

The first theme is that processing occurs in multiple
regions that specialize in different classes of processing
(see Figure 4) such as visual, motor, and lexical process-
ing. Some modules specialize in context-based storage of
declarative information. In addition, there is a control
structure that moderates transmissions in the system.
These modules correspond to basic biological levels of
processing (see Mishkin & Appenzeller, 1987). All these
models have multiple memories, such as activity decay
and long-term connection change. Some connection change
occurs at fast rates for declarative storage but at slow rates
for skill encoding.

The second theme is that there is a need for a control
structure as well as for a data storage structure. This need
was well recognized in the buffer models such as that of
Atkinson and Shiffrin (1968). In a distributed system, each
module can store information, but the transfer of infor-
mation must be coordinated. The controller is assumed
to have memory concerning which modules have trans-
mitted and the activity and priority of messages needing
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Figure 4. Diagram of a system-level description of the Schneider and Detweiler (1987) connectionist control
architecture, illustrating the regions of processing. Each region represents a series of connectionist processing
levels. The first and last level of each region (last level for input regions and first for output regions) is assumed
to input to the inner loop of connections between regions. The modules on the inner loop have separate message
vectors to each of the other modules to which they connect. The context module output message vector is thick-
ened to highlight one set of outputs. The lower figure represents a side view of the system-level diagram. All
the regions of the inner loop connect to a central control system that routes control signals between regions
of the inner loop. The system manages message traffic and context storage to maintain reliable communication
and robust processing across regions. From “A Connectionist/Control Architecture for Working Memory,” by
W. Schneider and M. Detweiler, 1987, in G. H. Bower (Ed.), The Psychology of Learning and Motivation (Vol.
21, pp. 53-119, Figure 3). Copyright 1987 by Academic Press. Reprinted by permission.
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to be transmitted. Retrieval failure can occur through
either the loss of the data from a regional module or the
failure of the control system to transmit information to
or from the regional module.

A third theme is that short-term information can be
stored in many ways. It can be stored as decay of a single
trace (Ratcliff, 1978). It can be stored by positive feed-
back within a module (Shedden & Schneider, 1990), main-
taining information via recurrent connections within the
module. It can be stored via dividing a region into multi-
ple buffers to hold a small number of elements (Schneider
& Detweiler, 1987). Or it may be stored in a recurrent
network. Recurrent networks (see Elman, 1990) are a new
branch of connectionist models in which the output from
the intermediate level of units connect back to intermedi-
ate units. This looping provides these networks with the
ability to compact a sequence of inputs into one code (e.g.,
given a vector representing CAT, to output the sequence
of letters C, A, and T that make up that input).

A fourth theme consists of a tradeoff between learning
speed and retroactive and proactive interference. In con-
nectionist models, one sets a parameter to determine how
quickly a connection changes, on the basis of the differ-
ence between the desired and the actual output of the net-
work. For example, consider a connectionist model that
must learn a list of 20 paired associates. As each input
is presented, the network predicts the output, and then
the difference between the network-produced output and
the desired output results in an error signal. The connec-
tions are changed to reduce that error. If the learning rate
is set to one, all the error can be eliminated in one trial
so that the network can exactly produce the input-cutput
pair of the last trial. However, if the learning rate is high,
retroactive interference is complete, causing complete for-
getting of all previously learned information (see
Schneider & Detweiler, 1987, Figure 6) . The faster the
learning rate, the less the proactive interference and the
greater the retroactive interference problem. Most con-
nectionist learning programs use low learning rates (e.g.,
values below .1), but this produces learning that requires
hundreds and sometimes thousands of learning trials to
acquire input learning sets.

The tradeoff of fast and slow learning implies that if
a system learns fast it will forget rapidly. Faced with such
a tradeoff, it would be advantageous to evolve both fast
and slow learning rate systems. Slow learning systems
would learn skills when repeated experience is provided.
Fast learning systems would rapidly learn specific infor-
mation, but the availability of that information would be
transient because of the severe retroactive interference ef-
fects. This dual system view seems to parallel the physi-
ological data regarding fast episodic and slow skill learn-
ing effects (see Mishkin & Petri, 1984; Squire, 1992).

The fifth theme is the need for multiple levels of con-
nectionist learning, perhaps to quickly acquire a task and
guide the development of skill acquisition. Standard con-
nectionist learning often ‘‘learns’” at rates far too slow
for human performance. For example, to learn digital

logic truth tables with six inputs required 10,835 trials
for a connectionist network and only 216 trials for hu-
mans (Schneider & Oliver, 1991). Human learning con-
trasts sharply with typical connectionist learning in that
humans can benefit greatly from instruction, acquire com-
plex behavior in a few trials, and decompose complex
tasks into smaller subtasks (see Schneider & Oliver,
1991). These characteristics result in large-scale improve-
ments in learning effectiveness. Given sufficient trials,
a three-layer network can learn complex relationships.
However, the learning time may require more trials than
could occur in the lifetime of a human, and hence the
learning system may be of limited survival value (e.g.,
requiring 2 billion stimulus presentations to learn a seven-
state finite state grammar; see Servan-Schreiber, Cleere-
mans, & McClelland, 1988).

Having multiple levels of learning can greatly speed
skill acquisition and facilitate permanent storage and fast
responding. To enable learning in a human time scale and
to allow instruction to benefit connectionist learning,
Schneider and Oliver (1991) developed a two-level con-
nectionist control architecture. Modules in a data network
performed normal connectionist input mapping in three-
layer nets in a data network. In addition, there was a recur-
rent connectionist network that controlled parameters of
the data modules. The control network was a fast-learning
recurrent net that could learn declarative information to
perform the task. For example, to perform an AND task,
it would learn the sequence of: ‘‘attend to the visual in-
puts, compare to 1 state, if all Is attend to the input state
model, set to all 1 state.”” This declarative representation
could be learned in 20 trials per rule, which is faster than
humans learned the task (36 trials per rule). This declara-
tive knowledge allowed the system to interpretively exe-
cute control steps to perform the task in a serial effortful
manner. Having obtained controlled execution of the task,
the connectionist control architecture could continue to
practice without a teacher and acquire the knowledge in
the connectionist data network in a modest number of trials
(932 trials to learn six input gates relative to a human
learning time of about 2,000 trials for developing auto-
matic gate knowledge; see Schneider & Oliver, 1991).
The dual system of fast declarative learning and slower
skill learning allows the system to acquire the task in small
numbers of trials within the control network. The con-
trol network can, after a small number of trials, exercise
the data network, slowly modifying long-term connec-
tions. After many trials the trained data network will then
execute low-effort high-speed automatic behaviors. The
automatic behaviors are also less susceptible to the effects
of retroactive interference.

The sixth theme from the modeling and review of the
memory literature (Schneider & Detweiler, 1987) is the
need to have robust memory systems. The buffer-oriented
systems do not provide mechanisms that allow informa-
tion to be recovered after an interruption that flushes the
buffers. Buffer models tend to create an amnesia-prone
operation similar to that observed in the patient H.M.



(Milner, 1966). If distracted from the task at hand, the
patient H.M. must be reinstructed from the beginning to
restart the task. If long-term storage is slow and the short-
term buffers are flushed through an interruption, a buffer
model must be reloaded. Normal humans are quite adept

at dealing with interruptions and at restarting with little -

lost effort (e.g., phone interruptions do not cause one to
lose the full train of thought developed in the hour be-
fore). This is a serious problem for buffer interpretations
of memory. To duplicate the robustness of human pro-
cessing, it may be beneficial to develop overlapping mem-
ory systems that can reload the context that existed be-
fore the interruption.

A fast-learning connectionist context learning mecha-
nism (see Schneider & Detweiler, 1987) illustrates such
robust processing. If a context module had fast-learning
connections into many modules, it could associate the cur-
rent active state in each of the modules to a slow, vary-
ing context vector. If an interruption occurred, the cur-
rent activation of the modules might be cleared to process
the interruption. By transmitting the context vector state
before the interruption, the pre-interruption states could
be re-evoked. However, note that to allow fast learning
of the context, the system would show severe retroactive
interference. Hence, although the fast context learning
systems allow dealing with interrupts, it is not a substi-
tute for the slower connectionist learning that supports
long-term retrieval with much less severe retroactive
interference.

Dealing With the Complexity of Human Memory
and the Models

In the preceding description, I have detailed a set of
components and concepts that need to be integrated into
models of working memory and memory in general.
Memory is not just a buffer, association net, set of slave
processors, or control structure but more likely is made
up of all of these things and more. It is the result of mul-
tiple biological mechanisms with different time courses,
including activity decay (subsecond), sustained activation
(seconds), connection change (minutes to weeks), and hip-
pocampally and cortically based storage. The phenom-
ena of working memory are many (see reviews by Bad-
deley, 1976, 1986; and by Schneider & Detweiler, 1987),
and detailed models must account for effects such as the
limited storage of three to five items; acoustic confusions;
sequential processing; problems with digit span and re-
verse digit span; difficulty in maintaining order informa-
tion; the nature of rehearsal, episodic, and semantic mem-
ory distinctions; retroactive and proactive interference
effects; buildup of proactive interference; release from
proactive interference; the benefit of elaborate rehearsal;
and long-term memory recency effects (see Schneider &
Detweiler, 1987, for details of these phenomena).

In evaluating our conceptions of human working mem-
ory, we must consider whether the resulting system is
robust and can survive in the complex dynamic world in
which humans have evolved. This need for robust pro-
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cessing may have resulted in the evolution of multiple
memory systems with both overlapping and complemen-
tary functions. Humans need a very fast memory to main-
tain information when it is no longer sensorially avail-
able. Such an episodic storage system may be crucial for
dealing with interruptions and maintaining information to
train a slow-learning-skill and semantic fact system. The
slow-learning system may in turn provide for fast auto-
matic execution of well-practiced skills and very stable
long-term retention (e.g., over decades) of well-practiced
information.

The developing base of physiological, behavioral, and
computational constraints provides a three-legged foun-
dation from which to build a detailed model of human
memory. Currently, there is a sufficient range of results
in each of these areas to provide a basis for such model-
ing (see, e.g., Schneider & Detweiler, 1987; Schneider
& Oliver, 1991). Although it is true that such models are
much more complex than the original buffer models (e.g.,
that of Atkinson & Shiffrin, 1968), they incorporate many
new and important contributions into our understanding
of the varieties of working memory. This multiple-
constraint approach has the prospect of accounting for the
many facets and mechanisms of working memory.
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