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Observations on a maximum likelihood method
of sequential threshold estimation and

a simplified approximation

PHILLIP L. EMERSON
Cleveland State University, Cleveland, Ohio

In sequential methods of measuring thresholds, the
stimuli are chosen from trial to trial with the goal
that the information from each trial be highly rele
vant to the objective. The presentation of many stim
uli far above or far below threshold is a waste of
time, because the responses to such stimuli have little
bearing on the question of the location of the thresh
old. Efficiency of threshold estimation (Taylor,
1970) can be formulated in terms of the tradeoff be
tween the standard error of the threshold estimate
and the average number of trials necessary to achieve
a given small standard error. A sequential method,
such as the well-known PEST (Percentile Estimation
by a Sequential Threshold method) of Taylor and
Creelman (1967), can be more efficient by a large
factor than one of the classical methods, such as con
stant stimuli. However, even among the various se
quential methods that are in use, there are fairly large
differences in efficiency. For example, the number of
trials needed to achieve a given standard error using a
maximum likelihood method (Pentland, 1980;
Shelton, Picardi, & Green, 1982) is, in some cases, as
small as half those needed with PEST and some vari
ations (Findlay, 1978) of the PEST method.

In the maximum likelihood method of sequential
threshold estimation, a new estimate of the threshold
is obtained after every trial. That estimate is then
used on the following trial to determine the stimulus
to be presented. In the simplest cases, the stimulus
value is always taken equal to the threshold estimate
itself. Thus, a powerful statistical estimation method
is used to concentrate stimuli densely in the region of
the threshold, to maximize the relevance of the data.
That seems to explain the superior efficiency.

Although the maximum likelihood method was
conceived and used for theoretical purposes early in
the development of sequential threshold methods
(Smith, 1961; Wetherill, 1963), it has not been very
popular as a practical scheme for measuring thresh
olds. This is somewhat curious, since it seems to be
more efficient than more popular ones. Some hints
toward an explanation may be inferred from com-

This paper was written while the author was on professional
leave from Cleveland State University during part of 1984. The
ideas stem from research begun while the author was supported by
a research initiation award from Cleveland State University during
part of 1969. The author's mailing address is: Department of Psy
chology, Cleveland State University, Cleveland, OH 44IIS.

ments by a few psychophysical researchers. Hall
(1981) mentioned a problem of lapses of attention on
the part of the subject. If the subject gives a negative
response to an easily identifiable stimulus, the cur
rent maximum likelihood estimate of the threshold is
sent to a high level from which it then descends grad
ually with a number of easily identifiable stimuli.
Taylor, Forbes, and Creelman (1983) suggested that
the maximum likelihood method, among some
others, suffers in not presenting enough easy exem
plars of the stimulus to maintain a high level of moti
vation and, perhaps, refresh the subject's memory as
to what he is supposed to be looking or listening for.
They also mentioned other possible artifacts, such as
lapses of attention. Shelton et al. (1982) mentioned
another problem that is somewhat the same,
although they did not seem to regard it as very seri
ous. The maximum likelihood method converges in a
few trials so rapidly toward the vicinity of the thresh
old that a naive subject gets little familiarizing experi
ence with easy exemplars of the stimulus. On the
other hand, Pentland (1980) mentioned using the
method in certain visual experiments, and waxed
quite enthusiastic about the rapid convergence, and
the like. Very few researchers have reported using the
maximum likelihood method in actual experiments,
so it would seem premature to pass judgment. The
hinted drawbacks mentioned above may reflect
genuine disadvantages, or they may merely imply
that customary experimental techniques need to be
revised in order that the full advantages of the supe
rior efficiency be realized.

A discouragement to some of those who might like
to try the maximum likelihood method of sequential
threshold estimation is that it requires quite a lot of
computation between trials. Essentially, for each
trialwise decision on the value of the stimulus to be
presented next, it requires a thorough analysis of all
data accumulated so far. A close approximation to
the maximum likelihood method is reported here
one that can be implemented with a large reduction
of the computations.between trials. Indeed, the trial
to-trial operation is reduced to (1) the observance of
the response on the preceding trial, and (2) the de
crease or increase of the stimulus by a step size given
in Table 1. The method reduces to the simplest of up
down methods (Dixon & Mood, 1948), except that
the step size is not constant-it must be looked up in
Table 1. This scheme is in the general class of
Robbins-Monro processes (Robbins & Monro, 19S1).

The Method
This method is for determining yes-no thresholds,

that is, SOthpercentile levels. Roughly, the method of
using Table 1 is to (l) choose a lower bound, XO, and
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siderable computational effort. For k =I and R =50,
500 Monte Carlo runs were performed, in which the
starting value (the center of the range) was randomly
placed from 5 to 10 logit units away from the true
threshold. The observed step sizes were averaged
over the 500 runs for each of the first 49 trials, and
the entries in Table I are just those average step sizes
from the true maximum likelihood method. Table I
provides a very simple and useful sequential method
of measuring thresholds. In order to compare its per
formance with that of the true maximum likelihood
method, further Monte Carlo experiments were con
ducted.

The first experiments were with the true maximum
likelihood method, and the results are shown in Fig
ure I. The lowest curve is for the ideal case in which
the a priori assumed value of k is equal to the true
value. This curve matches that of Pentland (1980)
quite closely, so it may be inferred that the present
attempt to match his conditions was successful. This
curve was generated from 500 Monte Carlo simula
tions, and it shows the expected steady decrease of
the standard error of estimate of the threshold with
increasing trials.
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an upper bound, XI, on the range of stimulus values
to be used; (2) determine the range, R =XI - XO;
(3) take the first stimulus to be at midrange,
(XO +XI)I2; and (4) proceed with stimulus step sizes
as given in Table I, rescaled by the factor of R/SO.
The sign of the increment to the stimulus value
should be taken as negative if the preceding response
was yes, or positive if it was no. Some refinements of
this procedure are discussed later in the light of some
empirical observations. With the true maximum like
lihood method, as with this simplified approximation
to it, the convergence toward the vicinity of the
threshold is very rapid in early trials, even though
one may be quite conservative in specifying a broad
range from XO to XI. After homing in on the vicinity
of the threshold, the pattern then gradually shifts to
one that resembles a standard Robbins-Monro
process (Wetherill, 1963) in which the step sizes are
proportional to the reciprocal of the trial number.

The maximum likelihood method that is simulated
by the use of Table I is a generalization of that out
lined by Pentland (1980). The assumed psychometric
function is the logistic 1I{1+ exp[k(m - X)]}, where
X is the stimulus value, m is the threshold to be esti
mated, and k is a slope parameter. This expression
for the psychometric function is assumed to give the
probability of a yes response in a yes-no psycho
physical paradigm. In Pentland's (1980) method, a
value of k is assumed a priori, so that only the param
eter m remains to be estimated. This is a simplifica
tion of the more general method (Hall, 1981) in
which both parameters must be estimated simulta
neously. It is quite a useful simplification, but what
is the basis for the choice of the a priori value of
k, and what are the consequences of mismatches be
tween the assumed and true values of k?
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Table 1
Step Sizes for the Simplified Approximation to

the Maximum Likelihood Method

Second
First Digit of Trial Number

Digit 0 2 3 4

0 25.0000 .3216 .1298 .0798 .0575
1 12.5000 .2810 .1221 .0768 .0559
2 6.2500 .2494 .1152 .0741 .0544
3 3.1261 .2243 .1092 .0715 .0530
4 1.5926 .2040 .1039 .0691 .0516
5 .9362 .1867 .0990 .0668 .0504
6 .6746 .1719 .0945 .0647 .0491
7 .5348 .1593 .0903 .0628 .0480
8 .4413 .1481 .0865 .0609 .0469
9 .3739 .1383 .0830 .0591 .0458

Empirical Observations
Casual observations of the maximum likelihood

method in action indicated quite regular patterns in
the course of changes of step sizes in a sequence of
trials. Therefrom arose the idea of simulating the
method by some simpler process, to reduce the con-

Figure 1. Standard deviation of threshold estimates as a
function of the number of trials, with the maximum IIkeUhood
method of sequential threshold estimation. Curves are Identified
on the right by the mismatch ratio between the assumed and true
values of the slope parameter of the logistic function. A perfect
match Is designated as 1:1, a 5-to-1 overestimate as 5:1, etc. For
the 1:1 case, data were based on SOO Monte Carlo runs. For the
other cases, each curve Is based on 100 Monte Carlo runs.



Figure 2. Standard deviation of threshold estimates as a func
don of the number of triais, with the Robbins-Monro approxima
don to the maximum likelihood method. Legends and condidons
are the same as for Figure 1.
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Figure 2 are actually lower than those in Figure 1 on
Trials 30, 40, and 50. The differences are slight,
though, and probably attributable to sampling error.
For overestimates of the slope parameter value, the
simplified method does seem to suffer a bit, and es
pecially for the 5:1 overestimate. It may be that there
is a tradeoff between variance and bias of the esti
mate, with these conditions of overestimation of the
slope. With the simplified method, as with the true
maximum likelihood method, underestimation of k
would seem to be the more conservative policy.

Another remarkable outcome of comparing Fig
ures 1 and 2 is the overall similarity of the configura
tions. The crossover of curves for reciprocal mis
matches is even more apparent in Figure 2. Wetherill
(1963) observed this crossover phenomenon in a
more standard form of the Robbins-Monro process,
where it appeared as an analysis of variance interac
tion between trial number and a slope parameter.
The similarities of the patterns of bumps and dips of
the curves in Figures 1 and 2 are exceedingly curious,
although perhaps of little practical importance. Dif
ferent seed numbers were used for the random
number generator at the beginnings of all 10 of the
Monte Carlo runs on which these 10 curves are
based. Therefore, the apparent correspondence of
the dips and bumps of the corresponding curves does
not seem attributable to that sort of artifact.

The other curves in Figure 1 were each obtained
from 100 Monte Carlo runs for various cases of mis
match between the assumed and true k values. Other
researchers had claimed that the effects of mismatch
were not very serious for mismatches up to about a 4
to-1 ratio. We now have fairly detailed quantitative
evidence in support of this assertion, and Figure 1
also provides some additional insight about the maxi
mum likelihood method. There is one fact not pre
sented in Figure 1 that should be noted carefully and
kept in mind. For the condition of a 5:1 overestimate
of k, there was small but notable bias in the threshold
estimates, resulting from the off-center initial start
ing values of m. In the other mismatch cases, it
seemed quite clear, from the mean threshold esti
mates, that there was no bias. Therefore, the 5:1 con
dition, alone among these cases, should be consid
ered inadmissable.

Generally, the effect of mismatch is to elevate the
standard error of the threshold estimate. The effects
of mismatch in one direction are approximately the
same as for the other, except when bias occurs with
severe overestimation of k. However, there is a hint
that the two corresponding curves cross each other
somewhere between 20 and 50 trials. Thus, underesti
mates seem to achieve better results on later trials,
and overestimates on early trials. In view of the bias
that occurs for extreme overestimates, one may
conclude that underestimation is more conservative
than overestimation of the slope parameter, k.
Further details of Figure 1 will be relevant in com
parisons now to be made of the true maximum like
lihood method and the simplified approximation to it
based on Table 1.

Figure 2 shows the results of the same Monte
Carlo experiments performed with the simplified
method associated with Table 1. Of first concern is
the comparison of the performances of the two
methods in the ideal case in which the assumed and
true values of k are equal. It is quite remarkable that
the simplified method suffers very little in this com
parison. The standard errors differ at most (on
Trial 20) by a factor of 200;'0. They differ by less than
one logit unit on Trials 10 and 20, by less than a
quarter of a logit unit on Trial 30, and are almost in
distinguishable on Trials 40 and 50. To put the com
parison in another way, the numbers of trials re
quired to reach the same standard error criterion dif
fer at most by 5 (for a criterion of .5 at Trials 20 and
25), and typically differ only by about 1 or 2.

In considering the effects of mismatch of assumed
and true k, it must be reported again that there was
bias for the case of as: 1 overestimate, but not for the
other cases, just as with the true maximum likelihood
method. From making comparisons of individual
curves in Figures 1 and 2, it seems that the sim
plified method does just about as well as the true
maximum likelihood method for cases of underesti
mation (l:3 and 1:5). The points on the 1:3 curve in
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The first step is to make a guess of the value of k.
The slope of the logistic psychometric function is
k/4, so this guess for k may be taken as four times a
guessed slope. Another basis for a guess is k =4/
(Xl - XO), where Xl and XO are the upper and lower
limits of a stimulus range that seems almost certain to
contain the threshold. The second step is to deter
mine a stimulus range, R, as R =SO/k, for the
guessed value of k. Then the upper limit of the stim
ulus range will be m+R/2 and the lower limit m
R/2, where m is an initial guess of the threshold level.
The third step is to make several empirical threshold
estimates under the same conditions, using the same
number of trials, say 20, by the simplified method as
sociated with Table 1. The standard deviation of
these, multiplied by the assumed value of k, is then
compared to the curves in Figure 3 at the appropriate
trial number. The label on the nearest curve then is
an estimate of how the assumed value of k relates to
the true value. For example, if assumed k were .23 and
the empirical standard deviation were 10.21, for esti
mates based on 20 trials, then the product, 2.3S,
would be found to be quite near the curve labeled
3:1. The inference is that the assumed k was too large
by a factor of about 3. Therefore, a revised estimate
is .077 (.23/3).

A repetition of this whole pilot procedure with the
new estimate of k may reveal whether the process is
having the desired effect. Repetitions should theo
retically converge toward the appropriate point on
the curve labeled 1:1 in Figure 3. However, sam
pling errors of the estimated standard deviation
would ordinarily prevent the exact achievement of
that goal. In practice, one would probably be quite
pleased with an indicated ratio between 1:1 and 1:3.
Indeed, because of the sampling error problem, and
the potential bias with overestimates of k, an in
dicated underestimate of 1:3 might be preferred over
a perfect match.

Summary of the Simplified Procedure
The empirical findings have provided information

that can help a great deal toward the optimization of
the use of Table 1, or of the maximum likelihood
method itself. For using Table 1, the first step is to
adopt an estimate of the value of k. The method
described in the preceding section can be used, if
there is insufficient prior information about the value
of k. The range of stimuli, R, is then determined as
R =SO/k, for the adopted value of k, and the upper
and lower limits of the stimuli are m +R/2 and
m - R/2, where m is the initial estimate of the thresh
old. Then the step sizes in the sequence of trials are
those given in Table 1 multiplied by R/SO. Because of
the way R is determined as described above, this
rescaling factor of R/SO is equal to 11k, and the stim
ulus limits are m +2S/k and m - 2S/k. If either of
these limits falls beyond the actual stimulus values that
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Empirical Slope Information
It is perhaps true that many experienced psycho

physical researchers are able to make good prior esti
mates of the slopes of psychometric functions. For
my own benefit, and for the benefit of others who do
not feel confident in their subjective guesses, further
results from the Monte Carlo simulations are pre
sented in Figure 3. These results can be used in a pro
cess of building up information about the value of
the true slope parameter, k. The process applies just
as well to the true maximum likelihood method and
to the present simplified method of sequential thresh
old estimation.

Generally, sequential methods that are highly ef
ficient for estimating the threshold or location pa
rameter of a psychometric function, yield little slope
information directly (Wetherill, 1963). Thus, it
would seem that there is not much point in trying to
use the data collected in a single sequence of trials to
estimate k when that sequence is designed for the esti
mation of m. However, if several threshold estimates
from short sequential runs are made under the same
conditions, all using the same assumed value of k,
then the standard deviation of those threshold esti
mates can provide useful information about the true
value of k. Thus, very brief pilot experiments can
help to ensure that one is operating along the more
efficient of the curves in Figure 2, for the purposes of
a following main experiment. The empirical Monte
Carlo data used in Figure 3 are actually the same as
those in Figure 2. However, the standard deviations
are now expressed in logit units with respect to the
assumed value of k. True logit units were used in Fig
ure 2, for comparisons of efficiency. The procedure
works, with Table 1, as follows.

Figure 3. The data of Figure :1 replotted In assnmed 10gU nnlts
rather than troe loglt nnits, to facOltate rongh empirical slope esti
mation from brief pilot experiments. Logarithmic spacing is nsed
to separate the cnrves, and the labels on the right-hand scale are
common logarithms of the standard deviations.



can be produced practically, the solution is not to re
vise the value of R (or k), Instead, the proper solu
tion is to omit trial 1, and consider starting with the
step size of Trial 2 in Table 1. It may also be neces
sary to omit Trial 2, etc. The rule is that one may
start with the trial whose step size (rescaled) is not
more than half the distance from m to either of the
limits of the practically available stimuli.

Table 1 can be extended at either end very simply
for approximate purposes. Though there may not be
much point in starting with larger steps than that
determined by the 12.5 figure for Trial 1, it is clear
that the sequence starts with a halving of step sizes.
Thus, one could start with a step size of 25, as in
dicated in Table 1 for "Trial 0." Extension at the
other end of the table for more than 49 trials is sim
ple, because the process is essentially a standard
asymptotically optimal Robbins-Monro process
(Wetherill, 1963) by the 50th trial. For a smooth
transition to trial numbers, n, greater than 49, take
the step size to be 2/(n - 5). The standard unmodified
Robbins-Monro process mentioned above would
specify 2In, but the difference is small. These step
sizes must be rescaled in the same way as are those in
Table 1, by the factor of l/k.

The Monte Carlo simulations revealed also that the
standard error of estimate of the threshold on any
given trial is approximately the step size for the trial
multiplied by the square root of the trial number.
This rule holds quite well at and beyond the fifth trial
when the assumed and true values of k are equal and
when one has not been forced to start with some trial
other than Trial 1 in Table 1. Violations of those con
ditions would elevate the standard error somewhat
above the value given by this simple calculation. Mild
violationsshould have little effect, so stopping rules in
the sequential process can be formulated usefully in
terms of this simple estimate of the standard error.
The number of trials is known a priori when such a
stopping rule is used, and that is a convenience in the
planning of experiments.

Conclusion
For the yes-no paradigm, good performance of the

maximum likelihood method is obtained under mis
matches of the assumed and true slope up to a factor
of about 4 to 1. Bias in the obtained threshold es
timates is obtained when the slope is overestimated
by a factor of 5 to 1. For underestimates and less ex
treme overestimates, no bias was evident, but ef
ficiency decreased approximately equally for equal
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reciprocal mismatches. Overestimates and underes
timates seemed to differ, however, in the trend of ef
ficiency lossas a function of trial number. Underestimates
suffered most on early trials, and overestimatesmost on
later trials. Underestimation is more conservative than
overestimation.

A case of the Robbins-Monro procedure developed
especially to simulatethe maximum likelihoodmethodis
almost as efficient, under most conditions, as the max
imumlikelihood method itself.Itsbehavioris quitesimilar
to that of the maximum likelihood method in all of the
aboverespects. It resultsin a drasticreductionof thecom
putations between trials.

To increase efficiency in any main experiments to
follow, there is a fairly simplemethodof obtainingslope
information from brief pilot experiments.

The method describedhere is for the yes-no paradigm
of threshold estimationwhen the threshold is defined as
the 50th percentile. A different procedure would be re
quired for forced choice when the threshold is defined
differently, such as the 75th percentile.
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