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Knowledge acquisition and strategic action

in “Mastermind” problems

JOHN B. BEST
Eastern Illinois University, Charleston, Illinois

In two experiments, the strategies used by subjects playing the logical-deduction game, Master-
mind, were examined. In the first experiment, subjects showed improvement resulting from the
continued use of a particular strategic action, and the data suggested that the subjects learned
the strategy from their transactions with the task. In the second experiment, the question of
changes in underlying strategic knowledge of Mastermind was examined. The accuracy and com-
plexity of the subjects’ deductions and their use of the previously identified strategy were used
to generate a model of the cognitive operations involved in Mastermind. Although there were
improvements in the accuracy and complexity of the subjects’ deductions resulting from continued
play, these improvements were unrelated to the use of the strategy. Moreover, the likelihood
of making accurate and complex deductions was well accounted for by a Markovian model, sug-
gesting that the deployment of the strategy was not driven by any change in the subject’s under-
lying knowledge structures. Rather, the subjects seemed to use the strategy to create Master-
mind situations whose interpretation was fairly easy. The implications for previous work on the
issue of Mastermind strategies and the development of logical-deduction strategies are discussed.

One of the important legacies of the work of Bruner,
Goodnow, and Austin (1956) was the notion that humans
are strategic in their acquisition of knowledge. As is com-
monly known, Bruner et al. identified several strategies
used by subjects, and their findings suggested that sub-
jects who perform well on a task do so precisely because
they use a particular approach. According to the view im-
plicit in Bruner et al.’s research, and later solidified by
subsequent findings (e.g., Anzai & Simon, 1979; Lang-
ley, 1985), individuals who wish to solve a problem first
access their knowledge of the problem and then use this
knowledge to assemble a strategy, meaning here a plan
that specifies actions to be taken.

The influence of the action taken on the knowledge used
to generate it has not been well understood. One com-
mon view is that information derived from the action
taken, that is, from the outcome of the strategy, ‘‘loops
back’’ onto the knowledge generating the action, result-
ing in a change in the amount or the organization of the
information the person is able to access. According to this
view (e.g., as seen in the research of Newell & Simon,
1972), *‘good’’ strategies are actions that are most infor-
mative in the sense of being most likely to loop back onto
the underlying cognitive structure and produce a change
therein. The resulting structural change may in turn drive
a change toward even more superior actions, suggesting
that structural change and strategic action may have a
“‘bootstrapping’’ relationship with each other.
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With this conceptual framework as their base, Laugh-
lin, Lange, and Adamopoulos (1982) studied strategy use
in the logical-deduction game, Mastermind. In the stan-
dard version of this game, the solver’s task is the deduc-
tion of a left-to-right ordering of four color names, called
the code. To deduce the code, the solver generates a
hypothesis of four or fewer color names. Feedback is then
supplied that informs the solver about the quality of the
hypothesis. In general, feedback indicates the congruence
between that particular ordering sequence and the code.
Feedback can be black or white. Each unit of black feed-
back indicates that one of the color names in the just-
advanced hypothesis matches a code member in color and
location. Each unit of white feedback indicates that one
of the color names in the hypothesis matches a code mem-
ber in color, but not in location. In the standard game,
each code consists of four colors drawn with replacement
from a pool of six colors, thus affording 1,296 different
codes. Each hypothesis that the subject makes, and its as-
sociated feedback, is displayed using a set of plastic
tokens. A typical hypothesis and its associated feedback
are shown below:

Code: RD GN BL WH
Hypothesis: RD YW WH BK
Feedback: 1 BK, 1 WH

Thus, Mastermind seems to provide a useful situation for
studying problem solving: it retains many of the formal
mathematical properties of the Bruner et al. (1956) task,
yet it has continued to be a popular commercial item for
more than a decade.

The game tree for the standard game being intractably
large, Laughlin et al. (1982) studied the performance of



subjects who played a reduced version of Mastermind.
Their version had four dimensions or locations (i.e., first
location, second location, etc.) that could each take on,
with replacement, one of three numerical values (0, 1,
or 2), thus producing a ‘‘universe’’ of 81 codes. This
reduction resulted in four formally equivalent opening
hypotheses that could be used by the solver: (1) all four
dimensions having the same value (three instances: 0000,
1111, 2222); (2) three dimensions having the same value
with the fourth dimension having a different value (24 in-
stances: 0001, 0002, ... 2221); (3) two dimensions hav-
ing the same value with two dimensions having a different
value (18 instances: 0011, 0022, ... 2211); and (4) two
dimensions having the same value with each of the re-
maining two dimensions having a different value (36 in-
stances: 0012, 0021, ... 2210). These four classes of
hypotheses were then designated by their lowest base-three
instance, prefixed by a letter (F = first hypothesis, etc.):
F0000, FO001, FOO11, and F0O12.

As a basis with which to compare human performance,
Laughlin et al. (1982) evaluated the theoretically optimal
efficiency of each of these four classes of opening
hypotheses by using a Monte Carlo technique. Assuming
an information processor who simply picked members of
each class of hypothesis randomly, but who was capable
of making all currently available deductions, simulations
showed fairly small but intriguing differences. In the two
extreme cases, when a hypothesis of the FOO00 class was
used as the initial hypothesis, a mean of 4.68 hypotheses
were required for a solver to have the necessary and suffi-
cient information to deduce the code. But when a hypothe-
sis of the FOO12 class was used as the initial hypothesis,
a mean of 3.95 hypotheses were required to deduce the
code, a reduction of 16% from the FO0QO situation.

Laughlin et al. (1982) next identified plausible human
strategies, and they compared the efficiency of these
strategies to the theoretical optima generated by the Monte
Carlo technique. For example, in Mastermind, a focus-
ing strategy consists of beginning with one of the three
F0O000 hypotheses. By doing so, the solver will find out
how many of the dimensions in the code have the same
value as the hypothesis. Thus, if the feedback from the
above hypothesis is ‘‘2 Black’’ units, the solver knows
that two dimensions in the code will have 0 as their value.
The use of the focusing strategy permits the solver to
deduce the values of the code in two hypotheses, leaving
only the task of assigning those values to their correct lo-
cations. This task can also be approached algorithmically,
requiring an additional 2.5 hypotheses. Thus, the optimal
use of the focusing strategy in the reduced version of
Mastermind requires 4.5 hypotheses to deduce the code.
This is less than the 4.68 hypotheses required by a ran-
dom selection of hypotheses initiated with an F0000
hypothesis, but more than the 3.95 hypotheses required
when the selections are initiated by an FO012 hypothesis.

In addition to this focusing strategy, Laughlin et al.
(1982) also identified a powerful tactical strategy (John-
son, 1971, 1978). Essentially, the tactician conceptually
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divides all hypotheses into two categories: those that will
be eliminated as a function of anticipated feedback, and
those that will continue to be viable. The difficuity of us-
ing this strategy stems in part from cognitive strain con-
siderations, but the larger burden would seem to be the
depth of knowledge required to implement the strategy
appropriately. As noted by Laughlin et al., the solver must
advance a series of maximally informative hypotheses
over anticipated distributions of feedback. This means that
the solver must have some knowledge of the patterns of
feedback that are both possible and plausible given a num-
ber of as-yet-undeployed hypotheses, and must be able
to deduce from this information the hypotheses that re-
main plausible and those that have been eliminated. Such
knowledge would appear to be based upon a deep under-
standing of the game’s structure and upon a thoroughgoing
comprehension of the principles of logical deduction.
However, if done correctly, the tactical strategy is power-
ful. Collapsing across the four classes of initial hypoth-
eses, Laughlin et al. found an expected 3.58 hypotheses
to solution when the tactical strategy was initiated by an
F0O000 hypothesis, 3.15 for an initial FO001, 3.08 for an
initial FOO11, and 3.02 for an initial FOO12. As these
figures suggest, the tactical stategy is most powerful when
it is initiated by an FOO12 hypothesis, and on that basis
Laughlin et al. concluded that the tactical strategy was
most likely to be initiated by an FO012 hypothesis. Sub-
jects using the less demanding and less powerful focus-
ing strategy, on the other hand, should be most likely to
initiate it with an FOOOO hypothesis.

In their first experiment, Laughlin et al. (1982) found
that these two strategies apparently predominated, with
36% of all problems begun with an FO000 hypothesis (i.e.,
the focusing strategy) and 31% begun with an F0012
hypothesis (i.e., the tactical strategy). Subjects required
a mean of 5.27 hypotheses to solve problems initiated with
the FOOOO hypothesis type, 6.47 hypotheses for FO001,
6.1 hypotheses for FOO11, and 5.98 hypotheses for FO012.
Thus, as expected, subjects using the focusing and tacti-
cal strategies performed better than subjects using some
other approach. In addition, subjects using the focusing
strategy outperformed those using the more powerful tac-
tical strategy, in part because of the demands imposed by
the latter. In Laughlin et al.’s second experiment, sub-
jects were induced to use a particular strategy by the
problem instructions, which limited the subject’s first
hypothetical choice to a member of one of the four classes
of hypotheses. Subjects who were induced to use the
focusing strategy required 5.87 hypotheses to deduce the
code; those who were induced to use the tactical strategy
required 6.23 hypotheses. Both groups outperformed sub-
Jjects who were instructed to begin with a hypothesis of
another class (6.47 hypotheses for F0001, 7.29 hypotheses
for FOO11).

In summary, the Laughlin et al. (1982) experiments
seem to make the following principal points:

1. An ideal information processor using an algorithmic
approach in a reduced version of Mastermind performs
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better or worse depending upon the class of the opening
hypothesis used.

2. Some Mastermind strategies seem to correspond to
the strategies observed in the selection tasks used by
Bruner et al. (1956), and a Mastermind focusing strategy
can be categorized on the basis of the initial class of
hypothesis deployed. A Mastermind scanning strategy
offers the possibility of superior performance, relative to
a focusing strategy, particularly when it is initiated by a
hypothesis of a particular class.

3. Subjects who use either the focusing or the scanning
strategy should outperform solvers using other strategies.

4. The Mastermind scanning strategy requires a deep
comprehension of the situation and of logical deduction,
and for these reasons, it is a difficult strategy to use con-
sistently.

5. Solvers who are induced to begin a game with either
strategy outperform subjects who are induced to begin a
game with a hypothesis of another category.

However, Laughlin et al. (1982) did not take into ac-
count what seems to be an important distinction between
strategic behavior and underlying structural knowledge.
Consequently, solvers who use what seems to be a fairly
sophisticated strategy may not necessarily have a deep
knowledge of the task’s underlying structure. Thus, stra-
tegic actions may be driven by mechanisms other than un-
derlying structural knowledge. In addition, Laughlin et al.
have suggested that a single exposure to a particular start-
ing sequence is sufficient experience to induce a complex
strategy. But it seems paradoxical to maintain that a com-
plex strategy can be induced by a single exposure, while
claiming, as Laughlin et al. did, that successful use of
the tactical strategy requires a deep knowledge of the logi-
cal structure of the game. Some researchers (e.g., Chi,
Glaser, & Rees, 1982) have contended that underlying
structural knowledge is built up only as a result of lengthy
personal experience with the task, perhaps as the result
of trying several strategies. If such contentions are ac-
curate, then structural knowledge, if it emerges at all,
should be seen only after fairly lengthy experience with
the task.

Related to the notion of lengthy experience as a neces-
sary underpinning of structural knowledge is the concept
of dynamism, or flexibility in the use of strategic actions.
Although Laughlin et al. (1982) did not address this is-
sue explicitly, their findings suggest a certain fixity to stra-
tegic actions: once the subject adopts a strategy, his or
her rate of use of that strategy seems to be more or less
constant. However, strategic actions may instead follow
a developmental course. If such is the case, then it would
seem reasonable to expect some development of solvers’
strategic actions. It seems unlikely that solvers can im-
mediately comprehend the effectiveness of the most effi-
cient strategy on any but fairly trivial tasks. Moreover,
even when strategic action emerges quickly on a complex
task, the rate of use of this strategic action should change
as a function of the solver’s experience.

These issues were explored in the following experi-
ments. It was contended that:

1. The strategic actions of individuals are only weakly
specified by their initial choice of hypothesis. Rather, sub-
jects’ strategies are better seen in their choice of a subse-
quent hypothesis after feedback has been given. In the
present study, it will be argued that the deployment of
different classes of hypothesis in Mastermind is almost
completely driven by the feedback to which such hy-
potheses are in response, rather than by the subject’s ad-
herence to a focusing or tactical approach. Moreover, the
principal effect of using such a strategy is to alter the likeli-
hood of forthcoming feedback events to reduce the likeli-
hood of uninformative feedback patterns. Consequently,
subjects who perform well overall should do so because
they get less of the prevalent feedback in the first place,
and/or because they learn a strategy that reduces the likeli-
hood of such feedback.

2. The strategic actions of individuals are not neces-
sarily fixed; rather, subjects learn to deploy particular
classes of hypotheses in response to feedback. This means
that the deployment of a particular class of hypothesis is
related in a principled way to the subject’s previous
deployment of that class of hypothesis. Thus, we can ex-
pect solvers to become increasingly likely to deploy par-
ticular classes of hypotheses in response to particular feed-
back patterns.

3. The consensual view holds that such strategy use is
supported or enabled by an underlying cognitive struc-
ture which, in turn, is modified and improved by the con-
tinued use of the strategy. In the case of Mastermind, it
seems that this cognitive structure must include some
knowledge of logical deduction. Consequently, the con-
sensual view would argue that subjects who improve on
a logical-deduction task probably learn something about
logical deduction as an outcome of their successful use
of a particular strategy. In this paper, it will be contended
that the repeated deployment of particular classes of hy-
potheses in response to particular feedback patterns (i.e.,
the use of particular strategies) does not necessarily
produce an improvement in cognitive structure. That is,
solvers who use a strategy do not necessarily know or
learn much about logical deduction per se. This means
that the continued use of a strategy must be supported by
some other kind of event, and in this paper it will be ar-
gued that most solvers who play the game several times
over a several-week period maintain particular strategies
because such strategies are likely to produce an increase
in the total amount of feedback.

EXPERIMENT 1

Method

Subjects. Fifty-five undergraduates at Eastern Illinois Univer-
sity who were unfamiliar with the experimental task received extra
credit in their upper-division psychology classes in exchange for
their participation.



Experimental Task. The subjects played a version of the stan-
dard Mastermind game, using the board and its plastic tokens. Thus,
in each game, the subjects were able to see all previously made
hypotheses and the feedback associated with them. To establish an
intermediate level of difficulty on the task, the subjects were told
that each code consisted of four different colors, randomly drawn
from a pool of six colors. There were thus 360 different possible
codes in this version of the task.

Procedure. The experimenter explained the rules of the task and
answered any questions the subject may have had. When the sub-
ject seemed familiar with the task, the problem-solving session be-
gan. The subjects were informed that they would play three con-
secutive games, or until a 1-h time limit had elapsed. In each game,
the subjects were permitted to make 10 consecutive hypotheses.
If the subject had not deduced the code after making 10 hypotheses,
play on that game was discontinued. The subjects were not overtly
compelled to play rapidly.

Results

A performance criterion was established and applied
to the subjects’ responses. Subjects were eliminated from
the analysis if they failed to complete three games, or if
they made 10 hypotheses in either their second or third
game without deducing the code. Failure to meet the per-
formance criterion resulted in the elimination of 11 sub-
jects from further analysis.

The data were scored by counting the number of hy-
potheses each subject made in each game, with fewer hy-
potheses indicating greater skill in deduction. The mean
number of hypotheses required to deduce the code on the
initial attempt was 6.8. In Games 2 and 3, 5.8 and 5.2
hypotheses, respectively, were required. Planned com-
parisons indicated that the mean number of hypotheses
required on Game 2 was significantly lower than that re-
quired on Game 1 [#(43) = 2.77, p < .0l]. The mean
number of hypotheses produced in Game 3 was not sig-
nificantly lower than the mean number required in Game 2
[+(43) = 1.76, p = .08].

One of the contentions of the present experiment was
that the deployment of different classes of hypotheses is
almost completely driven by the feedback that precedes
the hypothesis. Demonstrating this point involves the de-
velopment of a procedure capable of categorizing Master-
mind hypotheses and the application of this procedure to
the hypotheses made by the subjects. To generate a
hypothesis, solvers typically review their immediately
previous hypothesis and the feedback it received. Usually,
subjects modify the previous hypothesis in fairly typical
ways. For example, a solver may change one of the colors
in a given hypothesis, selecting a color from the pool that
had not been used on the previous hypothesis. If all other
colors from the previous hypothesis were played again
in the same locations, then such a hypothesis was coded
a “‘one color’’ or *“1C’’ hypothesis. In addition to, or in-
stead of, changing colors, a solver may elect to change
only the locations of previously used colors on a given
hypothesis. If, for example, a subject produced a hypothe-
sis by shifting two of the colors used in the just-previous
hypothesis, then such a hypothesis was coded a ‘‘two lo-
cation’” or ‘‘2L’" hypothesis. This procedure does not per-
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mit the categorization of the subjects’ opening hypothe-
sis of each game, but such hypotheses were fairly uniform;
88% of the opening hypotheses consisted of four differ-
ent colors. All hypotheses subsequent to the opening one
were codable using this procedure.

The feedback-driven nature of the subjects’ hypothesis-
making can be seen by looking at the hypotheses made
by the subjects in relation to the feedback they had just
been given. The 44 subjects passing the performance cri-
terion made a total of 651 codable hypotheses. Table 1
shows the relationship between color-change hypotheses
(collapsed across all location changes) and the total num-
ber of feedback pins awarded. As Table 1 shows, the
number of color changes was inversely related to the num-
ber of feedback pins awarded on the previous hypothe-
sis. When no feedback or one feedback pin was awarded,
the subjects introduced an average of 2.4 new colors into
their next hypothesis. When two feedback pins were
given, the subjects introduced 2.13 new colors; for three
feedback pins, only one new color was played. Finally,
when four feedback pins were awarded, essentially no
color changes were made. What this suggests is that, in
deciding whether to include a new color in a forthcom-
ing hypothesis, the subjects simply reviewed the total
number of feedback pins they had just been awarded. The
subjects tended to produce hypotheses with many color
changes if few pins had been awarded, and few color
changes if many pins had been awarded.

Table 2 shows the 651 codable hypotheses retabled to
show the relationship between location changes (collapsed
across all color changes) and the number of black feed-
back pins awarded. As Table 2 shows, the number of lo-
cation changes was inversely related to the number of
black feedback pins awarded to the previous hypothesis.
When the subjects received no black feedback pins, they
made an average of 2.9 location changes. However, when
three black feedback pins were awarded, the subjects made

Table 1
Frequency of Color-Change Hypotheses as a Function of the
Total Number of Feedback Pins Awarded

Total Feedback Pins

Type of Hypothesis 0-1 2 3 4

No Color Change 0 11 26 187
1 Color Change 1 55 223 1
2 Color Changes 2 117 26 0
3-4 Color Changes 2 0 0 0

Table 2
Frequency of Location-Change Hypotheses as a Function of
Black Feedback Pins Awarded

Black Feedback Pins

Type of Hypothesis 0 1 2 3
No Location Change 9 16 38 36
I Location Change 8 53 35 2
2 Location Changes 64 88 48 2
3 Location Changes 77 69 10 0
4 Location Changes 83 9 4 0
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only 0.15 location changes. The findings shown in Table 2
suggest that, in trying to decide whether to change the
location of a color in a forthcoming hypothesis, the sub-
jects reviewed the number of black feedback pins they
had just been awarded. Tables 1 and 2 suggest that the
subjects were not using either a focusing or a tactical
strategy. Rather, the elements of a forthcoming hypothe-
sis seem to be well accounted for by an analysis of the
most recently given feedback.

An additional contention of the current experiment was
that the principal effect of using strategic actions in
Mastermind is to alter the distribution of forthcoming
feedback events to reduce the occurrence of prevalent (and
perhaps uninformative) feedback patterns and to increase
the occurrence of less likely, but perhaps more informa-
tive, feedback. Consequently, subjects who perform well
overall should do so because they get less of the popular
feedback in the first place, and/or because they acquire
the strategic action more quickly than do other subjects.

Some types of feedback were indeed given more fre-
quently than other types. Of the 13 combinations of feed-
back possible, the five most frequently occurring types
in Game 1 accounted for 65% of all feedback given. These
five ‘‘popular’’ types of feedback also accounted for a
substantial proportion of the feedback awarded in Games
2 and 3 (59% and 49%, respectively).

Table 3 shows the frequency of each hypothesis type
made in response to the five most popular feedback types,
aggregated across Games 1-3. As Table 3 suggests, the
subjects usually produced a particular hypothesis type in
response to each feedback type. Of the 13 feedback types,
10 were given at least 30 times to different subjects, and
each of these 10 feedback types was followed by a differ-
ent predominant response. This predominant response,
called the modal hypothesis, accounted for between 48 %
and 96% of all responses to each of the feedback types.
The mean response rate of all modal hypotheses was 72 %.

The relationship between modal hypothesis-making in
response to popular feedback and performance is clear.
The 11 subjects whose overall performance was poor (i.e.,

at the 25th percentile or lower, M hypotheses/game =
7.6) typically received some form of popular feedback
(55% of all hypotheses) and responded to popular feed-
back with the modal hypothesis 51% of the time. For
the 13 subjects whose performance was significantly bet-
ter than this group [i.e., subjects at the 70th percentile
or higher, M hypotheses/game = 4.4, 1(22) = 3.07,
p < .001], much less popular feedback was received
(38% of all hypotheses), and these subjects responded to
popular feedback with the modal hypothesis 86% of the
time, which is significantly more frequent than the 38 %
of the low-performance group (z = 3.88, p < .001). This
finding suggests that subjects who respond with the mo-
dal hypothesis to popular feedback should perform bet-
ter than subjects who do not respond modally to such feed-
back. This expectation was confirmed: the 10 subjects who
had the highest modal response rate, regardless of the
amount of popular feedback they were given (M modal
response rate = 100%), performed significantly better
(M hypotheses/game = 4.53) than the 10 subjects whose
rate of modal response was closest to the median modal
response rate [M modal response rate = 67%, M hypoth-
eses/game = 6.46, 1(18) = 4.33, p < .001]. However,
the performance of the 10 subjects whose rate of modal
response was closest to the median was not significantly
different than that of the 10 subjects who had the lowest
modal response rate [M modal response rate = 32%, M
hypotheses/game = 6.67, #(18) = .42, p > .05].

As contended, popular feedback seems to be rather un-
informative. Consequently, subjects who, for whatever
reason, receive substantial amounts of popular feedback
seem to perform worse overall than subjects who receive
moderate amounts of it. Furthermore, the results suggest
that the practical effect of deploying the modal hypothe-
sis in response to popular feedback is to decrease the likeli-
hood of getting another round of popular feedback in re-
sponse to the hypothesis.

In the current experiment, it was also contended that
the strategic actions of individuals are not necessarily
fixed. Rather, subjects learn to deploy particular classes

Table 3
Number of Hypothesis Types Made in Response to Popular Feedback Types
Feedback Type

1 Black, 1 Black, 2 Black,

Hypothesis Type 2 White 1 White 3 White 2 White 1 White
1 Color 2 2 1 5 6
1 Color, 1 Location 2 4 3 7 27
1 Color, 2 Locations 5 16 4 65 4
1 Color, 3 Locations 14 0 58 3 2
2 Colors 3 6 0 1 5
2 Colors, 1 Location 3 29 0 13 1
2 Colors, 2 Locations 49 1 5 1 0
3 Colors 0 0 0 0 0
3 Colors, 1 Location 0 0 0 0 0
4 Colors 0 0 0 0 0
1 Location 0 0 0 0 0
2 Locations 1 2 0 1 3
3 Locations 0 1 2 6 3
4 Locations 6 0 8 0 1




of hypotheses in response to feedback, implying that the
deployment of a particular class of hypothesis should be
related in a principled way to the subject’s previous
deployment of that class of hypothesis. As an outcome
of this learning, we can expect solvers to become increas-
ingly likely to deploy particular classes of hypotheses in
response to particular feedback patterns as they gain ex-
perience with the task.

The outcome of the following analysis supports this con-
tention. Each occurrence of a particular type of feedback
was considered an ‘‘encounter’’ with that feedback type.
The proportion of modal hypotheses made by individuals
at each encounter was computed for subjects who had,
and for those who had not, produced a modal hypothesis
on the previous encounter. This computation was carried
out separately for each of the five popular feedback types,
and the computation continued for each of the five types
of popular feedback as long as a majority of the subjects
had such an encounter. After the proportions were com-
puted for each encounter, for each feedback type, the
resulting proportions were summed across encounters to
produce five transition matrices showing the overall
proportion of nonmodal-to-modal transitions for each of
the popular feedback types. If any changes in the subjects’
hypothesis-selection procedure occurred as a function of
their experience with the task over Games 1-3, then such
changes should be reflected in changes in these transition
matrices—that is, in changes of the frequency with which
hypotheses were selected.

Finally, subjects’ choices may be compared with a the-
oretically plausible model. If the act of producing a mo-
dal hypothesis is completely unrelated to earlier produc-
tions, then such a selection process can be described as
Markovian. A Markovian process is said to be path-
independent, in this case meaning encounter-independent.
Thus, the transition matrix of a Markovian process de-
scribes the process almost completely: if the Markovian
property is observed, then the probability of a solver’s
entry into a particular state (i.e., choice of a particular
hypothesis) is independent of all but the immediately
previous encounter with a particuiar feedback type. Re-
jection of the Markovian hypothesis implies that the transi-
tion matrices for each encounter, and for each form of
popular feedback, are significantly different from one
another.

The transition matrices were then used to generate ex-
pected frequencies of modal-hypothesis selection by en-
counter, for each type of popular feedback. The expected
frequencies can be compared with those observed using
a Wald-Wolfowitz runs test (Siegel, 1956; Swed & Eisen-
hart, 1943). When this is done, the Markovian hypothe-
sis is rejected (critical value = 24, obtained value = 16,
p < .05). The rejection of the Markovian hypothesis
means that subjects’ responses to popular feedback are
not path- or encounter-independent. Rather, the likelihood
of a subject producing a modal hypothesis on any given
encounter is a function of the number of times the sub-
ject has encountered that feedback. Specifically, the sub-
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jects responded to popular feedback with the modal
hypothesis significantly more frequently on each encoun-
ter with popular feedback than would be expected if the
Markovian hypothesis were true.

Discussion

It seems that subjects improve quickly and substantially
on this difficult task. In addition, as contended, the sub-
jects’ strategies were only weakly specified by their ini-
tial choice of hypotheses. Rather, the subjects’ strategic
actions were apparently almost completely driven by the
feedback they were awarded. Moreover, the data suggest
that the principal effect of using certain strategies in
Mastermind is to alter the distribution of forthcoming
feedback events in such a way as to reduce the occurrence
of prevalent (and perhaps uninformative) feedback pat-
terns and increase the occurrence of less likely, but more
informative, ones. Thus, subjects who performed well
overall apparently did so because they got less of the popu-
lar feedback in the first place, and because they acquired
the appropriate strategic action more quickly than did
other subjects. The subjects also learned to deploy par-
ticular classes of hypotheses in response to feedback. Evi-
dence for this conclusion was provided by evaluating a
path-independent Markovian hypothesis, according to
which the deployment of particular classes of hypotheses
was not related in any principled way to the subject’s
previous deployment of such hypotheses. Contrary to the
Markovian model, the subjects became increasingly likely
to deploy the modal hypothesis as a function of encoun-
ters with popular feedback.

The rejection of the Markovian hypothesis is particu-
larly interesting because Markovian models have been
used as theoretical statements of learning in concept-
formation tasks (Coombs, Dawes, & Tversky, 1970;
Wickens, 1982). Markovian models typically assume that
concept learners in a selection paradigm make more-or-
less unprincipled choices of the next exemplar they wish
to examine until certain conditions are fulfilled that
produce insight. In such a context, insight should be un-
derstood as complete, or almost complete, knowledge of
the rule that links the exemplars. The achievement of in-
sight in concept-learning tasks is indicated in terms of the
subject’s choice of an exemplar to examine, and by the
subject’s correct prediction concerning the inclusion or
exclusion of that exemplar from the concept. Thus, when
applied to concept-learning tasks, Markovian models ar-
gue that subjects initially make unprincipled selections be-
cause they learn little or nothing about the rule linking
the exemplars until they achieve insight. As seen in this
experiment, the rejection of a Markovian model suggests
that the subjects realized how to deal with different feed-
back patterns on their initial encounter with such feedback.

EXPERIMENT 2

The findings of the first experiment suggest that the
hypotheses produced by subjects in Mastermind are es-
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sentially responses to the most recently awarded feedback,
rather than instantiations of a multiple-hypothesis focus-
ing or scanning strategy. In addition, the findings raise
the possibility that such strategic actions may be produced
by cognitive processes that are at least somewhat indepen-
dent of the operations underlying logical deduction per se.
That is, the findings of the previous experiment raise the
possibility that strategic actions and underlying structural
knowledge of Mastermind, and of logical deduction more
generally, may not necessarily have a mutually enhanc-
ing relationship. Such a view can be contrasted with what
could be called the consensual position.

The consensual view (e¢.g., Anzai, 1987; Ohlsson,
1987) holds that such strategy use is supported or enabled
by an underlying cognitive structure which, in turn, is
modified and improved by the continued use of the
strategy. In the case of Mastermind, one might argue that,
at a minimum, this cognitive structure must include some
knowledge of logical deduction. Consequently, propo-
nents of the consensual view might argue that subjects who
improve on a logical-deduction task must learn something
about logical deduction as an outcome of their successful
use of a particular strategy.

The purpose of Experiment 2 was to demonstrate that
the consensual view is not particularly correct with regard
to the use of strategies in Mastermind. Specifically, this
experiment shows that the repeated deployment of par-
ticular classes of hypotheses in response to particular feed-
back patterns (i.e., the use of particular strategies) does
not necessarily produce an improvement in the cognitive
structure that, according to the consensual view, is respon-
sible for generating a strategic action and for interpret-
ing its outcome. In other words, solvers who become
adept in the use of a particular strategy do not necessar-
ily know or learn much about applying logical-deductive
principles to Mastermind. Moreover, this experiment
presents evidence that most solvers who play the game
several times over a several-week period maintain their
use of particular strategies because such strategies appear
likely to produce an increase in the total amount of feed-
back given.

Method

Subjects. Thirteen undergraduates at Eastern Illinois University
received extra credit in an upper-division psychology class in ex-
change for their participation. No subject participated in both ex-
periments reported here.

Procedure. The procedure was similar to that used in the first
experiment. The subjects were informed that they would play two
consecutive games, or until a 30-min time limit had elapsed. The
subjects scheduled themselves for one such problem-solving ses-
sion per week, for a period of 5 weeks.

My contention is that subjects who become adept in the use of
a particular strategy do not necessarily know or learn much about
applying logical-deductive principles to Mastermind. The subjects’
abilities to make such deductions were assessed in the following
way. Immediately prior to making every hypothesis except the first
one of each game, the subjects were asked to indicate the extent
of their knowledge at that point by filling out a form. The subjects

used a shorthand notation to indicate the deductions they had made
about each color in the pool.

There were three broad categories of deductions. The subjects
marked *‘consideration’’ deductions if they believed that a partic-
ular color might be a code member. There were three levels of con-
sideration deductions, corresponding to the extent to which the sub-
ject had narrowed the possible locations for the color, if the color
was indeed a code member. Level 1 considerations (the narrowest)
were marked by subjects who had determined that if a color was
in the code, then it must be located at one particular location. Level 2
considerations were marked by subjects who had determined that
a putative code member must be located at two or three particular
locations. Level 3 considerations were marked by subjects who had
not narrowed the putative code member’s possible locations.

“‘Inclusions/exclusions’” was the second category of deductions,
and there were two types. Inclusions were marked by a subject who
had determined that a particular color was definitely a code mem-
ber, although no determination could be made about its location.
Exclusions were marked by a subject who had determined that a
color was definitely not a code member.

‘‘Assignments’’ was the third category of deductions, and there
were two types of these. Assignment to more than one location was
marked by subjects who had deduced that a particular color must
be a code member, and must be correctly located in one of two
or three indicated locations. Assignment to one location was marked
by subjects who had narrowed the location of a positive code member
to a single position.

The subjects were not required to make deductions about each
color after each hypothesis, but they were asked to record the ex-
tent of their current deductions as completely as possible. A sheet
summarizing the shorthand notation was visible during the entire
problem-solving session. After the first game or two, the subjects
asked no questions about the use of the notation. After the subjects
were conversant with the notation, filling out the form required no
more than 5 sec in the majority of cases.

Results

Performance of subjects. The subjects’ performance
improved over the course of the 5-week test interval. The
mean number of hypotheses required to deduce the code
in the initial week of play was 7.38; by Week 4 of play,
5.71 hypotheses were required. The difference between
these means is significant {#(12) = 3.63, p < .01]. Per-
formance worsened in Week 5 of play, which coincided
with the final week of classes in the Spring semester (M =
6.33 hypotheses/game).

Type, accuracy, and complexity of deductions. The
nature of the deductions made by the subjects also changed
over the 5-week period. In Week 1, 72% of all deduc-
tions were considerations. By Week 4, this proportion had
declined significantly, to 56% (z = 5.33, p < .01), and
by Week 5, to 45% of all deductions. In contrast, in
Week 1, 9% of all deductions were assignments. This
proportion increased significantly by Week 4, to 22%
(z = 5.65,p < .01), and by Week 5, to 37%. The per-
centage of inclusions/exclusions did not change signifi-
cantly over the time period.

Accurate deductions were those in which a subject cor-
rectly considered, included, eliminated, or assigned a
color. The proportion of accurate deductions, relative to
all deductions made, increased over the course of the 5-
week interval. In Week 1, 44 % of each subject’s deduc-



tions were accurate. By Week 4, this percentage had in-
creased significantly, to 63% [F(3,36) = 7.52, p <
.001], and in Week 5, 60% of each subject’s deductions
were accurate.

It would seem that some deductions are harder to make
than others. For example, a Level 3 consideration was
always available to the subject for each color, but the as-
signment of a color to a specific position requires deter-
mining that a color is definitely included in the code, as
well as deducing the color’s location. Considering the
elimination of a color, and the assignment of a color to
a single location as ‘‘complex’’ deductions, a higher per-
centage of the deductions made were complex following
a modal hypothesis (25 %) than following a nonmodal hy-
pothesis (15%) [F(1,12) = 15.9, p < .005].

Modeling the acquisition of knowledge. The subjects
were more likely to make complex deductions after mak-
ing a modal hypothesis than they were after making a non-
modal hypothesis. However, the fact that accurate deduc-
tions were equally likely after modal and nonmodal
hypotheses suggests that the cognitive processes used to
deduce information from the problem array were not
necessarily linked to the cognitive processes used to de-
termine the nature of the next hypothesis. This distinc-
tion is shown in Figure 1, which is a representation of
some of the putative operations in which a problem-solver
faced with this task might engage. Note that some of the
operations result in an action such as production of a mo-
dal hypothesis. Other operations, such as those involved
in making accurate and complex deductions, are internal.
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Superimposed over these operations are the findings that
result when subjects engage in the operations in certain
**sequences.’” These sequences can be described in terms
of (1) the nature of the feedback (popular or nonpopular)
that initiates the sequence, (2) the timing of the deductions
(immediately or following the production of a hypothe-
sis), and (3) the nature of the hypothesis (modal or non-
modal) generated following the awarding of feedback.

For example, Sequence | describes the situation in
which the solver, having received popular feedback, at-
tempts to make accurate and complex deductions immedi-
ately from the feedback. Solvers who are successful at
this can be described as having entered a particular men-
tal state—that of having made such a deduction. By con-
trast, Sequence 3 describes an operation initiated by popu-
lar feedback, followed by making a modal hypothesis,
followed by an attempt at making accurate and complex
deductions. Solvers who succeed at this can be described
as having entered a mental state, too, but perhaps a some-
what different one than that entered by solvers operating
in Sequence 1, because making a modal hypothesis has
preceded the deductive processes in the latter case.

As Figure 1 suggests, when the subjects received non-
popular feedback, they made significantly more deduc-
tions (M = 4.11) than when they received popular feed-
back (M = 3.76) [t(12) = 3.5, p < .01]. Moreover, as
shown in Figure 1, the likelihood of a subject’s making
a deduction that was both accurate and complex was four
to five times greater when the subject was operating in
a sequence initiated or terminated by nonpopular feed-
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Figure 1. Putative operations engaged in by Mastermind solvers. Below each of the four circled sequence numbers are two other num-
bers, the first showing the mean number of deductions made when that route of information processing was taken, the second number,
immediately below the first, showing the proportion of all deductions made that were both accurate and complex.
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back than when he/she was operating in a sequence ini-
tiated or terminated by popular feedback.

One of my contentions is that the repeated deployment
of particular classes of hypotheses in response to partic-
ular feedback patterns (i.e., the use of particular strategic
actions) will not necessarily produce an improvement in
the cognitive structure that, according to the consensual
view, is responsible for generating the strategic action in
the first place. Thus, solvers who become adept in the
use of a particular strategy do not necessarily have deep
knowledge about the logical structure of Mastermind, nor
do they learn much about such structures despite their ap-
parent improvement in performance.

The issue of learning from the feedback can be studied
by considering three of the sequences of operations shown
in Figure 1 on an encounter-by-encounter basis. Thus, for
Sequence 2 for example, the number of accurate and com-
plex deductions made by each subject from the initial
awarding of nonpopular feedback was computed and ex-
pressed as a percentage of all deductions made on that
encounter with nonpopular feedback. This computation
was made for each subsequent encounter of that type, for
each subject, as long as a majority of the 13 subjects ac-
tually had an encounter of that type. The sequences la-
beled 3 and 4 in Figure 1 were treated similarly. That is,
the number of accurate and complex deductions made by
each subject when the subject initially operated in Se-
quences 3 and 4 was computed and expressed as a per-
centage of all deductions made on the initial operation of
that sequence. Each subsequent operation of Sequences
3 and 4 was treated the same way.

Given that each encounter of each of the types of se-
quences should be understood as a learning trial of that
sequence, then the percentage of accurate and complex
deductions, relative to all deductions made on that trial,
should be a function of trials (encounters) and previous
deductions. That is, if the subjects were truly getting better
at making logical deductions, then the percentage of all
deductions that were accurate and complex should increase
as a function of the subjects’ previous success in making
such deductions. If this were true, then the percentage
of subjects making greater than the overall mean percent-
age of accurate and complex deductions should be low
on initial encounters and should increase as a function of
the number of encounters. Thus, the more successful the
subject had been at making such deductions, the more suc-
cessful we would expect that subject to be on any subse-
quent encounter.

An alternative hypothesis is that the percentage of each
encounter’s deductions that are accurate and complex is
independent of the subject’s previous history of such
deductions. If observed, this pattern, which would be con-
sistent with a Markovian position, would suggest that the
subjects were not actually learning how to make logical
deductions from their previous experience.

Figure 2 shows the observed percentages (based on the
number of subjects who had such an encounter) of sub-
jects who had higher than the overall mean proportion
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Figure 2. Percentage of subjects making greater than the mean
percentage of accurate and complex deductions as a function of se-
quence type and encounter number. (a) Sequence type initiated by
the award of popular feedback, followed by a modal hypothesis, fol-
lowed by nonpopular feedback. (b) Sequence type initiated by popu-
lar feedback, followed by a modal hypothesis, followed by popular
feedback. (c) Deductions made directly from nonpopular feedback.
The observed percentages are shown relative to those that would
be generated by a Markovian model of the subjects’ underlying

knowledge.

of accurate and complex deductions on that encounter for
three sequences. The number of observed subjects was
contrasted with the number of subjects who would be ex-
pected to have had higher than the overall mean propor-
tion of accurate and complex deductions on that encounter,
if the Markovian property were operative. For each of
the three trend lines shown in Figure 2, none of the result-
ing chi-square analyses were significant [for Sequence 2,
‘‘immediate from nonpopular feedback,”” x*(9) = 5.49;
for Sequence 3, ‘‘popular feedback-modal hypothesis-
popular feedback,’’ x*(7) = 1.36; for Sequence 4, ‘‘popu-
lar feedback-modal hypothesis-nonpopular feedback,’
x*(3) = 1.07; all ps > .05]. The trend lines have the
Markovian property: the subjects appear to have learned
little or nothing about making accurate and complex
deductions from the encounters in which they succeeded
in making a greater than mean percentage of such deduc-
tions. Furthermore, the sequence of cognitive activity en-
gaged in by the subjects seems to have had little influence
on this lack of learning.

Properties of feedback and hypotheses. Finally, I
have hypothesized that most solvers who play the game



over a several-week period maintain their use of particu-
lar strategies, because such strategies appear likely to
produce an increase in the total amount of feedback given
to the subjects. A count was made of the number of pins
awarded each time a subject received any of the five types
of popular feedback. On the 338 times such feedback was
issued, the subjects received 887 feedback pins (2.62
pins/encounter with popular feedback). A similar count
was made of the number of pins awarded on each issu-
ance of nonpopular feedback. On the 218 times such feed-
back was issued, the subjects received 757 feedback pins
(3.47 pins/encounter with nonpopular feedback). Thus,
when a subject received nonpopular feedback, it typically
meant that more information had been given than when
popular feedback was awarded.

In addition, it appears that a modal hypothesis is more
likely than a nonmodal hypothesis to produce an increase
in the number of just-previously awarded feedback pins,
an effect that can be seen in the following analysis. As-
sume that a subject who has produced a hypothesis con-
sisting of four different colors is awarded the feedback
type ‘‘1 Black, 2 White.’” The modal hypothesis for this
feedback is ‘1 color, 2 locations.”” Under these condi-
tions, there are 32 specific hypotheses that would be
characterized as modal. Of these, nine hypotheses (0.28
of all modal hypotheses) would lead to the award of a to-
tal of four feedback pins. For the feedback in question,
there are 1,264 possible nonmodal hypotheses (the total
number of hypotheses, 6* — 32). None of the hypotheses
characterized as ‘‘2 colors,”’ ‘‘3 colors,”’ or *‘4 colors™’
will produce an increase in the total number of feedback
pins, nor will any of the hypotheses characterized as ‘1
location,”” “‘2 locations,”” *‘3 locations,’’ or ‘‘4 locations’’
do so. Of the eight possible ‘‘1 color’” hypotheses, one
will lead to an increase in the total number of feedback
pins awarded. Similarly, of the eight possible ‘‘1 color,
1 location’” and *‘1 color, 3 locations’’ hypotheses, one
of each type will lead to an increase in the total number
of feedback pins. Thus, three of the 1,264 possible non-
modal hypotheses (0.0023) will lead to an increase in the
total number of feedback pins awarded. Similar proper-
ties were observed for each of the other popular feedback
types.

Discussion

As in the first experiment, the subjects improved sub-
stantially during the test period, and this improvement
seemed to result from the subjects’ choices of hypotheses
in response to certain types of feedback. Moreover, the
improvement in performance was accompanied by other
changes. Predominating early in the 5-week interval were
the fairly easy to make consideration deductions. How-
ever, by the conclusion of the experiment, a substantial
proportion of all deductions were assignments or elimi-
nations. Furthermore, the subjects’ accuracy also im-
proved across the experimental period. Although the sub-
jects were no more likely to make accurate deductions
following modal hypotheses than following nonmodal hy-
potheses, they were more likely to make complex deduc-
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tions in response to modal hypotheses than in response
to nonmodal hypotheses.

However, the feedback given seemed to play a strong
role in the subjects’ ability to make deductions. When the
subjects received nonpopular feedback, they made sig-
nificantly more deductions than when popular feedback
was given. In addition, the likelihood of a subject’s mak-
ing an accurate and complex deduction was four to five
times greater when he or she was operating in a sequence
initiated or terminated by nonpopular feedback than in a
sequence initiated or terminated by popular feedback.
However, subjects who made accurate and complex
deductions on a given encounter were no more likely to
make such deductions on their next encounter than were
other subjects, regardless of the nature of the hypothesis
advanced, or the feedback given in the interim. This find-
ing suggests that the solvers learned little or nothing about
the underlying structure of this logical-deduction task
despite their use of an effective strategy.

Rather, there are some findings that suggest that the
use of the modal hypothesis strategy was maintained by
the subjects for other reasons. Modal hypotheses were
more likely than nonmodal hypotheses to produce an in-
crease in the number of feedback pins given. This find-
ing suggests that the modal hypothesis strategy was main-
tained simply because it led to an increase in feedback.

GENERAL DISCUSSION

These studies confirmed at least two well-known prin-
ciples in the psychology of thinking: (1) strategic actions
emerge very quickly on almost any task involving human
problem solving, and (2) such actions continue to show
development over the interval in which they are measured,
suggesting that on all but the most trivial problems, hu-
mans continue to learn about the task. In addition, how-
ever, the findings of Experiment 2 suggest that the per-
formance of such strategic actions does not necessarily
have a principled relationship with a person’s underlying
knowledge of the task’s structure.

The conventional view of improvement in the depth of
knowledge as problem solving proceeds is that such im-
provement is all but inevitable given a subject’s motiva-
tion and continued involvement with the task (Carbonell,
1986; Larkin, McDermott, Simon, & Simon, 1980).
However, the present findings suggest that this course of
events may not always be observed. In Mastermind, it
seems clear that the solver perceives some sort of con-
nection between the pattern of feedback given and the ap-
propriate hypothesis to be ventured. Moreover, knowl-
edge of this relationship is acquired rather quickly. This
perceived connection, rather than any deep structural
knowledge, seems to drive most nonexpert Mastermind
play. It is true that the subjects in the present study were
not expert players, so it is not completely clear what might
take place were they to acquire expertise with time.

Nevertheless, the present findings indicate that these
subjects could be proficient at playing Mastermind without
gaining much in the way of underlying structural knowl-
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edge. This, in turn, suggests that expertise may not al-
ways consist of deriving some structural improvement
from the repeated deployment of a particular strategic
action. Rather than getting better at interpreting the feed-
back, which in a more general sense corresponds to im-
provements in structural knowledge, the present experi-
ments suggest that the solvers learned something different:
How to convert the existing situation, however compli-
cated and uninterpretable, into one of which they are able
to make sense.

In summary, the imposition of a single strategic action
may not always be sufficient to produce a dramatic reor-
ganization of a solver’s underlying strategic knowledge.
In addition, the effective strategic action that subjects ac-
quire fairly spontaneously in Mastermind does not neces-
sarily promote any genuine comprehension of the vari-
ables involved in logical deduction in that game.
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