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Knowledge acquisition and strategic action
in "Mastermind" problems

JOHN B. BEST
Eastern Illinois University, Charleston, Illinois

In two experiments, the strategies used by subjects playing the logical-deduction game, Master
mind, were examined. In the first experiment, subjects showed improvement resulting from the
continued use of a particular strategic action, and the data suggested that the subjects learned
the strategy from their transactions with the task. In the second experiment, the question of
changes in underlying strategic knowledge ofMastermind was examined. The accuracy and com
plexity of the subjects' deductions and their use of the previously identified strategy were used
to generate a model of the cognitive operations involved in Mastermind. Although there were
improvements in the accuracy and complexity ofthe subjects' deductions resulting from continued
play, these improvements were unrelated to the use of the strategy. Moreover, the likelihood
of making accurate and complex deductions was well accounted for by a Markovian model, sug
gesting that the deployment of the strategy was not driven by any change in the subject's under
lying knowledge structures. Rather, the subjects seemed to use the strategy to create Master
mind situations whose interpretation was fairly easy. The implications for previous work on the
issue ofMastermind strategies and the development oflogical-deduction strategies are discussed.

Thus, Mastermind seems to provide a useful situation for
studying problem solving: it retains many of the formal
mathematical properties of the Bruner et al. (1956) task,
yet it has continued to be a popular commercial item for
more than a decade.

The game tree for the standard game being intractably
large, Laughlin et al. (1982) studied the performance of

With this conceptual framework as their base, Laugh
lin, Lange, and Adamopoulos (1982) studied strategy use
in the logical-deduction game, Mastermind. In the stan
dard version of this game, the solver's task is the deduc
tion of a left-to-right ordering of four color names, called
the code. To deduce the code, the solver generates a
hypothesis of four or fewer color names. Feedback is then
supplied that informs the solver about the quality of the
hypothesis. In general, feedback indicates the congruence
between that particular ordering sequence and the code.
Feedback can be black or white. Each unit of black feed
back indicates that one of the color names in the just
advanced hypothesis matches a code member in color and
location. Each unit of white feedback indicates that one
of the color names in the hypothesis matches a code mem
ber in color, but not in location. In the standard game,
each code consists of four colors drawn with replacement
from a pool of six colors, thus affording 1,296 different
codes. Each hypothesis that the subject makes, and its as
sociated feedback, is displayed using a set of plastic
tokens. A typical hypothesis and its associated feedback
are shown below:

One of the important legacies of the work of Bruner,
Goodnow, and Austin (1956) was the notion that humans
are strategic in their acquisition of knowledge. As is com
monly known, Bruner et al. identified several strategies
used by subjects, and their findings suggested that sub
jects who perform well on a task do so precisely because
they use a particular approach. According to the view im
plicit in Bruner et al. 's research, and later solidified by
subsequent findings (e.g., Anzai & Simon, 1979; Lang
ley, 1985), individuals who wish to solve a problem first
access their knowledge of the problem and then use this
knowledge to assemble a strategy, meaning here a plan
that specifies actions to be taken.

The influence of the action taken on the knowledge used
to generate it has not been well understood. One com
mon view is that information derived from the action
taken, that is, from the outcome of the strategy, "loops
back" onto the knowledge generating the action, result
ing in a change in the amount or the organization of the
information the person is able to access. According to this
view (e.g., as seen in the research of Newell & Simon,
1972), "good" strategies are actions that are most infor
mative in the sense of being most likely to loop back onto
the underlying cognitive structure and produce a change
therein. The resulting structural change may in tum drive
a change toward even more superior actions, suggesting
that structural change and strategic action may have a
"bootstrapping" relationship with each other.
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subjects who played a reduced version of Mastermind.
Their versionhad four dimensions or locations (i.e., first
location, second location, etc.) that could each take on,
with replacement, one of three numerical values (0, I,
or 2), thus producing a "universe" of 81 codes. This
reduction resulted in four formally equivalent opening
hypotheses that could be used by the solver: (I) all four
dimensions havingthe same value (three instances: 0000,
1111,2222); (2) three dimensions havingthe same value
with the fourth dimension havinga different value (24 in
stances: 0001, 0002, ... 2221); (3) two dimensions hav
ing the samevaluewithtwodimensions having a different
value (18 instances: 00II, 0022, ... 2211); and (4) two
dimensions having the same value with each of the re
mainingtwo dimensions having a different value (36 in
stances: 0012, 0021, .,. 2210). These four classes of
hypotheses werethendesignated by theirlowest base-three
instance, prefixedby a letter (F == first hypothesis, etc.):
FOOOO, FOOOl, FOOl I , and FOOI2.

As a basis withwhichto comparehumanperformance,
Laughlin et al. (1982) evaluated the theoretically optimal
efficiency of each of these four classes of opening
hypotheses by usinga MonteCarlo technique. Assuming
an information processorwho simply pickedmembers of
each class of hypothesis randomly, but who was capable
of makingall currently availabledeductions, simulations
showedfairly smallbut intriguing differences. In the two
extreme cases, whena hypothesis of the FOOOO class was
used as the initial hypothesis, a meanof 4.68 hypotheses
were required for a solver to havethe necessary and suffi
cient information to deduce the code. Butwhen a hypothe
sis of the FOO12class was used as the initial hypothesis,
a mean of 3.95 hypotheses were required to deduce the
code, a reduction of 16% from the FOOOO situation.

Laughlinet al. (1982) next identified plausible human
strategies, and they compared the efficiency of these
strategies to the theoretical optima generated by the Monte
Carlo technique. For example, in Mastermind, a focus
ing strategy consists of beginning with one of the three
FOOOO hypotheses. By doing so, the solver will find out
how many of the dimensions in the code have the same
value as the hypothesis. Thus, if the feedback from the
above hypothesis is "2 Black" units, the solver knows
that two dimensions in the code will have0 as their value.
The use of the focusing strategy permits the solver to
deduce the valuesof the code in two hypotheses, leaving
only the task of assigningthose values to their correct lo
cations. This taskcan also be approached algorithmically,
requiringan additional 2.5 hypotheses. Thus, the optimal
use of the focusing strategy in the reduced version of
Mastermindrequires 4.5 hypotheses to deduce the code.
This is less than the 4.68 hypotheses required by a ran
dom selection of hypotheses initiated with an FOOOO
hypothesis, but more than the 3.95 hypotheses required
whenthe selectionsare initiatedby an FOOl2 hypothesis.

In addition to this focusing strategy, Laughlin et al.
(1982) also identified a powerful tactical strategy (John
son, 1971, 1978). Essentially, the tacticianconceptually
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dividesall hypotheses into two categories: those that will
be eliminated as a function of anticipated feedback, and
those that will continueto be viable. The difficultyof us
ing this strategy stems in part from cognitive strain con
siderations, but the larger burden would seem to be the
depth of knowledge required to implement the strategy
appropriately. As noted by Laughlin et al., the solvermust
advance a series of maximally informative hypotheses
over anticipated distributions of feedback. This means that
the solver must have some knowledge of the patterns of
feedback thatare bothpossible and plausible givena num
ber of as-yet-undeployed hypotheses, and must be able
to deduce from this information the hypotheses that re
main plausible and those that have been eliminated. Such
knowledge wouldappear to be based upon a deep under
standing of the game's structure and upon a thoroughgoing
comprehension of the principles of logical deduction.
However, if donecorrectly, the tactical strategy is power
ful. Collapsing across the four classes of initial hypoth
eses, Laughlin et al. found an expected 3.58 hypotheses
to solution when the tactical strategy was initiated by an
FOOOO hypothesis, 3.15 for an initial FOOOI, 3.08 for an
initial FOOl I , and 3.02 for an initial FOOI2. As these
figures suggest, the tactical stategy is mostpowerful when
it is initiated by an FOOl2 hypothesis, and on that basis
Laughlin et al. concluded that the tactical strategy was
most likely to be initiated by an FOOl2 hypothesis. Sub
jects using the less demanding and less powerful focus
ing strategy, on the other hand, should be most likely to
initiate it with an FOOOO hypothesis.

In their first experiment, Laughlinet al. (1982) found
that these two strategies apparently predominated, with
36% of all problems begun with an FOOOO hypothesis (i.e.,
the focusing strategy) and 31 % begun with an FOOl2
hypothesis (i.e., the tactical strategy). Subjects required
a meanof 5.27 hypotheses to solve problems initiated with
the FOOOO hypothesis type, 6.47 hypotheses for FOOOI,
6.1 hypotheses for FOOl I , and 5.98 hypotheses for FOOI2.
Thus, as expected, subjects using the focusing and tacti
cal strategies performed better than subjects using some
other approach. In addition, subjects using the focusing
strategyoutperformed those usingthe morepowerful tac
tical strategy, in part becauseof the demandsimposedby
the latter. In Laughlin et al. 's second experiment, sub
jects were induced to use a particular strategy by the
problem instructions, which limited the subject's first
hypothetical choiceto a memberof one of the fourclasses
of hypotheses. Subjects who were induced to use the
focusing strategy required 5.87 hypotheses to deduce the
code; those who were induced to use the tactical strategy
required6.23 hypotheses. Bothgroupsoutperformed sub
jects who were instructed to begin with a hypothesis of
anotherclass(6.47 hypotheses for FOOOI, 7.29 hypotheses
for FOOl I).

In summary, the Laughlin et al. (1982) experiments
seem to make the following principal points:

I. An ideal information processor usingan algorithmic
approach in a reduced version of Mastermind performs
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better or worse depending upon the class of the opening
hypothesis used.

2. Some Mastermind strategies seem to correspond to
the strategies observed in the selection tasks used by
Bruner et al. (1956), and a Mastermind focusing strategy
can be categorized on the basis of the initial class of
hypothesis deployed. A Mastermind scanning strategy
offers the possibility of superior performance, relative to
a focusing strategy, particularly when it is initiated by a
hypothesis of a particular class.

3. Subjects who use either the focusing or the scanning
strategy should outperform solvers using other strategies.

4. The Mastermind scanning strategy requires a deep
comprehension of the situation and of logical deduction,
and for these reasons, it is a difficult strategy to use con
sistently.

5. Solvers who are induced to begin a game with either
strategy outperform subjects who are induced to begin a
game with a hypothesis of another category.

However, Laughlin et al. (1982) did not take into ac
count what seems to be an important distinction between
strategic behavior and underlying structural knowledge.
Consequently, solvers who use what seems to be a fairly
sophisticated strategy may not necessarily have a deep
knowledge of the task's underlying structure. Thus, stra
tegic actions may be driven by mechanisms other than un
derlying structural knowledge. In addition, Laughlin et al.
have suggested that a single exposure to a particular start
ing sequence is sufficient experience to induce a complex
strategy. But it seems paradoxical to maintain that a com
plex strategy can be induced by a single exposure, while
claiming, as Laughlin et al. did, that successful use of
the tactical strategy requires a deep knowledge of the logi
cal structure of the game. Some researchers (e.g., Chi,
Glaser, & Rees, 1982) have contended that underlying
structural knowledge is built up only as a result of lengthy
personal experience with the task, perhaps as the result
of trying several strategies. If such contentions are ac
curate, then structural knowledge, if it emerges at all,
should be seen only after fairly lengthy experience with
the task.

Related to the notion of lengthy experience as a neces
sary underpinning of structural knowledge is the concept
of dynamism, or flexibility in the use of strategic actions.
Although Laughlin et al. (1982) did not address this is
sue explicitly, their findings suggest a certain fixity to stra
tegic actions: once the subject adopts a strategy, his or
her rate of use of that strategy seems to be more or less
constant. However, strategic actions may instead follow
a developmental course. If such is the case, then it would
seem reasonable to expect some development of solvers'
strategic actions. It seems unlikely that solvers can im
mediately comprehend the effectiveness of the most effi
cient strategy on any but fairly trivial tasks. Moreover,
even when strategic action emerges quickly on a complex
task, the rate of use of this strategic action should change
as a function of the solver's experience.

These issues were explored in the following experi
ments. It was contended that:

1. The strategic actions of individuals are only weakly
specified by their initial choice of hypothesis. Rather, sub
jects' strategies are better seen in their choice of a subse
quent hypothesis after feedback has been given. In the
present study, it will be argued that the deployment of
different classes of hypothesis in Mastermind is almost
completely driven by the feedback to which such hy
potheses are in response, rather than by the subject's ad
herence to a focusing or tactical approach. Moreover, the
principal effect of using such a strategy is to alter the likeli
hood of forthcoming feedback events to reduce the likeli
hood of uninformative feedback patterns. Consequently,
subjects who perform well overall should do so because
they get less of the prevalent feedback in the first place,
and/or because they learn a strategy that reduces the likeli
hood of such feedback.

2. The strategic actions of individuals are not neces
sarily fixed; rather, subjects learn to deploy particular
classes of hypotheses in response to feedback. This means
that the deployment of a particular class of hypothesis is
related in a principled way to the subject's previous
deployment of that class of hypothesis. Thus, we can ex
pect solvers to become increasingly likely to deploy par
ticular classes of hypotheses in response to particular feed
back patterns.

3. The consensual view holds that such strategy use is
supported or enabled by an underlying cognitive struc
ture which, in tum, is modified and improved by the con
tinued use of the strategy. In the case of Mastermind, it
seems that this cognitive structure must include some
knowledge of logical deduction. Consequently, the con
sensual view would argue that subjects who improve on
a logical-deduction task probably learn something about
logical deduction as an outcome of their successful use
of a particular strategy. Inthis paper, it will be contended
that the repeated deployment of particular classes of hy
potheses in response to particular feedback patterns (i.e.,
the use of particular strategies) does not necessarily
produce an improvement in cognitive structure. That is,
solvers who use a strategy do not necessarily know or
learn much about logical deduction per se. This means
that the continued use of a strategy must be supported by
some other kind of event, and in this paper it will be ar
gued that most solvers who play the game several times
over a several-week period maintain particular strategies
because such strategies are likely to produce an increase
in the total amount of feedback.

EXPERIMENT 1

Method
Subjects. Fifty-five undergraduates at Eastern lllinois Univer

sity who were unfamiliar with the experimental task received extra
credit in their upper-division psychology classes in exchange for
their participation.
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Black Feedback Pins

Table 2
Frequency of Location-Change Hypotheses as a Function of

Black Feedback Pins Awarded
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Type of Hypothesis 0 I 2 3
No Location Change 9 16 38 36
I Location Change 8 53 35 2
2 Location Changes 64 88 48 2
3 Location Changes 77 69 10 0
4 Location Changes 83 9 4 0

Type of Hypothesis

No Color Change
I Color Change
2 Color Changes
3-4 Color Changes

Table 1
Frequency of Color-Change Hypotheses as a Function of the

Total Number of Feedback Pins Awarded
----- Total Feedback Pins

2 3

mit the categorization of the subjects' opening hypothe
sis of each game, but such hypotheses were fairly uniform;
88% of the opening hypotheses consisted of four differ
ent colors. All hypotheses subsequent to the opening one
were codable using this procedure.

The feedback-driven nature of the subjects' hypothesis
making can be seen by looking at the hypotheses made
by the subjects in relation to the feedback they had just
been given. The 44 subjects passing the performance cri
terion made a total of 651 codable hypotheses. Table I
shows the relationship between color-change hypotheses
(collapsed across all location changes) and the total num
ber of feedback pins awarded. As Table I shows, the
number of color changes was inversely related to the num
ber of feedback pins awarded on the previous hypothe
sis. When no feedback or one feedback pin was awarded,
the subjects introduced an average of2.4 new colors into
their next hypothesis. When two feedback pins were
given, the subjects introduced 2.13 new colors; for three
feedback pins, only one new color was played. Finally,
when four feedback pins were awarded, essentially no
color changes were made. What this suggests is that, in
deciding whether to include a new color in a forthcom
ing hypothesis, the subjects simply reviewed the total
number of feedback pins they had just been awarded. The
subjects tended to produce hypotheses with many color
changes if few pins had been awarded, and few color
changes if many pins had been awarded.

Table 2 shows the 651 codable hypotheses retabled to
show the relationship between location changes (collapsed
across all color changes) and the number of black feed
back pins awarded. As Table 2 shows, the number of lo
cation changes was inversely related to the number of
black feedback pins awarded to the previous hypothesis.
When the subjects received no black feedback pins, they
made an average of2.9location changes. However, when
three black feedback pins were awarded, the subjects made

Experimental Task. The subjects played a version of the stan
dard Mastermindgame, using the board and its plastic tokens. Thus,
in each game, the subjects were able to see all previously made
hypotheses and the feedback associated with them. To establish an
intermediate level of difficulty on the task, the subjects were told
that each code consisted of four different colors, randomly drawn
from a pool of six colors. There were thus 360 different possible
codes in this version of the task.

Procedure. The experimenter explained the rules of the task and
answered any questions the subject may have had. When the sub
ject seemed familiar with the task, the problem-solving session be
gan. The subjects were informed that they would play three con
secutive games, or until a I-h time limit had elapsed. In each game,
the subjects were permitted to make 10 consecutive hypotheses.
If the subject had not deduced the code after making 10 hypotheses,
play on that game was discontinued. The subjects were not overtly
compelled to play rapidly.

Results
A performance criterion was established and applied

to the subjects' responses. Subjects were eliminated from
the analysis if they failed to complete three games, or if
they made 10 hypotheses in either their second or third
game without deducing the code. Failure to meet the per
formance criterion resulted in the elimination of II sub
jects from further analysis.

The data were scored by counting the number of hy
potheses each subject made in each game, with fewer hy
potheses indicating greater skill in deduction. The mean
number of hypotheses required to deduce the code on the
initial attempt was 6.8. In Games 2 and 3, 5.8 and 5.2
hypotheses, respectively, were required. Planned com
parisons indicated that the mean number of hypotheses
required on Game 2 was significantly lower than that re
quired on Game I [t(43) = 2.77, P < .01]. The mean
number of hypotheses produced in Game 3 was not sig
nificantly lower than the mean number required in Game 2
[t(43) = 1.76, P = .08].

One of the contentions of the present experiment was
that the deployment of different classes of hypotheses is
almost completely driven by the feedback that precedes
the hypothesis. Demonstrating this point involves the de
velopment of a procedure capable of categorizing Master
mind hypotheses and the application of this procedure to
the hypotheses made by the subjects. To generate a
hypothesis, solvers typically review their immediately
previous hypothesis and the feedback it received. Usually,
subjects modify the previous hypothesis in fairly typical
ways. For example, a solver may change one of the colors
in a given hypothesis, selecting a color from the pool that
had not been used on the previous hypothesis. If all other
colors from the previous hypothesis were played again
in the same locations, then such a hypothesis was coded
a "one color" or "IC" hypothesis. In addition to, or in
stead of, changing colors, a solver may elect to change
only the locations of previously used colors on a given
hypothesis. If, for example, a subject produced a hypothe
sis by shifting two of the colors used in the just -previous
hypothesis, then such a hypothesis was coded a "two lo
cation" or "2L" hypothesis. This procedure does not per-
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only 0.15 location changes. The fmdings shown in Table 2
suggest that, in trying to decide whether to change the
location of a color in a forthcoming hypothesis, the sub
jects reviewed the number of black feedback pins they
had just been awarded. Tables 1 and 2 suggest that the
subjects were not using either a focusing or a tactical
strategy. Rather, the elements of a forthcoming hypothe
sis seem to be well accounted for by an analysis of the
most recently given feedback.

An additional contention of the current experiment was
that the principal effect of using strategic actions in
Mastermind is to alter the distribution of forthcoming
feedback events to reduce the occurrence of prevalent (and
perhaps uninformative) feedback patterns and to increase
the occurrence of less likely, but perhaps more informa
tive, feedback. Consequently, subjects who perform well
overall should do so because they get less of the popular
feedback in the first place, and/or because they acquire
the strategic action more quickly than do other subjects.

Some types of feedback were indeed given more fre
quently than other types. Of the 13 combinations of feed
back possible, the five most frequently occurring types
in Game 1accounted for 65% of all feedback given. These
five "popular" types of feedback also accounted for a
substantial proportion of the feedback awarded in Games
2 and 3 (59% and 49%, respectively).

Table 3 shows the frequency of each hypothesis type
made in response to the five most popular feedback types,
aggregated across Games 1-3. As Table 3 suggests, the
subjects usually produced a particular hypothesis type in
response to each feedback type. Of the 13 feedback types,
10 were given at least 30 times to different subjects, and
each of these 10 feedback types was followed by a differ
ent predominant response. This predominant response,
called the modal hypothesis, accounted for between 48 %
and 96% of all responses to each of the feedback types.
The mean response rate of all modal hypotheses was 72%.

The relationship between modal hypothesis-making in
response to popular feedback and performance is clear.
The 11 subjects whose overall performance was poor (i.e.,

at the 25th percentile or lower, M hypotheses/game ==
7.6) typically received some form of popular feedback
(55% of all hypotheses) and responded to popular feed
back with the modal hypothesis 51 % of the time. For
the 13 subjects whose performance was significantly bet
ter than this group [i.e., subjects at the 70th percentile
or higher, M hypotheses/game == 4.4, t(22) == 3.07,
P < .001], much less popular feedback was received
(38 % of all hypotheses), and these subjects responded to
popular feedback with the modal hypothesis 86 % of the
time, which is significantly more frequent than the 38 %
of the low-performance group (z == 3.88, p < .001). This
finding suggests that subjects who respond with the mo
dal hypothesis to popular feedback should perform bet
ter than subjects who do not respond modally to such feed
back. This expectation was confirmed: the 10 subjects who
had the highest modal response rate, regardless of the
amount of popular feedback they were given (M modal
response rate == 100%), performed significantly better
(Mhypotheses/game == 4.53) than the 10 subjects whose
rate of modal response was closest to the median modal
response rate [Mmodal response rate == 67%, Mhypoth
eses/game == 6.46, t(18) == 4.33, p < .001]. However,
the performance of the 10 subjects whose rate of modal
response was closest to the median was not significantly
different than that of the 10 subjects who had the lowest
modal response rate [M modal response rate == 32%, M
hypotheses/game == 6.67, t(18) == .42,_p > .05].

As contended, popular feedback seems to be rather un
informative. Consequently, subjects who, for whatever
reason, receive substantial amounts of popular feedback
seem to perform worse overall than subjects who receive
moderate amounts of it. Furthermore, the results suggest
that the practical effect of deploying the modal hypothe
sis in response to popular feedback is to decrease the likeli
hood of getting another round of popular feedback in re
sponse to the hypothesis.

In the current experiment, it was also contended that
the strategic actions of individuals are not necessarily
fixed. Rather, subjects learn to deploy particular classes

Table 3
Number of Hypothesis Types Made in Response to Popular Feedback Types

Feedback Type

I Black, I Black, 2 Black,
Hypothesis Type 2 White I White 3 White 2 White I White

I Color 2 2 I 5 6
I Color, I Location 2 4 3 7 27
I Color, 2 Locations 5 16 4 65 4
I Color, 3 Locations 14 0 58 3 2
2 Colors 3 6 0 I 5
2 Colors, I Location 3 29 0 13 I
2 Colors, 2 Locations 49 I 5 I 0
3 Colors 0 0 0 0 0
3 Colors, I Location 0 0 0 0 0
4 Colors 0 0 0 0 0
I Location 0 0 0 0 0
2 Locations I 2 0 I 3
3 Locations 0 I 2 6 3
4 Locations 6 0 8 0 I



of hypotheses in response to feedback, implying that the
deployment of a particular class of hypothesis should be
related in a principled way to the subject's previous
deployment of that class of hypothesis. As an outcome
of this learning, we can expect solvers to become increas
ingly likely to deploy particular classes of hypotheses in
response to particular feedback patterns as they gain ex
perience with the task.

The outcome of the following analysis supports this con
tention. Each occurrence of a particular type of feedback
was considered an "encounter" with that feedback type.
The proportion of modal hypotheses made by individuals
at each encounter was computed for subjects who had,
and for those who had not, produced a modal hypothesis
on the previous encounter. This computation was carried
out separately for each of the five popular feedback types,
and the computation continued for each of the five types
of popular feedback as long as a majority of the subjects
had such an encounter. After the proportions were com
puted for each encounter, for each feedback type, the
resulting proportions were summed across encounters to
produce five transition matrices showing the overall
proportion of nonmodal-to-modal transitions for each of
the popular feedback types. Ifany changes in the subjects'
hypothesis-selection procedure occurred as a function of
their experience with the task over Games 1-3, then such
changes should be reflected in changes in these transition
matrices-that is, in changes of the frequency with which
hypotheses were selected.

Finally, subjects' choices may be compared with a the
oretically plausible model. If the act of producing a mo
dal hypothesis is completely unrelated to earlier produc
tions, then such a selection process can be described as
Markovian. A Markovian process is said to be path
independent, in this case meaning encounter-independent.
Thus, the transition matrix of a Markovian process de
scribes the process almost completely: if the Markovian
property is observed, then the probability of a solver's
entry into a particular state (i.e., choice of a particular
hypothesis) is independent of all but the immediately
previous encounter with a particular feedback type. Re
jection of the Markovian hypothesis implies that the transi
tion matrices for each encounter, and for each form of
popular feedback, are significantly different from one
another.

The transition matrices were then used to generate ex
pected frequencies of modal-hypothesis selection by en
counter, for each type of popular feedback. The expected
frequencies can be compared with those observed using
a Wald-Wolfowitz runs test (Siegel, 1956; Swed & Eisen
hart, 1943). When this is done, the Markovian hypothe
sis is rejected (critical value = 24, obtained value = 16,
P < .05). The rejection of the Markovian hypothesis
means that subjects' responses to popular feedback are
not path- or encounter-independent. Rather, the likelihood
of a subject producing a modal hypothesis on any given
encounter is a function of the number of times the sub
ject has encountered that feedback. Specifically, the sub-
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jects responded to popular feedback with the modal
hypothesis significantly more frequently on each encoun
ter with popular feedback than would be expected if the
Markovian hypothesis were true.

Discussion
It seems that subjects improve quickly and substantially

on this difficult task. In addition, as contended, the sub
jects' strategies were only weakly specified by their ini
tial choice of hypotheses. Rather, the subjects' strategic
actions were apparently almost completely driven by the
feedback they were awarded. Moreover, the data suggest
that the principal effect of using certain strategies in
Mastermind is to alter the distribution of forthcoming
feedback events in such a way as to reduce the occurrence
of prevalent (and perhaps uninformative) feedback pat
terns and increase the occurrence of less likely, but more
informative, ones. Thus, subjects who performed well
overall apparently did so because they got less of the popu
lar feedback in the first place, and because they acquired
the appropriate strategic action more quickly than did
other subjects. The subjects also learned to deploy par
ticular classes of hypotheses in response to feedback. Evi
dence for this conclusion was provided by evaluating a
path-independent Markovian hypothesis, according to
which the deployment of particular classes of hypotheses
was not related in any principled way to the subject's
previous deployment of such hypotheses. Contrary to the
Markovian model, the subjects became increasingly likely
to deploy the modal hypothesis as a function of encoun
ters with popular feedback.

The rejection of the Markovian hypothesis is particu
larly interesting because Markovian models have been
used as theoretical statements of learning in concept
formation tasks (Coombs, Dawes, & Tversky, 1970;
Wickens, 1982). Markovian models typically assume that
concept learners in a selection paradigm make more-or
less unprincipled choices of the next exemplar they wish
to examine until certain conditions are fulfilled that
produce insight. In such a context, insight should be un
derstood as complete, or almost complete, knowledge of
the rule that links the exemplars. The achievement of in
sight in concept-learning tasks is indicated in terms of the
subject's choice of an exemplar to examine, and by the
subject's correct prediction concerning the inclusion or
exclusion of that exemplar from the concept. Thus, when
applied to concept-learning tasks, Markovian models ar
gue that subjects initially make unprincipled selections be
cause they learn little or nothing about the rule linking
the exemplars until they achieve insight. As seen in this
experiment, the rejection of a Markovian model suggests
that the subjects realized how to deal with different feed
back patterns on their initial encounter with such feedback.

EXPERIMENT 2

The findings of the first experiment suggest that the
hypotheses produced by subjects in Mastermind are es-
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sentially responses to the most recently awarded feedback,
rather than instantiations of a multiple-hypothesis focus
ing or scanning strategy. In addition, the fmdings raise
the possibility that such strategic actions may beproduced
by cognitive processes that are at least somewhat indepen
dent of the operations underlying logical deduction per se.
That is, the findings of the previous experiment raise the
possibility that strategic actions and underlying structural
knowledge of Mastermind, and of logical deduction more
generally, may not necessarily have a mutually enhanc
ing relationship. Such a view can becontrasted with what
could be called the consensual position.

The consensual view (e.g., Anzai, 1987; Ohlsson,
1987) holds that such strategy use is supported or enabled
by an underlying cognitive structure which, in turn, is
modified and improved by the continued use of the
strategy. In the case of Mastermind, one might argue that,
at a minimum, this cognitive structure must include some
knowledge of logical deduction. Consequently, propo
nents of the consensual view might argue that subjects who
improve on a logical-deduction task must learn something
about logical deduction as an outcome of their successful
use of a particular strategy.

The purpose of Experiment 2 was to demonstrate that
the consensual view is not particularly correct with regard
to the use of strategies in Mastermind. Specifically, this
experiment shows that the repeated deployment of par
ticular classes of hypotheses in response to particular feed
back patterns (i.e., the use of particular strategies) does
not necessarily produce an improvement in the cognitive
structure that, according to the consensual view, is respon
sible for generating a strategic action and for interpret
ing its outcome. In other words, solvers who become
adept in the use of a particular strategy do not necessar
ily know or learn much about applying logical-deductive
principles to Mastermind. Moreover, this experiment
presents evidence that most solvers who play the game
several times over a several-week period maintain their
use of particular strategies because such strategies appear
likely to produce an increase in the total amount of feed
back given.

Method
Subjects. Thirteenundergraduates at EasternillinoisUniversity

receivedextra credit in an upper-division psychology class in ex
change for their participation. No subjectparticipated in both ex
periments reported here.

Procedure. The procedure was similar to that used in the first
experiment. The subjects were informed that they wouldplay two
consecutive games, or until a 3D-min time limit had elapsed. The
subjects scheduled themselves for one such problem-solving ses
sion per week, for a period of 5 weeks.

My contention is that subjects who becomeadept in the use of
a particular strategydo not necessarily knowor learn muchabout
applying logical-deductive principles to Mastermind. Thesubjects'
abilities to make such deductions were assessed in the following
way. Immediately prior to making everyhypothesis exceptthe first
one of each game, the subjects were asked to indicate the extent
of their knowledge at that pointby fillingout a form. The subjects

useda shorthand notation to indicate thedeductions they had made
about each color in the pool.

There were three broad categories of deductions. The subjects
marked "consideration" deductions if they believedthat a partic
ular colormightbe a codemember. Therewerethree levelsof con
sideration deductions, corresponding to theextentto whichthesub
ject had narrowedthe possible locations for the color, if the color
was indeeda codemember. Levell considerations (thenarrowest)
were marked by subjects who had determined that if a color was
in thecode,thenit mustbe located at oneparticular location. Level 2
considerations were markedby subjectswho had determinedthat
a putativecode membermustbe locatedat two or three particular
locations. Level 3 considerations weremarked by subjects who had
not narrowed the putative code member's possible locations.

"Inclusions/exclusions" was the second category of deductions,
andthereweretwotypes.Inclusions weremarkedby a subjectwho
had determined that a particularcolor was definitely a code mem
ber, although no determination could be made about its location.
Exclusions were marked by a subject who had determined that a
color was definitely not a code member.

"Assignments" was the third categoryof deductions, and there
weretwotypesof these.Assignment to more thanone location was
marked by subjects who had deduced that a particular color must
be a code member, and must be correctly located in one of two
or threeindicated locations. Assignment to one location wasmarked
bysubjects whohadnarrowed thelocation ofa positive codemember
to a single position.

The subjectswere not required to make deductions about each
color after each hypothesis, but they were asked to record the ex
tent of their current deductions as completely as possible. A sheet
summarizing the shorthand notation was visible during the entire
problem-solving session. After the first gameor two, the subjects
askedno questions aboutthe use of the notation. After the subjects
wereconversant withthe notation,fillingout the form requiredno
more than 5 sec in the majority of cases.

Results
Performance of subjects. The subjects' performance

improved over the course of the 5-week test interval. The
mean number of hypotheses required to deduce the code
in the initial week of play was 7.38; by Week 4 of play,
5.71 hypotheses were required. The difference between
these means is significant [t(12) = 3.63, p < .01]. Per
formance worsened in Week 5 of play, which coincided
with the final week of classes in the Spring semester (M =
6.33 hypotheses/game).

Type, accuracy, and complexity of deductions. The
nature of the deductions made by the subjects also changed
over the 5-week period. In Week 1, 72% of all deduc
tions were considerations. By Week 4, this proportion had
declined significantly, to 56 % (z = 5.33, p < .01), and
by Week 5, to 45% of all deductions. In contrast, in
Week 1, 9% of all deductions were assignments. This
proportion increased significantly by Week 4, to 22 %
(z = 5.65, p < .01), and by Week 5, to 37%. The per
centage of inclusions/exclusions did not change signifi
cantly over the time period.

Accurate deductions were those in which a subject cor
rectly considered, included, eliminated, or assigned a
color. The proportion of accurate deductions, relative to
all deductions made, increased over the course of the 5
week interval. In Week 1, 44 % of each subject's deduc-



tions were accurate. By Week 4, this percentage had in
creased significantly, to 63 % [F(3,36) = 7.52, P <
.001], and in Week 5, 60% of each subject's deductions
were accurate.

It would seem that some deductions are harder to make
than others. For example, a Level 3 consideration was
always available to the subject for each color, but the as
signment of a color to a specific position requires deter
mining that a color is definitely included in the code, as
well as deducing the color's location. Considering the
elimination of a color, and the assignment of a color to
a single location as "complex" deductions, a higher per
centage of the deductions made were complex following
a modal hypothesis (25%) than following a nonmodal hy
pothesis (15%) [F(1,12) = 15.9, P < .005].

Modeling the acquisition of knowledge. The subjects
were more likely to make complex deductions after mak
ing a modal hypothesis than they were after making a non
modal hypothesis. However, the fact that accurate deduc
tions were equally likely after modal and nonmodal
hypotheses suggests that the cognitive processes used to
deduce information from the problem array were not
necessarily linked to the cognitive processes used to de
termine the nature of the next hypothesis. This distinc
tion is shown in Figure 1, which is a representation of
some of the putative operations in which a problem-solver
faced with this task might engage. Note that some of the
operations result in an action such as production of a mo
dal hypothesis. Other operations, such as those involved
in making accurate and complex deductions, are internal.
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Superimposed over these operations are the findings that
result when subjects engage in the operations in certain
"sequences." These sequences can be described in terms
of (1) the nature of the feedback (popular or nonpopular)
that initiates the sequence, (2) the timing of the deductions
(immediately or following the production of a hypothe
sis), and (3) the nature of the hypothesis (modal or non
modal) generated following the awarding of feedback.

For example, Sequence 1 describes the situation in
which the solver, having received popular feedback, at
tempts to make accurate and complex deductions immedi
ately from the feedback. Solvers who are successful at
this can be described as having entered a particular men
tal state-that of having made such a deduction. By con
trast, Sequence 3 describes an operation initiated by popu
lar feedback, followed by making a modal hypothesis,
followed by an attempt at making accurate and complex
deductions. Solvers who succeed at this can be described
as having entered a mental state, too, but perhaps a some
what different one than that entered by solvers operating
in Sequence 1, because making a modal hypothesis has
preceded the deductive processes in the latter case.

As Figure 1 suggests, when the subjects received non
popular feedback, they made significantly more deduc
tions (M = 4.11) than when they received popular feed
back (M = 3.76) [t(12) = 3.5, p < .01]. Moreover, as
shown in Figure 1, the likelihood of a subject's making
a deduction that was both accurate and complex was four
to five times greater when the subject was operating in
a sequence initiated or terminated by nonpopular feed-
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Figure 2. Percentage of subjects making greater than the mean
percentage of accurate and complex deductions as a function of se
quence type and encounter number. (a) Sequence type initiated by
the award of popular feedback, foUowedby a modal hypothesis, fol
lowed by nonpopular feedback. (b) Sequence type initiated by popu
lar feedback, foUowed by a modal hypothesis, foUowed by popular
feedback. (c) Deductions made directly from nonpopular feedback.
The observed percentages are shown relative to those that would
be generated by a Markovian model of the subjects' underlying
knowledge.

of accurate and complex deductions on that encounter for
three sequences. The number of observed subjects was
contrasted with the number of subjects who would be ex
pected to have had higher than the overall mean propor
tion of accurate and complex deductions on that encounter,
if the Markovian property were operative. For each of
the three trend lines shown in Figure 2, none of the result
ing chi-square analyses were significant [for Sequence 2,
"immediate from nonpopular feedback," X2(9) == 5.49;
for Sequence 3, "popular feedback-modal hypothesis
popular feedback," ~(7) == 1.36; for Sequence 4, "popu
lar feedback-modal hypothesis-nonpopular feedback,"
X2(3) == 1.07; all ps > .05]. The trend lines have the
Markovian property: the subjects appear to have learned
little or nothing about making accurate and complex
deductions from the encounters in which they succeeded
in making a greater than mean percentage of such deduc
tions. Furthermore, the sequence of cognitive activity en
gaged in by the subjects seems to have had little influence
on this lack of learning.

Properties of feedback and hypotheses. Finally, I
have hypothesized that most solvers who play the game
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back than when he/she was operating in a sequence ini
tiated or terminated by popular feedback.

One of my contentions is that the repeated deployment
of particular classes of hypotheses in response to partic
ular feedback patterns (i.e., the use of particular strategic
actions) will not necessarily produce an improvement in
the cognitive structure that, according to the consensual
view, is responsible for generating the strategic action in
the first place. Thus, solvers who become adept in the
use of a particular strategy do not necessarily have deep
knowledge about the logical structure of Mastermind, nor
do they learn much about such structures despite their ap
parent improvement in performance.

The issue of learning from the feedback can be studied
by considering three of the sequences of operations shown
in Figure I on an encounter-by-encounter basis. Thus, for
Sequence 2 for example, the number of accurate and com
plex deductions made by each subject from the initial
awarding of nonpopular feedback was computed and ex
pressed as a percentage of all deductions made on that
encounter with nonpopular feedback. This computation
was made for each subsequent encounter of that type, for
each subject, as long as a majority of the 13 subjects ac
tually had an encounter of that type. The sequences la
beled 3 and 4 in Figure 1 were treated similarly. That is,
the number of accurate and complex deductions made by
each subject when the subject initially operated in Se
quences 3 and 4 was computed and expressed as a per
centage of all deductions made on the initial operation of
that sequence. Each subsequent operation of Sequences
3 and 4 was treated the same way.

Given that each encounter of each of the types of se
quences should be understood as a learning trial of that
sequence, then the percentage of accurate and complex
deductions, relative to all deductions made on that trial,
should be a function of trials (encounters) and previous
deductions. That is, if the subjects were truly getting better
at making logical deductions, then the percentage of all
deductions that were accurate and complex should increase
as a function of the subjects' previous success in making
such deductions. If this were true, then the percentage
of subjects making greater than the overall mean percent
age of accurate and complex deductions should be low
on initial encounters and should increase as a function of
the number of encounters. Thus, the more successful the
subject had been at making such deductions, the more suc
cessful we would expect that subject to be on any subse
quent encounter.

An alternative hypothesis is that the percentage of each
encounter's deductions that are accurate and complex is
independent of the subject's previous history of such
deductions. Ifobserved, this pattern, which would be con
sistent with a Markovian position, would suggest that the
subjects were not actually learning how to make logical
deductions from their previous experience.

Figure 2 shows the observed percentages (based on the
number of subjects who had such an encounter) of sub
jects who had higher than the overall mean proportion



over a several-week period maintain their use of particu
lar strategies, because such strategies appear likely to
produce an increase in the total amount of feedback given
to the subjects. A count was made of the number of pins
awarded each time a subject received any of the five types
of popular feedback. On the 338 times such feedback was
issued, the subjects received 887 feedback pins (2.62
pins/encounter with popular feedback). A similar count
was made of the number of pins awarded on each issu
ance of nonpopular feedback. On the 218 times such feed
back was issued, the subjects received 757 feedback pins
(3.47 pins/encounter with nonpopular feedback). Thus,
when a subject received nonpopular feedback, it typically
meant that more information had been given than when
popular feedback was awarded.

In addition, it appears that a modal hypothesis is more
likely than a nonmodal hypothesis to produce an increase
in the number of just-previously awarded feedback pins,
an effect that can be seen in the following analysis. As
sume that a subject who has produced a hypothesis con
sisting of four different colors is awarded the feedback
type "1 Black, 2 White. " The modal hypothesis for this
feedback is "1 color, 2 locations." Under these condi
tions, there are 32 specific hypotheses that would be
characterized as modal. Of these, nine hypotheses (0.28
of all modal hypotheses) would lead to the award of a to
tal of four feedback pins. For the feedback in question,
there are 1,264 possible nonmodal hypotheses (the total
number of hypotheses, 64

- 32). None of the hypotheses
characterized as "2 colors," "3 colors," or "4 colors"
will produce an increase in the total number of feedback
pins, nor will any of the hypotheses characterized as "1
location," "2 locations," "3 locations," or "4 locations"
do so. Of the eight possible" 1 color" hypotheses, one
will lead to an increase in the total number of feedback
pins awarded. Similarly, of the eight possible "1 color,
1 location" and "1 color, 3 locations" hypotheses, one
of each type will lead to an increase in the total number
of feedback pins. Thus, three of the 1,264 possible non
modal hypotheses (0.0023) will lead to an increase in the
total number of feedback pins awarded. Similar proper
ties were observed for each of the other popular feedback
types.

Discussion
As in the first experiment, the subjects improved sub

stantially during the test period, and this improvement
seemed to result from the subjects' choices of hypotheses
in response to certain types of feedback. Moreover, the
improvement in performance was accompanied by other
changes. Predominating early in the 5-week interval were
the fairly easy to make consideration deductions. How
ever, by the conclusion of the experiment, a substantial
proportion of all deductions were assignments or elimi
nations. Furthermore, the subjects' accuracy also im
proved across the experimental period. Although the sub
jects were no more likely to make accurate deductions
following modal hypotheses than following nonmodal hy
potheses, they were more likely to make complex deduc-
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tions in response to modal hypotheses than in response
to nonmodal hypotheses.

However, the feedback given seemed to playa strong
role in the subjects' ability to make deductions. When the
subjects received nonpopular feedback, they made sig
nificantly more deductions than when popular feedback
was given. In addition, the likelihood of a subject's mak
ing an accurate and complex deduction was four to five
times greater when he or she was operating in a sequence
initiated or terminated by nonpopular feedback than in a
sequence initiated or terminated by popular feedback.
However, subjects who made accurate and complex
deductions on a given encounter were no more likely to
make such deductions on their next encounter than were
other subjects, regardless of the nature of the hypothesis
advanced, or the feedback given in the interim. This find
ing suggests that the solvers learned little or nothing about
the underlying structure of this logical-deduction task
despite their use of an effective strategy.

Rather, there are some findings that suggest that the
use of the modal hypothesis strategy was maintained by
the subjects for other reasons. Modal hypotheses were
more likely than nonmodal hypotheses to produce an in
crease in the number of feedback pins given. This find
ing suggests that the modal hypothesis strategy was main
tained simply because it led to an increase in feedback.

GENERAL DISCUSSION

These studies confirmed at least two well-known prin
ciples in the psychology of thinking: (1) strategic actions
emerge very quickly on almost any task involving human
problem solving, and (2) such actions continue to show
development over the interval in which they are measured,
suggesting that on all but the most trivial problems, hu
mans continue to learn about the task. In addition, how
ever, the findings of Experiment 2 suggest that the per
formance of such strategic actions does not necessarily
have a principled relationship with a person's underlying
knowledge of the task's structure.

The conventional view of improvement in the depth of
knowledge as problem solving proceeds is that such im
provement is all but inevitable given a subject's motiva
tion and continued involvement with the task (Carbonell,
1986; Larkin, McDermott, Simon, & Simon, 1980).
However, the present findings suggest that this course of
events may not always be observed. In Mastermind, it
seems clear that the solver perceives some sort of con
nection between the pattern of feedback given and the ap
propriate hypothesis to be ventured. Moreover, knowl
edge of this relationship is acquired rather quickly. This
perceived connection, rather than any deep structural
knowledge, seems to drive most nonexpert Mastermind
play. It is true that the subjects in the present study were
not expert players, so it is not completely clear what might
take place were they to acquire expertise with time.

Nevertheless, the present findings indicate that these
subjects could beproficient at playing Mastermind without
gaining much in the way of underlying structural know1-
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edge. This, in tum, suggests that expertise may not al
ways consist of deriving some structural improvement
from the repeated deployment of a particular strategic
action. Ratherthangetting betterat interpreting the feed
back, which in a more general sensecorresponds to im
provements in structural knowledge, the presentexperi
ments suggest thatthesolvers learned something different:
How to convert the existing situation, however compli
catedanduninterpretable, intooneof which theyare able
to make sense.

In summary, the imposition of a singlestrategic action
maynot always be sufficient to produce a dramatic reor
ganization of a solver's underlying strategic knowledge.
In addition, theeffective strategic actionthat subjects ac
quire fairly spontaneously in Mastermind doesnot neces
sarily promote any genuine comprehension of the vari
ables involved in logical deduction in that game.
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