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Small pictorial images, known as icons or symbols, are
ever-present in our society; they are used anywhere that
language can be used to facilitate the communication of
information.Although the terms icon and symbol are often
used interchangeably, there are some subtle differences.
Icons often have a physical connection to a particular tar-
get or function, whereas symbols are more arbitrary in
nature and often have an indirect relationship to their ref-
erents (Fenk, 1998; Horton, 1994). Yet, the use of the
word icon to describe symbols—particularly on computer
screens—is so pervasive that it is probably irreversible
(Horton, 1994).

There are distinct advantages to the use of pictorial im-
ages for communication.Pellegrino,Rosinski,Chiesi, and
Siegel (1977) reported that when two objects belong to the
same category, pictures depicting them are processed
faster than words. Information is also conveyed more di-
rectly through the use of images; pictorial road signs are
understood easily and accurately and are learned more
easily than word signs (Walker, Nicolay, & Stearns, 1965).
There is also strong evidence that symbols and icons are
more easily identified and better remembered. In tasks in-
volving recall, participants have been able to correctly
identify85%–95% of a set of previously presented graph-
ical symbols, whereas recall for words was significantly
lower, particularly in larger learning sets (Standing, 1973).
A similar advantage was reported by Muter and Mayson
(1986), who found that error rates were halved when users
were presented with symbols rather than with text; more

recently, Giannini,Giannini, and Condon (2000) found that
the presentation of symbolic slides during lectures facili-
tated improvements in the test scores of students.

It may be that the memory capacity for pictures is al-
most limitless (Harber & Hershenson, 1973; Standing,
1973), but the value of an icon or symbol depends largely
on the effort required for an accurate interpretation of its
meaning. The possibility of creating an unlimited number
of icons means that the potential for communication fail-
ure is high. In attempting to address this problem, the In-
ternationalOrganization for Standardization(ISO) has set
a minimum recognition rate of 66.7% (Lindgaard, Ches-
sari, & Ihsen, 1987; Piamonet, Abeysekera, & Ohlsson,
2001), but reports of recognition rates as low as 29% point
to difficulties in meeting the ISO criterion (Davies, Haines,
Norris, & Wilson, 1998; Piamonet et al., 2001).

The development of design guidelines, informed by
contributions from several disciplines, including engi-
neering, ergonomics, and psychology, represents another
approach to the development of effective icons. There
have been comprehensive reviews of the principal ideas
underpinning icon theory (Easterby & Zwaga, 1984; Hor-
ton, 1994;Maguire, 1985) and ISO publishesa broad spec-
trum of recommendations regarding the location of icons,
including those pertaining to road vehicles (ISO, 1995)
and information technology (ISO, 2000a, 2000b, 2000c,
2000d).

Research into good icon design and usability has been
impeded by difficulties in measuring and controllingsym-
bol characteristics. Traditional methods involve the gen-
eration of large numbers of picture sets (Alario & Ferrand,
1999; Rogers & Oborne, 1987; Sanfeliu & Fernandez,
1996; Snodgrass & Vanderwart, 1980). Recently, Mc-
Dougall, Curry, and de Bruijn (1999) used this method to
develop the first set of normative values for icons. This
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Measures of icon designs rely heavily on surveys of the perceptions of population samples. Thus,
measuring the extent to which changes in the structure of an icon will alter its perceived complexity
can be costly and slow. An automated systemcapable of producing reliable estimatesof perceivedcom-
plexity could reduce development costs and time. Measures of icon complexity developed by Garcia,
Badre, and Stasko (1994) and McDougall, Curry, and de Bruijn (1999) were correlated with six icon
properties measuredusing Matlab (MathWorks, 2001)software,which uses image-processingtechniques
to measure icon properties. The six icon properties measured were icon foreground, the number of ob-
jects in an icon, the number of holes in those objects, and two calculations of icon edges and homo-
geneity in icon structure. The strongest correlateswith human judgments of perceived icon complexity
(McDougall et al., 1999) were structural variability (rs 5 .65) and edge information (rs 5 .64).
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and a subsequent study (McDougall, de Bruijn, & Curry,
2000) have provided a common framework for the evalu-
ation of icon characteristics.

McDougall et al. (1999; McDougal et al., 2000) found
three characteristics to be of primary importance in the
measurement of symbols and icons: concreteness, dis-
tinctiveness, and complexity. The degree to which an icon
could be considered concrete or similar to its real-world
counterpart was found to be important to the initial under-
standing of the icon. A more dynamic quality of icons—
their distinctiveness—can help users identify and respond
to the messages they convey. Distinctivenesscannot be as-
sessed in isolation; it is contingenton the nature of the vi-
sual display in which an icon is located. The third charac-
teristic, icon complexity, is reported to be important in
search efficacy. The amount of detail or intricacy within
an icon influences the rate at which it can be detected,
with very simple or very abstract icons being detected
faster. Interestingly, icon complexity was found to be un-
related to how concretely similar an icon was to its refer-
ent (McDougall et al., 1999; McDougall et al., 2000).

Making major alterations to an icon—such as rescaling
or inverting its black/white contrasts—will almost cer-
tainly change the way the icon is interpreted. To what ex-
tent can designers change the structural properties of
icons without changing behavioral responses to them?
Currently, there are relatively few methods available to
predict behavioral changes from structural alterations.

One technique involves the iterative testingof modified
icons using samples drawn from populations of potential
users. User familiarity means, however, that different sam-
ples are required at each stage of the modificationprocess,
and the designer is left to guess when it might be appro-
priate to engage in the costly and laboriousprocess of nor-
mative reassessment. Likewise, in the development of an
entirely new icon set, the gathering of subjective judg-
ments from users should occur throughout the design
process, particularly at the beginning and end of set de-
velopment (McDougall et al., 2000). An automated sys-
tem would enable designers to check iteratively through-
out the design process, without the necessity of recruiting
large numbers of human raters.

As a decision-making aid, an automated system would
make the process of icon development and modification a
less speculative, more cost-effective activity.

Why Should Automated
Measurement Be Possible?

The characteristics of icon concreteness and distinc-
tivenessare, to somedegree,dynamicproperties, in thesense
that the degree to which an icon is judged to be a concrete
representation is determined partly by an observer’s famil-
iarity with the target object or function. The distinctive-
ness of an icon will depend not only on its structural fea-
tures, but also on the visual landscape in which it is situated
(McDougall et al., 2000). Judgments of icon complexity,
however, may be somewhat less sensitive to factors of user
familiarity and visual context and may be computation-

ally tractable through the use of an automated measure-
ment procedure.

McDougall et al. (1999) has reported on the success of
one semi-automatedsystem of icon measurement. Garcia,
Badre, and Stasko (1994) developeda techniquebased on
a calculation of several icon features, including the num-
ber of closed and open figures and horizontal and vertical
lines. This metric was developedprimarily as a measure of
icon concreteness, and, using this measure, Garcia et al.
reported that icons that are pictorially similar to their real-
world counterparts are more likely to be judged as com-
plex. Although there is some disagreement as to whether
icon complexity and icon concreteness are related con-
structs (McDougall et al., 1999), the high correlationsbe-
tween the metric of Garcia et al. and the McDougall et al.
(1999) measures of icon complexity (rs 5 .73) suggest
that the Garcia et al. measure of complexity is able to mea-
sure the amount of detail in an icon in a way similar to that
of human observers. However, Garcia et al.’s techniques
are painstaking for all but the simplest icons. In the study
reported here, it was considered whether a more auto-
mated system could be used to quickly produce reliable
estimates of perceived icon complexity.

Several theories point to the possibility of developinga
more computationally driven approach. First, it is gener-
ally accepted that the degree to which an icon is judged to
be concrete or similar to its target object is important in
providing meaning to the user (Guastello & Traut, 1989;
McDougall et al., 2000; Mead & Modley, 1968; Schwartz
& Phillippe, 1991). It has been reported that there is not
necessarily a direct relationship between the icon dimen-
sions of concreteness and complexity (McDougall et al.,
1999), but icons regarded as similar to their targets do tend
to be more detailed and explicit in nature (Arend, Muthig,
& Wandmacher, 1987; Rogers & Oborne, 1987). This
extra detail is of particular importance to the novice user
(see, e.g., Maguire, 1985; McDougall et al., 2000; Mead
& Modley, 1968; Raeder, 1985); for example, essential el-
ements, such as the wings on an airplane or the handle on
a suitcase, give more explicit meaning to an icon, thereby
facilitating faster identification (Bruyas, Le Breton, &
Pauzie, 1998). Other advantages of using icons that are
highly detailed in nature include the abilityof designers to
convey action information, such as when a physical object
requires manipulation(Figure 1) or in attracting the eye to
small details that can aid in recognition, such as the lug-
gage label in Figure 2A.

This extra detail however, comes at a cost. Regardless
of experience, more abstract icons—which are not neces-
sarily good examples of a prototype—may elicit faster re-
sponses than icons offering more concrete representations
(Arend et al., 1987; McDougall et al., 2000). One expla-
nation for this is that the observer seeks a functional ex-
planation for any additional icon objects; hence, process-
ing time increases (Bruyas et al., 1998; Nielson, 1993).
Consequently, it takes longer to process the suitcase in
Figure 2A than that in Figure 2B. A further design feature
that can add to the complexity of an icon is the use of
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color. Color is useful in attracting the attention of the user
and for organizing and grouping related icon concepts;
however, general advice is that, where possible, the use of
color should be avoided. At best, color offers no advan-
tage to user performance (Christ, 1977; Tullis, 1981), and
at worst it reduces the speed at which information is
processed (Biederman & Ju, 1988; Ostergaard & David-
off, 1985). Icons should be designed in black and white,
with color added only for improvement (Horton, 1994).

McDougall et al. (1999; McDougall et al., 2000) have
reported that the level of complexity within an icon bears
no direct relationship to the degree to which it can be con-
sidered concrete or representative of its target. Concrete-
ness is related to the meaning implied by an icon, whereas
complexity is related to recognition time. One explanation
for this is focused on the impact of includingadditionalel-
ements in an icon (Horton, 1994; Nielsen, 1993). Many
icons in common use are intended to convey information
about their targets and the operation to be applied to them.
For example, an icon depicting a file held within a clamp
can be used to refer to a generic target (any file stored on
a computer) and the operation of compression. Depicting
both an object and an operation usually involves the inclu-
sion of more elements to clearly communicate the in-
tended meaning. Additional attentional processes are in-
volved in building a cognitive representation of an icon,
because of the need to integrate the greater number of
constituent elements. Simple image properties are ex-
tracted from an image in parallel, and these properties are
then combined to form objects of a particular shape, color,
and size (see, e.g., Treisman, 1986; Treisman & Gelade,
1980; Treisman & Souther, 1985).

An alternative explanation that lends itself to measure-
ment consists in the Gestalt principles of figure/ground
and minimum. These center on the way in which higher
order groupingprocesses and selective attentionguide the
ordering and recognition of image features. For example,
the law of simplicity suggests that, when viewing a com-
plex image, the human perceptual system operates selec-
tively to secure the most economical form (Hochberg,
1968; Hochberg & Brooks, 1960; Neisser & Becklen,
1975). Hochberg even went so far as to develop a semi-
automated measure of image complexity, arguing that re-
lying solely on human judgmentsof what makes an image
“complex” would mean that we have no way of predicting
just how advanced or simple an image will actually ap-
pear. His calculationsdemonstrated that it was possible to
predict how viewers would “see” an image: The more in-

terior angles, different angles, and lines an image had, the
more likely it was to be perceived in three dimensions.

Gestalt grouping processes are also considered to be im-
portant in the perception of form; the largest area of an
image will always be consideredbackground,with contour
and shape considered foreground (Hochberg & Brooks,
1960). Perhaps this explains why such grouping processes
are important in the perceptionof image complexity. For ex-
ample, a global-feature superiority effect has been reported
in the high-speed selection of icons, with responses to fea-
tures such as size and shape being faster than those to the
structural detail of an image (Arend et al., 1987; Wand-
macher & Arend, 1985).Psychophysicalevidence suggest-
ing that higher order grouping processes operate in this
way can be found in studies showing that the brain regis-
ters variations in an image as changes in intensity, and it is
these coarse and fine changes that provide detail and local
information about a stimulus (Beck, Graham, & Sutter,
1991; Harwerth & Levi, 1978; Sutter, Beck, & Graham,
1989;Vassilev & Mitov, 1976).Coarse scales are thought to
be treated by the brain as low-frequency components and
are processed faster than high-frequency components ob-
tained from local information.This difference in processing
speed would seem to be a function of image complexity:
When an object is of a detailed nature, its global attributes
are processed much faster than its local ones (Hoeger,
1997; Parker, Lishman, & Hughes, 1997).

Although the theoreticalpositionsunderpinningfeature
integration theory, Gestalt explanations, and psycho-
physics research are all quite different, they all suggest
that the measurement of icon complexity may be compu-
tationally tractable. If this is so, then it should be possible
to develop an automated system that would inform de-
signers about human estimations of users’ perceptions of
icon complexity. Such a system could prove to be a useful
decision-making aid to designers who wish to create an
entirely new icon set or make alterations to the properties
of an existing one.

Method
Matlab (MathWorks, 2001) is an integrated commercial

package with powerful mathematical algorithms and vi-
sualization utilities for the acquisition, analysis, and ex-
ploration of data. With its Image Processing Toolbox,
Matlab can be used to recover detailed structural infor-
mation from a black and white, grayscale, or color image.

The Toolbox has numerous image-processing functions
and, on the basis of the theoretical explanations of icon

A B

Figure 1. Count icon.

Figure 2. Luggage icon.
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complexityreviewed above, six of these functionswere ap-
plied to a random sample (n 5 68) of the McDougall et al.
(1999) icons. The function measures were correlated with
metrics developed by Garcia et al. (1994) and McDougall
et al. (1999).High correlationswould indicatesimilar mea-
surements of icon complexity.

The Gestalt argument (Arend et al., 1987) that distinct
global features are important to perceptual speed was
tested first. It was considered that the most global charac-
teristic of an icon would be its figural form, which was
calculated using a measure of icon foreground. High cor-
relations between this measure and the metrics of Garcia
et al. (1994) and McDougall et al. (1999) would indicate
that grouping principles are important factors in human
ratings of complexity.

When preparing the McDougall et al. (1999) icon set for
processing, Matlab treats a black and white, or binary,
icon as an array of 1s and 0s. This is essentially a data file
in which the image is stored as a matrix of pixels. On
white paper, black normally (but not always) represents
the foreground, and white represents the background.
Matlab, on the other hand, considers white to be an “on”
pixel, giving it the value 1, and black to be an “off ” pixel,
giving it the value 0. Thus, before any analysis was carried
out, the representation of all the icons in Matlab was re-
versed, with 1s becoming 0s and vice versa.

Icon foreground is defined as the area taken up by pix-
els that are switched on (i.e., black on paper, but with the
value of 1 in the Matlab representation of the icon). Mat-

lab assigns diagonally connected pixels extra weighting.
This is because the discreteness necessarily introducedby
the digital representation of an image means that a given
number of pixels arranged diagonally represents a longer
line than the same number of pixels arranged horizontally
or vertically.

A processing conventionwas then established to define
connections between pixels and, hence, an icon’s compo-
nent parts. All pixels touching both horizontally and ver-
tically(but not diagonally)were consideredto be connected.
This is referred to by Matlab as a 4-connected neighbor-
hood, and the difference between this and an 8-connected
neighborhood can be observed in panels B and C of Fig-
ure 3 . Essentially, a 4-connected neighborhoodproduces
a finer image.

Four additional calculations were performed using this
convention.The feature integration of icon elements
(Bruyas et al., 1998; Nielson, 1993; Treisman, 1986) was
tested by counting the number of discrete objects within
each icon, an object being defined as a set of 4-connected
pixels. Figure 4 shows an example of the objects count;
the separate objects are shown in various shades of gray,
and this icon received an object count of 14. The number
of holes within those objects was also counted by calcu-
lating the Euler number of the image. A negative Euler
number indicates that the number of holes in the image is
greater than the number of objects. It was considered that
an icon rated as complex would contain more elements
than an abstract icon and that these elements would them-

A
Original

B
Perimeter

X8

C
Perimeter

X4

D
Canny

E
Quadtee

645 562 848 1255

379 246 427 754

334 239 365 562

Figure 3. Automated measures morphs with metric scores.
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selves be complex in nature, havingmore local detail (i.e.,
holes).

To test the importance of changes in image structure in
the perception of icon complexity, two perimeter-detection
measures and one structural analysis was performed. If
structural variability were an important factor in the per-
ception of icon complexity, it would be indicated by high
correlations between these measures and the metrics of
Garcia et al. (1994) and McDougall et al. (1999). Exam-
ples of how these various metrics affect an icon’s appear-
ance can be observed in Figure 3.

Perimeter-detection measures work by examining the
changes in intensity that occur at the edges of an image.
Edges are located using two criteria that examine areas in
the icon where there is a rapid change in image intensity.
Either a change in intensity must be larger than a prede-
termined threshold (perimeter detection provides a num-
ber of estimators that can be used to specify sensitivity)or
an edge will be detectedwhere the intensity derivativehas
a zero crossing. For the purposes of this study, zero cross-
ings occur at the places where negative and positive pix-
els are adjacent.For a pixel to be considered an edge pixel,
it must be activated (on) and connected to at least one non-
activated (off ) pixel. This is a simplified version of more
general detectors, such as Canny and Sobel, which calcu-
late the gradient of intensity values for close-by pixels in
color or grayscale images.

A limitation of this analysis is that thicker lines are
awarded higher scores than thinner ones. This is because
the perimeter calculation rates a thick line as having two
edges rather than one.The selectionof a 4-connectedneigh-
borhood compensates for this problem to some degree,
since it produces a finer image (see Figure 3C). However,
an edge that might be blurred or difficult for a user to de-

tect may be included superfluously in a Matlab perimeter-
detection calculation.

To allow for both of these considerations,a further analy-
sis was performed using the Canny perimeter-detection
calculation. The advantage of the Canny method over
other perimeter-detection methods is that it works by
using two thresholds to detect strong and weak edges and
includes the weak edges in the output only if they are con-
nected to strong edges. This means that truly weak edges
will be detected in the analysis, but noise—such as shadow
or shading—will be ignored. The second icon in Fig-
ure 3D (frog) is a good example of the power of the Canny
analysis. Whereas the perimeter measures (Figures 3B
and 3C) retain elements of shading and shadow in their
analysis, the Canny analysis retrieves a much more skele-
tal impression. Furthermore, since Canny is able to deal
with grayscale and binary images, it is unnecessary to
treat the data before processing.

Finally, Quadtree decomposition examined homogene-
ity in the icons. It works by iteratively subdividingthe icon
into quarters; each subblock is then tested for homogene-
ity. The subdivisioncontinues until the resulting subblock
is homogeneous; hence, a large number of small, homo-
geneous blocks indicates a highly structured image (see
Figure 3E). A small number of largish blocks indicates a
more homogeneous image.

Results
The means, standard deviations, and skew for the cal-

culated icon characteristics are displayed in Table 1. Mc-
Dougall et al. (1999) recorded two measures of complex-
ity for this icon set, one using the Garcia et al. (1994)
metric and one involving subjective ratings. These scores
are also included in Table 1.

The distribution of scores for several of the measures
was positively skewed at more than twice the standard
error. To correct this, a log10 transformationwas performed
on the Garcia et al. (1994), Foreground, Objects, and
Holes metrics. This transformation corrected the distrib-
ution of data for these metrics; however, rudimentary
analysis of the underlying data for these measures pre-
sented some anomalies. Consequently, the corrected dis-
tributions were artificially inflated for all but the Garcia
et al. measures, and only the remaining ratings and this
measure were correlated.

Figure 4. Hierarchy icon.

Table 1
Descriptive Statistics for Icon Attributes

Metric M SD Skew Kurtosis

McDougall et al. (1999) complexity 2.75 .78 2 .31 5.8
Garcia et al. (1994) 9.33 9.31 2.05 2.33
Foreground 760.62 593.45 2.59 10.44
Objects 13.17 21.00 3.04 11.83
Holes 2.8 4.6 2.47 6.19
Perimeter 384.08 228.26 .859 2.06
Quadtree 733.82 396.32 .79 2.36
Canny 329.34 181.52 .65 2.79
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Given the large number of analyses performed, a Bon-
ferroni adjustment was applied and the criterion for sta-
tistical significance was set at p , .0008. A caveat to this
adjustment is that it greatly increases the likelihood of
Type II error.

The analysis (Table 2) replicated the moderately strong
correlations reported by McDougall et al. (1999) between
their ratings of complexity and those of the Garcia et al.
(1994) metric. This supports the argument that they may
be tapping similar constructs.

The Garcia et al. (1994)and McDougallet al. (1999)met-
rics both correlated with the structural analysis (Quadtree)
score (rs 5 .65, p , .0008) and with the perimeter-
detection score (rs 5 .66 and rs 5 .64, respectively; p ,
.0008).The Canny correlationswith Garcia et al. (rs 5 .60)
and McDougall et al. (1999; rs 5 .49) are smaller but sta-
tistically significant. These findings suggest that image-
processing techniquescan measure icon characteristics in
ways that approximate more time-consuming measures.
The correlations also suggest that ratings of icon com-
plexity may be linked to homogeneity in image structure.

Discussion
Positively skewed distributions were observed for sev-

eral of our measures as well as for the Garcia et al. (1994)
metric. Skewed distributions are commonly caused by
sampling bias, nonnormal distribution of the characteris-
tics of the items being measured, or the sensitivity of the
measurement tool. The first possibility can be discounted,
because the sample of icons was randomly drawn from
those published by McDougall et al. (1999). The second
fails to explain why the McDougall et al. (1999) norms
are approximatelynormally distributed,whereas our mea-
sures and those of Garcia et al. are positively skewed: If
icon characteristics are not normally distributed, that
should be observed consistently.

The third possibility suggests that enumeration meth-
ods of the type used by Garcia et al. (1994) and by us yield
positively skewed distributionsbecause they are based on
the systematic application of rigorous definitions of icon
attributes.Stringent enumeration techniqueswould be ex-
pected to yield measures of icons that pile up on the lower
end of the scale, whereas the judgments of human ob-
servers are probably based on a less meticulous analysis
and produce a more normal distribution of scores. This is
supported indirectly by evidence indicating that many
image-processing measures yield poor estimates of

human judgments of icon complexity. For example, cal-
culations on objects within an icon are based on connec-
tions between pixels such that discrete objects will be de-
tected only when there are breaks between the pixels.
Thus, because the nodes in Figure 5 are all linkedby lines,
our computational measures detect only one discrete ob-
ject. Feature integration theory contends that the human
perceptual system is much more sophisticated than this,
with the nodes and lines of the hierarchy icon being ex-
tracted separately (Treisman & Gelade, 1980). Specifi-
cally, when an image is made up of more than one separa-
ble feature, individualfeatures are attended to and processed
along independent dimensions (Treisman & Gelade,
1980). Thus, greater cognitive effort is involved in the in-
tegration of an icon composed of a number of separable
elements than in that of an icon that is more integral in na-
ture. According to this view, icon complexity is partly a
function of the cognitive effort involved in making an
evaluative judgment.

If the problem of object identification was limited to a
few icons, this metric might still have proved a useful gen-
eral estimate of the perceived characteristics of icon prop-
erties. However, the problem is quite substantial: Fewer
than three objects were detected in almost 50% of the
icons we examined.Furthermore, changes to icons that we
thought might have led to an improvement in object count-
ing produced disappointing results. For example, the icon
in Figure 6 depicts the concept debug. The different ob-
jects detected by the objects metric are displayed in
grayscale. If an 8-connected neighborhood convention is
applied (meaning that all touching pixels are considered
connected), the icon will receive a count of 30 (Fig-
ure 6A). The problem is not rectified by applying a con-
vention that considers only pixels that are connected hor-
izontally and vertically (a 4-connected neighborhood).
Although a more conservativecount of 2 is obtained from
the metric (Figure 6B), the score is awarded for the entire
image plus one rogue pixel (shown in gray). Furthermore,

Table 2
Spearman Correlations Between Icon Attributes

McDougall Garcia
Metric et al. (1999) et al. (1994) Perimeter Quadtree

McDougall et al. (1999) complexity 1.00
Garcia et al. (1994) .75* 1.00
Perimeter .64* .66* 1.00
Quadtree .65* .65* .94* 1.00
Canny .49* .60* .88* .84*

*Correlations significant at p , .0008.

Figure 5. Objects and holes metric.
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deletion of either the insect or the repellent from the icon
without removing the rogue pixel would still produce an
object count of 2. Similar problems were encountered
with many of the icons.

The problems posed by this type of analysis arise from
the fact that icons consisting of multiple objects tend to
have many touchingpixels. A similar problem arises when
a count of holes is used as an estimate of icon complexity.
Image-processing software can detect holes that may be
imperceptible to the naked eye, to the extent that even
dense icons, such as the one depicted in Figure 5, often re-
ceived a hole count. In this case, the image-processing
software detected a single tiny hole. These examples il-
lustrate that the skewed distributionof data was caused by
some fundamentalproperties of the way the software mea-
sured the icons. As such, it could not be treated as a form
of measurement error, and, for this reason, a log10 trans-
formation of the raw data was considered inappropriate.

Foreground was chosen as a possible measure of the
global features of an icon, but automated measurement
also proved difficult. The significantly skewed data sug-
gested that processes unlike those involved in the human
perceptionof figure and ground were in operation.Whereas
it may sometimes be possible to treat black areas of an
icon as foreground, problems arise when this definition is
applied globally.For example, treating black areas as fore-
ground is acceptablewhen the simple icon in Figure 7A is
being processed, but it is unsatisfactory when it is applied
to the analysis of the icon in Figure 7B. Although it would
be possible to analyze iconson a case-by-case basis, adapt-
ing the algorithm accordingly, the procedure would be no

more economical than using human raters for the same
purpose.

The foreground metric was even less effective at differ-
entiating icon detail from icon foreground. Detail can be
particularly important in providing function cues to the
user by drawing the eye to significant areas of information
within the icon (Horton, 1994). However, delineating
areas that represent icon foreground from those denoting
icon detail is very subjective, as is illustrated by the icon
in Figure 7C. A simple measure of foreground is too crude
a proxy for the complex grouping processes involved in
human perception, and it appears likely that this measure
is merely a sophisticated calculation of icon area, as rep-
resented by pixels that are switched on.

More reliable metrics for estimating human judgments
of icon complexity are available in the Perimeter and
Canny perimeter-detection measures and the Quadtree
structural variability measure. These metrics yield distri-
butions that are much less skewed and that correlate
strongly with the complexity ratings reported by Garcia
et al. (1994) and McDougall et al. (1999). They also point
to the potential importance of structural variability in
judgments of icon complexity. As was previously noted,
the structural variability in an icon is probably determined
by changes in intensity that occur at the edges of an image.
Furthermore, the Quadtree analysis of image structure,
which also correlates highlywith the Garcia et al. and Mc-
Dougall et al. (1999) measures, is based on changes in
image intensity. Highly structured areas correspond to high
numbers of small, homogeneousblocks, and these blocks
collect around image boundaries. As is the case with the

A B

A B C

Figure 6. Debug icon.

Figure 7. Foreground metric.
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Perimeter and Canny measures, these boundaries are areas
in which large changes in image intensity take place.

These findingsadd support to the argument that a com-
plex image is one that has a large number of edges, and it
is these edges that slow down the perceptual process
(Hoeger, 1997; Parker et al., 1997). Hummel and Bieder-
man (1992) used contour deletion to make a similar point.
They argued that perceptual slowdown might be caused
by an inability to make a rapid semantic link between the
icon and its target. Although semantic processing is not
slow in and of itself, the physical properties that bind an
image must be processed before semantic access can
occur. This would also explainwhy differences in response
rates between complex and abstract icons do not change as
a function of learning (Arend et al., 1987; McDougall
et al., 1999). Regardless of experience, a more detailed
object will take longer to reach semantic processing, be-
cause the preprocessing of many edges is perceptuallyde-
manding.

Other Relationships
Several of the automated measures correlated signifi-

cantly with each other. In particular, the Canny analysis
correlated highly with both the Perimeter and Quadtree
metrics. What difference there is between the measures is
almost certainlydue to the slightlydifferent ways in which
Matlab implements each of the analyses. However, for
nonbinary images, such as colored icons and photographs,
a Canny analysis could be extremely useful in removing
the effects of noise from a calculation.

A preliminary analysis suggests that these automated
calculationsare reasonably robust,with all calculationsre-
maining stable when the icons are rotated. When the icons
are resized, counts of objects and object holes remain sta-
ble, but counts of Perimeter, Quadtree, and Foreground
areas will tend to vary with the degree of modification.

Complexity and Semantics
Although moderate to strong correlations were ob-

served between the automated measures of icon complex-
ity and human judgments, they were not perfect. The lack
of convergence is almost certainly due to the fact that the
image-processing algorithms we applied to the icons are
poor approximations of the more complex processes em-
bedded in human perceptual judgment. These algorithms
do not process semantic information, whereas there is
considerable psychophysical evidence that human ob-
servers cannot process the structure of an image indepen-
dently of its semantic content. Boucart and Humphreys
(1992) used a sequential form-matching task to manipu-
late semantic relations between pictures that were physi-
cally identical, physically different, semantically related,
or semantically unrelated. When the distractor icon was
semantically related, reaction times were found to be
longer than when it was unrelated. This and subsequent
studies (Boucart & Humphreys, 1995, 1997) suggest that
the processing of an image form cannot be completed
without some semantic analysis. This may also explain

why McDougall et al. (1999) found human judgments of
icon familiarity to correlate negatively with their evalua-
tions of icon complexity (rs 5 2.31, p , .001): As ratings
of icon familiarity decrease, complexity tends to increase.
Computer-based algorithms should not be so influenced,
and to determine whether this is the case, a sample of 70
icons was assembled, which consisted of all those rated as
unfamiliar (scoring ,3) in McDougall et al.’s (1999) data
set and judged to be very simple by our perimeter measure
(scoring ,400). The association between the Perimeter
measure of complexity and human judgments of familiar-
ity is close to zero (rs 5 2.05). Thus, automatedmeasures
of the visual complexity of an icon are unaffected by the
semantic analyses that human observers cannot suppress
when judging icon complexity.

Conclusion
To what extent can designers change the structural prop-

erties of icons without changing behavioral responses
to them? Decision-making aids based on the image-
processing measures reported here can significantly re-
duce the degree of speculation involved in arriving at an
estimate. In practical terms, this means that a designer can
modify any of the icons in the set publishedby McDougall
et al. (1999) and, using the Perimeter and Canny perimeter-
detection measures together with the Quadtree structural
variability measure, can accurately estimate its perceived
complexity without incurring the delays and expense as-
sociated with a new usability validation study.
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