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Factor analysis is one of the most widely used multi-
variate methods in the behavioral sciences. As one of the
factor analysis methods, maximum likelihood factor
analysis (MLFA) enables researchers to test the hypoth-
esis that the number of specified common factors is suf-
ficient. MLFA also allows the construction of confi-
dence intervals for the estimated parameters when the
multivariate normality assumption is satisfied and the
sample size is large.

Suppose that the basic model of factor analysis holds
in the population:

x = m + Lf + «, (1)

where x is a column vector of p variables, m is the mean
vector of x, f is a column vector of k (k < p) common fac-
tors, L is a p 3 k matrix of factor loadings, and « is a
vector of p unique factors. The covariance matrices of x,
f, and « are denoted respectively as S, F, and C. The
matrix C is a diagonal matrix with p diagonal elements
known as unique variances. On the basis of the assump-
tions that E(f, «) = 0, E(f) = 0, E(«) = 0, and F is an iden-
tity matrix Ik , the covariance matrix of x becomes

S = LL¢ + C. (2)

The parameters L and C in Formula 2 must be esti-
mated from a sample. Suppose that we draw a random

sample of size n from the population and that we have
also obtained the observed measures for the p variables
from the n units. We can compute the sample covariance
matrix S. Since the observed S is an unbiased estimate of
S, the remaining problem becomes to estimate L and C
with Formula 2 to fit S, which is estimated by S. In most
cases, the measurement scales of the p variables are arbi-
trary and standardized, and then S is a correlation matrix.

To restate the problem: Given S with p( p + 1)/2 known
elements, the researcher needs to estimate L and C with,
altogether, pk + p unknown elements. To determine a
unique solution for L and C within a factor analysis
model, the matrix L¢C21L is imposed arbitrarily as a di-
agonal matrix with distinctive elements on the diagonal.
Lawley (1940,1941) first applied the maximum likelihood
method to estimateL and C. Assuming that the p variables
are multivariate normally distributed, the log likelihood
function of S, as a function of the elements of L and C, is

log L = 2(n/2) [log |S| + trace (SS21)]. (3)

The efficient estimation of L and C is to maximize
the value of L. Equivalently, it can be achieved more con-
veniently to minimize the function

F(L,C) = log |S| + trace (SS21) 2 log |S| 2 p. (4)

Lawley (1940, 1941) considered an iterative numerical
procedure for minimizing the value of F, but the method
was not very successful. Since then a number of iterative
methods have been introduced for minimizing F or max-
imizing the likelihoodfunction L, including those in Em-
mett (1949), Bargmann (1957), and Lawley and Maxwell
(1963). In general, with these methods, a numerical so-
lution to the equations ¶F/¶L = 0, and ¶F/¶C = 0 has
been sought. However, most of these iterative methods
converged slowly, especially at the final steps of the iter-
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modeling. Researchersmay find this program useful in conducting Monte Carlo simulation studies to in-
vestigate the properties of multivariate methods that involve numerical optimizations.



MAXIMUM LIKELIHOOD FACTOR ANALYSIS 311

ation process. For some data sets, the proposed methods
even failed to converge; therefore, these methods were
not very satisfactory.

Jöreskog’s Numerical Solution to MLFA
Jöreskog (1966, 1967, 1977) and Jöreskog and Lawley

(1968) introduced and implemented in Fortran a method
that was completely successful in directly minimizing
the function F. In this method, it was proposed that for a
given C, L could be determined by the formula

L = C1/2 V (Q2I)1/2, (5)

where V is a p 3 k matrix with columns as the first k la-
tent vectors of the matrix C21/2 S C21/2 and Q is a k 3 k
diagonal matrix with the largest k latent roots of matrix
C21/2 S C21/2 as its diagonal elements. Thus, the prob-
lem becomes to minimize F with respect to C, instead of
with respect to both C and L. A quasi-Newton mini-
mizationmethod publishedby Fletcher and Powell (1963)
was implemented in this method to achieve the F mini-
mization process. The mathematical derivation for the
theory and the computational method were very well
presented in Lawley and Maxwell (1971).

Numerical algorithms that are different from Jöreskog’s
method have been proposed to minimize the F value to
estimate L and C within the MLFA model. Jennrich and
Robinson(1969) recommended a Newton–Raphsonalgo-
rithm, and Rubin and Thayer (1982) introduced an EM
algorithm for MLFA solutions.Fuller (1987) described an
algorithmthatwas a modificationbased on Jöreskog (1967)
and Jennrich and Robinson (1969). Fuller’s method is im-
plemented and available in SAS/STAT PROC FACTOR
with option METHOD=ML. However, since Jöreskog’s
solution is the f irst successful and the most popular
method for MLFA solutions, the program presented in
this article is based on Jöreskog’s method.

SAS/IML Implementation of Jöreskog’s Method
for MLFA

The program listings in Appendix A demonstrate the
step-by-step computational process for MLFA based on
Jöreskog’s method. As one of the procedures available in
the SAS statistical package, SAS/IML is a high-level
matrix language for programming purposes (SAS Insti-
tute, 2000). SAS/IML software includes a set of nonlin-
ear optimization subroutines for estimation of con-
strained or unconstrained parameters through iterative
processes. Specifically, the NLPQN subroutine that uses
the quasi-Newton optimization method was selected in
this program. One of the options in the NLPQN subrou-
tine (Option [4] = 4) performs the original Davidon,
Fletcher, and Powell (DFP) method to update the inverse
Hessian matrix. The DFP method performs a line search
in each iteration on the search direction with quadratic
interpolation and cubic extrapolation. This iteration
method is similar to the one originally introduced by
Jöreskog (1967). The Module “FUN” computes and re-

turns the function value F(L,C) using Formula 4, as-
suming that the unique variances (e.g., the diagonal ele-
ments of C) are known. The L matrix is calculated using
Formula 5, and the S is then fitted by L and C.

The Module “GRAD” specifies the gradient function
to compute the first-order derivative ¶F/¶C = diag [C21

(S 2 S) C21] (Jöreskog, 1967, p. 450). When this mod-
ule is not specified, the NLPQN subroutine will numer-
ically approximate the gradient vector by the finite dif-
ferences method. However, it usually requires more calls
to the function module for the iterative process to con-
verge. For intensive computational tasks, such as Monte
Carlo simulation studies, it is recommended that the gra-
dient function be specified if it is available.

The convenient starting values of the iterative process
for the unique variances can be computed from (1 2
k/(2p))(1/sii), (i = 1, 2, . . . , p), where sii is the diagonal
elements of the inverse matrix of S. Jöreskog (1963) jus-
tified that these initial values worked well in practice. In
this program, the starting values are stored in a vector x
as input argument for Modules “FUN” and “GRAD.”

The first two arguments for the NLPQN subroutine
are the returned results when the iterative process termi-
nates. The first argument, rc (return code), returns a
number indicating how the iterative process is termi-
nated. If rc > 0, the iterative process is terminated suc-
cessfully with one of the specified criteria. A return code
of rc < 0 indicates unsuccessful termination, and thus,
the results are not reliable. The second argument of the
NLPQN subroutine is a vector of length equal to the
length of the input vector x, containing the optimal val-
ues when rc > 0. In this program, the second argument,
xr, is a vector containing the estimated unique variances
when the F value is minimized. The rest of the argu-
ments are input information for the NLPQN subroutine.
The “grd=” statement specifies the gradient module.
This statement can be omitted if the gradient module is
not specified in the program. In such cases, the NLPQN
subroutine will compute the approximate gradient vector
numerically by finite difference.

The input argument con is a matrix to specify param-
eter constraints within defined boundaries. In this pro-
gram, the argument con is a 2 3 p matrix with all ele-
ments in the first row equal to 1 3 1026 and all elements
in the second row specified as missing values. The first
row defines the lower bounds, and the second row defines
the upper bounds for the p parameters. The missing val-
ues in the second row substitute the largest floating-point
values. The unique variances in this program are thus
constrained with a lower bound of 1 3 1026, to prevent
their becoming zero or negative, an improper solution
known as Heywood cases. The value 1 3 1026 is arbitrary,
but a value greater than 1 3 1026 may lead to different
estimates for the factor loadings when Heywood cases
occur. It should be clarified that although the parameters
are constrained within certain boundaries, the MLFA
model presented in this program is termed unrestricted,



312 CHEN

as compared with restricted MLFA models, because the
number of parameters is not constrained; rather, all the
parameters are free to be estimated.

One of the advantages of using MLFA is to allow the
testing of the hypothesis that the specified number of fac-
tors is sufficient for the population.When the maximum-
likelihood estimates of L and C have been determined
with F minimized, the value of F multiplied by a factor
of n 2 (2p + 5)/6 2 2k/3 is nearly distributed as c2, with
degrees of freedom = [( p 2 k)2 2 ( p + k)]/2. Jöreskog
and Lawley (1968) cautioned that this likelihood ratio
test is valid only when the sample size n is reasonably
large, with a safe rule of n > 50. To test this hypothesis
the multivariate normality assumption is required, al-
though the estimation of L and C does not require the
normality assumption.

In addition to the significance test with the approximate
c2 distribution, researchers may also use Akaike’s infor-
mation criterion (AIC) to determine the number of fac-
tors to be retained. Akaike (1987) described the applica-
tion of AIC for model selection in MLFA solutions.
When F is minimized and c2 is computed as a function
of the F value, AIC = c2 2 2 (df ). For models with dif-
ferent numbers of specified factors derived from the
same correlation matrix, the rule is that the model with
the smallest value of AIC is considered the best. The
PROC FACTOR in SAS/STAT uses the c2 without Bart-
lett’s (1951) correction, c2 = (n 2 (2p+5)/6)F, to com-
pute AIC. This program follows the same practice.

The sample correlation matrix listed in this program
was also used in Emmett (1949) and Jöreskog (1967) to
demonstrate their iterative methods for MLFA solutions.
This correlation matrix with nine variables was originally
obtained(Emmett, 1949) from 221 boys to explore the pos-
sibilityof the existence of a space factor different from the
other IQ factors, such as verbal, numerical, and memory.
The nine variables are verbal intelligence, English, me-
chanical arithmetic, arithmetic problems, a matrix test,
two nonverbal tests, and two tests of spatial ability. This
correlation matrix is known to have an acceptable proper
solution with a three-factor model. The results obtained
from this program are consistent with those presented in
Emmett (1949) and Jöreskog (1967). In order to compare
the results from this program with that using PROC
FACTOR, Appendix B presents a program, using the
correlation matrix as input, for conducting MLFA with
PROC FACTOR. The results show that the unrotated fac-
tor loadings, the communalities, the c2 test indices, and
the AIC are the same from the two programs.

The output from a SAS/IML program is flexible and
pedagogically useful. For example, the SAS/IML pro-
gram user is able to observe the computational processes
step by step for parameter estimates and test statistics
obtained with MLFA. The researcher may also compute
the newly published indices not available in PROC FAC-
TOR. The program in Appendix A provides an indica-
tion of successful iteration processing, estimated factor
loadings, unique variances, communalities, the c2 test
results, and the AIC.

Extension to Structural Equation Modeling
The SAS/IML program presented in Appendix A is an

example of using high-level matrix language with its
ready-to-use optimization subroutines to perform mod-
eling methods requiring numerical optimizations. This
approach can also be applied to other statistical methods
involving numerical optimizations, such as the widely
used structural equation modeling (SEM). Cudeck,
Klebe, and Henly (1993) introduced a SAS/IML imple-
mentation to conduct SEM with numerical approxima-
tion of matrix derivatives for the minimization process.
The use of the NLPQN subroutine can substantially re-
duce the program listings and make the program very
concise. A SAS/IML procedure using the NLPQN sub-
routine, modified from Cudeck et al.’s program, is pre-
sented in Appendix C. Cudeck et al. used the stability of
alienationmodel (Wheaton, Muthen, Alwin, & Summers,
1977) as a numerical example to illustrate their imple-
mentation. To compare the results from Cudeck and col-
leagues’ implementationand that from the program in Ap-
pendix C, the same example was used. The initial research
interest of the stability and alienation model was to deter-
mine whether social attitudes, such as alienation and so-
cial distance toward minority groups, were relatively stable
or highly volatile over time. The covariance matrix has six
variables: anomia, measured in 1967 and 1971; powerless-
ness, measured in 1967 and 1971; education; and the oc-
cupational status index. The data were collected from 932
people in rural areas in Illinois.

The results from the program in Appendix C and those
from Cudeck et al. (1993) are identical, including pa-
rameter estimates, standard errors for parameters, and
the likelihood ratio test statistics. Readers familiar with
PROC CALIS, the standard SAS procedure for SEM,
may be interested in comparing the results from the pro-
gram in Appendix C with that from PROC CALIS. Ap-
pendix D presents a program using SAS CALIS for esti-
mating the stability of alienation model. It can be seen
that the results from the program in Appendix C are
identical to the results obtained using PROC CALIS.

The subroutineNLPFDD in AppendixC is used to pro-
duce the Hessian matrix required for the computation of
standard errors for the parameters. It should be noted that
the program does not include the details, such as to check
whether the sample covariance matrix is positive definite.

Cudeck et al. (1993) presented examples to show that
this general approach of using matrix language is useful
when some models are diff icult or even impossible to
implement with most available programs. They also
pointed out that the program is useful for incorporating
the newly published methodological developments that
are not available in commercial software. On the basis of
these judgments, the program in Appendix C is likely to
find a wide range of applications for behavior research.

This SAS/IML approach using the built-in maximiza-
tion subroutines is useful when conducting Monte Carlo
studies to investigate the properties of statistical meth-
ods involvingnumerical maximization. A broad range of
statistical methods for the social and behavioral sciences
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requires numerical optimization to obtain parameter es-
timates, including covariance structure modeling, ran-
dom coefficient modeling, and latent class modeling
(Arminger, Clogg, & Sobel, 1995). Researchers do not
need to program and test their own maximization pro-
cess, a technique that typically requires special training
and skills. The program listings could be very concise, as
can be seen in the comparison of the program in Appen-
dix C with the one in Cudeck et al. (1993).

Furthermore, users of other matrix languages, such as
S-Plus, R, Gauss and Matlab, may find similar comput-
ing environments in which to implement this approach.
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APPENDIX A
/***********************************************************/ 

/*   SAS/IML Procedure for MLFA using subroutine NLPQN */

/* */

/*       n: sample size */

/*       p: number of observed variables */

/*       k: number of factors   (k < p) */

/*       s: sample covariance matrix for p variables */ 

/*   sigma: population covariance matrix for p variables */ 

/*  lambda: p ( k factor loading matrix */

/*   omega: p ( k matrix defined in Equation 5 */

/*   theta: k ( k diagonal matrix defined in Equation 5 */ 

/*     psi: diagonal matrix for unique variance */ 

/***********************************************************/

;

TITLE1 ©SAS/IML Procedure for MLFA using subroutine NLPQN©;

TITLE2 ©The example was used in Emmett (1949) and J reskog 

(1967)©;

proc iml;

reset noname nocenter;

start mlfa;
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APPENDIX A (Continued)

/*---- Objective Function Module -----------------------*/

start fun(x) global(s, k, p, xpsy, sigma, lambda, omega, f);

xpsy = diag(1/sqrt(x));

A = xpsy*s*xpsy;

omega = (eigvec(A))[,1:k];

theta = (eigval(A))[1:k]; 

lambda = diag(sqrt(x))*omega*diag(sqrt(abs(theta-1)));

sigma = lambda*t(lambda)+diag(x);

f = log(det(sigma))+trace(s*inv(sigma))-log(det(s))-p;

return(f);

finish;

/*--- Gradient Function Module -------------------------*/

start grad(x) global(s, sigma);

invpsy = inv(diag(x));

g = (vecdiag(invpsy*(sigma-s)*invpsy))Á;

return(g);

finish;

/*---Starting Values for Iteration----------------------*/

p = ncol(s);

x = (1-k/(2#p))#(1/vecdiag(inv(s)));

/*---Set up Options and Constraints---------------------*/

option = {0 0 . 4};

con = J(1,p,0.000001)//J(1,p,.);

call nlpqn(rc, xr, "fun", x, option, con) grd = "grad";

/*---Compute Likelihood Ratio Test and AIC -------------*/

chisq = (n-(2#p+5)/6-2#k/3)#f;

df =((p-k)##2-(p+k))/2;

pvalue = 1 - probchi(chisq, df);

AIC = (n - (2#p+5)/6)#f - 2#df;

psi = xrÁ;

comm = (1 - psi);

finish;

/*---- Sample Correlation Matrix -----------------------*/

s ={ 1.000 .5232 .3950 .4706 .3455 .4262 .5761 .4338 .6393,

.5232 1.000 .4792 .5060 .4181 .4619 .5469 .2829 .6445,

.3950 .4792 1.000 .3554 .2701 .2536 .4524 .2185 .5038,

.4706 .5060 .3554 1.000 .6906 .7909 .4427 .2852 .5050,

.3455 .4181 .2701 .6906 1.000 .6794 .3825 .1488 .4091,

.4262 .4619 .2536 .7909 .6794 1.000 .3721 .3138 .4721,

.5761 .5469 .4524 .4427 .3825 .3721 1.000 .3846 .6801,

.4338 .2829 .2185 .2852 .1488 .3138 .3846 1.000 .4700,

.6393 .6445 .5038 .5050 .4091 .4721 .6801 .4700 1.000};

n = 221;

/*---Specify Number of Factors and Run the Program --------*/

k = 3;

run mlfa;

/*--- print out the results -------------------------------*/
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APPENDIX A (Continued)

if rc>0 then print

©**The iterative process terminates successfully**©;

else print ©**Warning: Unsuccessful Termination**©;

print

lambda(|colname="Factor Loadings" format = 7.3|)

psi   (|colname="Unique Variance" format = 6.3|)

comm  (|colname="Communality" format=6.3|),

chisq (|colname="Chi-Square" format=10.3|)

df    (|colname="DF" format=5.0|)

pvalue(|colname="P Value" format=8.3|),

AIC   (|colname="Akaike Information Criterion"|);

quit;

/* Matrix Input Using SAS PROC FACTOR for MLFA  */

data Emmett (type=corr);

infile cards missover;

_type_ = ©corr©;

if _n_ = 1 then _type_ = ©N©;

input _name_ $ Verbal English Arith1 Arith2 Matrix NonVerb1 

NonVerb2 Space1 Space2;

cards;

n 221

Verbal    1.000  .5232 .3950 .4706 .3455 .4262 .5761 .4338 .6393

English    .5232 1.000 .4792 .5060 .4181 .4619 .5469 .2829 .6445

Arith1     .3950 .4792 1.000 .3554 .2701 .2536 .4524 .2185 .5038

Arith2     .4706 .5060 .3554 1.000 .6906 .7909 .4427 .2852 .5050

Matrix     .3455 .4181 .2701 .6906 1.000 .6794 .3825 .1488 .4091

NonVerb1   .4262 .4619 .2536 .7909 .6794 1.000 .3721 .3138 .4721

NonVerb2   .5761 .5469 .4524 .4427 .3825 .3721 1.000 .3846 .6801

Space1     .4338 .2829 .2185 .2852 .1488 .3138 .3846 1.000 .4700

Space2     .6393 .6445 .5038 .5050 .4091 .4721 .6801 .4700 1.000

;

proc factor n=3 method = ml;

run;

APPENDIX C
Title1 ©SAS/IML Implementation of Stability of Alienation Model©;

Title2 ©Cudeck, Klebe & Henly (1993)©;

proc iml;

reset noname nocenter;

start sem;

/*----Function Module--------------------------------*/

start fun (x)  global (s, sigma);

nvar=ncol(s);

ly = (1 // x(|1|) // 0 // 0) || (0 // 0 // 1 // x[2]);

lx = 1 // x(|3|);

bi = inv((1||0) // (x(|4|) || 1));

ga = x(|5:6|);

ph = x(|7|);

ps = i(2) # x(|8:9|);

td = I(2) # x(|10:11|);

te = i(4) # x(|12:15|);

te(|3,1|)=x(|16|); te(|1,3|) = x(|16|);

q1=ly * bi;

syy = q1 * (ga * ph * t(ga) + ps) * t(q1) + te;

syx = q1 * ga * ph * t(lx);

APPENDIX B
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APPENDIX C (Continued)

sxx = lx * ph * t(lx) + td;

sigma = (syy || syx) // (t(syx) || sxx);

invsig = inv(sigma);

f = log(det(sigma)) + trace(s * invsig) - log(det(s)) - nvar;

return(f);

finish;

/*---- Starting Values for Iteration ------------------*/

x = {1, 1, 5, -.6, -.6, -.2, 7, 4, 4, 3,   3, 5, 5, 5, 5, 2};

/*---- Set up Options and call the subroutines ----------*/

optn = {0 0 . 2};

call nlpqn(rc, xr, "fun", x, optn);

call nlpfdd(f, grad, hess, "fun", xr);

/*---compute information matrix and the LR test ---*/

infomat = (2 / (n-1))* inv(hess);          

se = sqrt (vecdiag (infomat)); 

chisq = (n - 1) * f;

df = ncol(s) * (ncol(s) + 1) * 0.5 - npar;

pvalue = 1 - probchi(chisq, df); 

finish;

s = { 11.834 0.000 0.000 0.000 0.000 0.000,

6.947 9.364 0.000 0.000 0.000 0.000,

6.819 5.091 12.532 0.000 0.000 0.000,

4.783 5.028 7.495 9.986 0.000 0.000,

-3.839 -3.889 -3.841 -3.625 9.610 0.000,

-2.190 -1.883 -2.175 -1.878 3.552 4.503};

s = s +t(s)-diag(s);

npar = 16; n = 932; 

run sem;

/*--- label and print out the results ------------------*/   

parlab = {"ly 2,1" "ly4,2" "lx 2,1" "  beta" " gam 1" " gam 2"

"  phi" "   ps1" "   ps2" " td 1" "  td 2" "te 1,1"

"te 2,2" "te 3,3" "te 4,4" "te 3,1" };

rowlab = {"estimate" " std err"};

par = xr//(seÁ);

print par (|colname=parlab rowname=rowlab format=8.3|);

print    "estimated covariance matrix",

sigma[format=8.3],,

"Likelihood Ratio Test Statistic",

chisq  (|colname="Chi-Square" format=10.3|)

df     (|colname="DF"         format=5.0|)

pvalue (|colname="Prob"       format=8.3|);
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APPENDIX D

TITLE "Stability of Alienation Model";                               

DATA Wheaton(TYPE=COV);                                              

_TYPE_ = ©COV©; INPUT _NAME_ $ V1-V6;                             

LABEL V1=©Anomia (1967)©  V2=©Powerlessness (1967)©              

V3=©Anomia (1971)©  V4=©Powerlessness (1971)©              

V5=©Education© V6=©Occupational Status Index©;             

Datalines;                                                            

V1 11.834 . . . . .                  

V2 6.947 9.364 . . . .                  

V3 6.819 5.091 12.532 . . .                  

V4 4.783 5.028 7.495 9.986 . .                  

V5 -3.839 -3.889 -3.841 -3.625 9.610 .                  

V6 -2.190 -1.883 -2.175 -1.878 3.552 4.503              

;                                                                     

proc calis cov data=Wheaton tech=nr edf=931 pall;                   

Lineqs                                                               

V1 = F1 + E1,                         

V2 =   ly21 F1 + E2,                         

V3 = F2 + E3,                         

V4 =   ly42 F2 + E4,                         

V5 = F3 + E5,                         

V6 =   lx21(5) F3 + E6,                         

F1 = Gam1(-.6) F3 + D1,                         

F2 = Beta(-.6) F1 + Gam2(-.2) F3 + D2;                         

Std                                                                  

E1-E6 = te1-te4 (4 * 5)  td1-td2 (2 * 3),                      

D1-D2 = Ps1-Ps2 (2 * 4.),                                      

F3    = Phi (7.) ;                                              

Cov                                                                  

E1 E3 = te31 (2);                                               

RUN;     
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