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As people gain experiencewith their surroundings, they
develop a mental representation of the environment that
allows them to make inferences about spatial relationships
that they have never directly experienced. For example,
after traveling,on different occasions, between two locations
on campus, a student may deduce that there is a short-cut
between them that he or she can take to save time. The
knowledgethat emerges as a result of transforming ground-
level egocentricperceptual experiences into a flexible rep-
resentation of global relationships in an environment is
often referred to as a cognitivemap (Downs & Stea, 1977;
Gallistel, 1990; Golledge, 1999; O’Keefe & Nadel, 1978;
see also Kuipers, 1982). Much of the current interest in
spatial cognition and environmental psychology concerns
the nature of cognitive maps. As a result, analytical tools
that allow investigators to model, describe, or illustrate the
nature of cognitive maps are extremely valuable to the
field.

One of the most widely used quantitative methods for
modeling cognitive maps is multidimensional scaling
(MDS), which, conceptually, transforms information that
is available from ground-levelexperience into more global
knowledge (Kruskal & Wish, 1978;Shepard, 1980). When
used to model spatial knowledge, MDS algorithms have
traditionally been used to transform one-dimensional in-
formation about the distances between places into a higher
dimensional metric representation—a map—of the envi-

ronment. (Although a class of models [such as principal
components analyses] that do not require distance infor-
mation can be considered as variants of MDS, these mod-
els have generally not been applied to environmental
knowledge and are not considered further in this paper.)
For example, a person’s estimates of the distances between
various cities in the United States can be submitted to an
MDS algorithm to generate a map that maximally fits the
estimates, creating a configuration of cities much like the
actual topographic layout. Nonmetric versions of MDS
can also recover a similarly accurate topographic layout
based only on the ordinal properties of people’s distance
estimates.

Although it is generally considered to be quite useful in
describing or portraying mental representations of space,
MDS has one major drawback: It relies exclusively on es-
timationsof distancesbetween locations.For most people,
estimating distances is not a well-practiced task. As a re-
sult, the accuracy of distance estimations can exhibit high
variability between people (Da Silva, Ruiz, & Marques,
1987; Fine & Kobrick, 1983; Sharrack & Hughes, 1997).
In our own experience, we have found that when experi-
mental participantsare told that they will be asked to point
and estimate distances to and from various locations,
many try to warn us about how poorly they expect to do
with their distance estimations. Yet very few people balk
similarly at making directional estimations by pointing.
Because people appear to have more confidence in judg-
ing directions than distances, we were interested in exam-
ining approaches to MDS that incorporate people’s direc-
tional knowledge. In this paper, we examine two alternative
approaches to MDS, each of which uses informationabout
directional relationships in converting a set of one-
dimensional judgments into a two-dimensionalmap. After
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describing these two scaling techniques,we will report an
experiment that illustrates their potential utility. We will
show that both of these algorithms can produce maps that
are more likely than MDS-derived maps to be selected as
representing the actual environment. From these results,
we will argue that scaling algorithms that incorporatepeo-
ple’s directionalknowledgeoffer researchers a sharper an-
alytical tool than traditional MDS does in modeling cog-
nitivemaps. We begin, though,with a brief examinationof
the role of MDS in spatial cognition research.

MDS in Spatial Cognition Research
Since its introduction (Torgerson, 1952) and early de-

velopment (Kruskal, 1964a, 1964b; Shepard, 1962a,
1962b), MDS has been a popular technique for modeling
proximity data that arise in many branches of psychology
(see, e.g., Carroll & Arabie, 1980; Shepard, Romney, &
Nerlove, 1972). Although some of these applications of
MDS have been criticized for portraying inherently non-
metric data in a metric space (Tversky, 1977; Tversky &
Gati, 1982), the use of MDS in the domain of spatial cog-
nition is probably one of the more credible applications.
This is because the space that is ultimately represented by
the individual (i.e., the actual environment) has a known
structure that closely approaches that of a metric space.
Although people’s distance estimates do not always obey
the axioms that are necessary for a metric space (Sadalla,
Burroughs,& Staplin, 1980), most investigatorsagree that
MDS is a valuable tool for interpreting and visualizingas-
pects of the latent structure inherent in a set of distance
estimations. As a result, MDS has been used extensively
in the field of spatial cognition (Allen, Siegel, & Rosinski,
1978; Brown & Broadway, 1981; Foley & Cohen, 1984;
Golledge, Rayner, & Rivizzigno, 1982; Haber, Haber,
Levin, & Hollyfield, 1993; Howard & Kerst, 1981;
Kitchin, 1996;Kosslyn, Pick, & Fariello, 1974;Lockman,
Rieser, & Pick, 1981; Regian & Yadrick, 1994). Most in-
vestigators that have used MDS to model internal spatial
representations have preferred not to make metric as-
sumptions about participants’data and have used the non-
metric version of MDS developed by Shepard (1962a,
1962b) and Kruskal (1964a, 1964b).

It is important to recognize that there are two ways in
which a scaling techniquesuch as MDS can be said to pro-
vide valid or accurate results. First, maps generatedby the
technique can accurately depict people’s mental represen-
tation of an environment. Second, such maps can accu-
rately depict the environment itself. We refer to the latter
type of accuracy as veridicality and note that, in general,
the veridicality of a map is much easier to assess than is
its psychologicalaccuracy. Several studies have examined
the veridicalityof MDS-derived maps relative to those de-
rived from other techniques (Baird, Merrill, & Tannen-
baum, 1979; Buttenfield, 1986; MacKay, 1976; Magaña,
Evans, & Romney, 1981; Richardson, 1981). Most—
althoughnot all—of these studies have concluded that the
knowledge represented in sketch maps is either more
veridical or more precise than knowledge represented
with MDS. This result is not unequivocal,though. For ex-

ample, Buttenfield (1986) compared distortions in MDS
configurations with those for sketch maps and concluded
that MDS-generated maps were more veridical (although
also more variable) depictions of the environment than
were participants’ sketch maps. Findings about the veridi-
cality of maps generatedby MDS can inform investigators
about the degree to which people’s knowledge of environ-
mental relationshipscorresponds to reality. As such, these
studies can be helpful in predicting or understanding bi-
ases and errors in performance on spatial tasks.

Determining whether a derived map accurately reflects
a person’s mental representation of an environment is a
much more challenging issue, and one that few studies
using MDS have addressed (but see Baird et al., 1979;
MacKay, 1976). In the present research, we approached
the issue of psychological accuracy in two ways. First, we
asked participants to construct an unconstrainedmap rep-
resenting the configurationof a set of familiar landmarks.
We then used this explicitly constructed map as a repre-
sentation of their cognitivemap. Such a technique is rela-
tively common in the spatial cognitionliterature (see, e.g.,
Baird et al., 1979; Huertas & Ochaita, 1992; Sherman,
Croxton,& Giovanatto,1979;Waller, 2000;Walsh, Krauss,
& Regnier, 1981). Comparisonsbetween participants’ex-
plicitly constructed maps and those derived from MDS
and other scaling techniques can inform us about the rel-
ative abilityof these techniques to represent peoples’ cog-
nitive maps. Second, we asked participants to rate the
veridicality of maps derived from MDS, as well as from
other methods. Making such ratings requires participants
to compare a stimulus map with a spatial representation
held in memory and, thus, may provide some insight into
the nature of people’s cognitive representation of an envi-
ronment. Such an approach was taken by MacKay (1976),
who examinedpeople’s knowledgeof the relative locations
of cities in the United States. In addition to showing that
hand-drawn maps were more veridical than those derived
from MDS, MacKay found that hand-drawn maps were
more likely to be rated as representingthe true configuration
of cities than were maps generated from nonmetric MDS.

MacKay (1976) explained these results by suggesting
that graphic methods, such as sketch maps, may offer in-
vestigators keener insight into the nature of cognitive
maps, because they allow expression of both distance and
directionalknowledge.The degree to which MacKay’s re-
sults apply to spatial knowledge gained as a result of nav-
igation in the environment is not clear. Certainly, though,
his suggestion that the utility of MDS is limited by its fail-
ure to account for angular relationships applies to the use
of MDS in modeling spatial data at all scales. In the next
section, we will discuss our development of tools that
allow us to examine more closely MacKay’s intuition that
MDS, by not accounting for directional relationships,
does not adequately represent the spatial knowledge con-
tained in people’s cognitive maps.

Including Directional Information in MDS
One approach to scaling directional information was

suggested in an algorithm introducedby Gordon, Jupp, and
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Byrne (1989). Their technique is similar to MDS, inas-
much as it constructs a two-dimensional map that maxi-
mally fits a set of pairwise estimates. However, unlike
MDS, this method takes pairwise estimates of directions
(i.e., the estimated degrees clockwise from north from one
location to another) as input. To illustrate their algorithm,
Gordon et al. used distance and bearing estimations from
one person to create two different maps—one based on
their technique and the other based on a distance scaling
procedure similar to nonmetric MDS. The resultant maps
for this person appeared to bequitedifferent from each other,
and the map based on angular information more closely
matched the actual configurationof locations. A more ex-
perimental approach was taken by Wender, Wagener-
Wender, and Rothkegel(1997),who adoptedGordon et al.’s
technique and showed that when data are averaged across
many participants, Gordon et al.’s algorithm—as well as
nonmetric MDS—produces veridical representations of a
recently studied map. Wender et al.’s data suggested that
MDS produces maps that are in fact more veridical than
those produced by Gordon et al.’s technique;however, this
difference was neither large nor significant. Several as-
pects of Wender et al.’s experiment may limit its applica-
bility to the questions to which the present paper is ad-
dressed. For example, Wender et al. examinedmemory for
recently studied maps. In the present study, we focused on
modeling environmental knowledge gained as a result of
extensive navigation within a known environment.

Like the algorithm suggested by Gordon et al. (1989),
our first scaling procedure (which we call ANGSCAL)
constructs a best-fitting map from a set of pairwise bear-
ing estimates. Intuitively, ANGSCAL starts with a con-
figurationof points and rearranges their locationsuntil the
difference between the interpoint directions in the config-
uration and the estimated interpoint directions is as small
as possible. More formally, given a set of interpoint bear-
ings qij (measured in degrees) that represent estimated di-
rections from the i 5 1. . . n to the j 5 1. . . n (i ¹ j ) loca-
tions, we create an n 3 2 matrix X, representing a
two-dimensional configuration of n points. Let the inter-
point bearings of X be denoted q̂ij, such that

where K 5 1 when xj1 . xi1 and K 5 3 when xj1 , xi1. The
method then finds the configuration X that minimizes

where the operator @ represents an unsigned bearing dif-
ference bounded by 180º (i.e., q1 @ q2 5 min{|q1 2
q2|,|q12(q2 1 360)|,|(q1 1 360)2q2|}). In our applica-
tions, StressA is minimized using a commercially avail-
able optimization procedure based on a quasi-Newton
minimization algorithm (Broyden, 1970; Fletcher, 1970;
Goldfarb, 1970; Shanno, 1970).

ANGSCAL is conceptually very similar to the proce-
dure proposed by Gordon et al. (1989; see also Tobler,

1996); however, instead of minimizing a measure of stress
based on the cosine of the differences between the ob-
served and the derived bearings,we optimize their mean ab-
solute deviation.We note that our stress formula and Gor-
don et al.’s stress formula are monotonically related and
correlate extremely highly (r 5 .993) with each other.
However, we feel our criterion is a more natural measure
of angulardifference and is more sensitive to smaller bear-
ing differences.

If one weakness of MDS is that it uses only distance in-
formation in deriving configural representations of spa-
tial knowledge,ANGSCAL clearly has the converse weak-
ness: It uses only directional information.Clearly, people’s
mental representations of space allow successful perfor-
mance on tasks that require judgments of either distances
or directions. It thus seems likely these mental represen-
tations code both types of information (see, e.g., Cheng,
1998, or Chieffi & Allport, 1997). Thus, a scaling proce-
dure that incorporates both kinds of information may
yield more valid representations of cognitive maps. Our
second scaling algorithm(called DANSCAL, for distance
and angular scaling) works similarly to the one described
above; however, it incorporates both distance and bearing
information into the minimization criterion. Given a set
of bearing estimates (qij) and a set of distance estimates
(dij) that represent estimated distances from the i 5 1. . . n
to the j 5 1. . . n (i ¹ j) locations, the DANSCAL algorithm
creates an n 3 2 matrix X representing a two-dimensional
configuration of n points. If the interpoint bearings of X
are denoted q̂ij (defined as in ANGSCAL) and its inter-
point distances are denoted d̂ij, such that

we find the configuration X that minimizes

As before, the @ operation signifies an unsigned bearing
difference.1 In our applicationof this technique,StressB is
minimized using the same optimization algorithm as that
used for StressA. It is instructive to note that this formula
combines distance and directional information by way of
the law of cosines. If the distance (d ) and bearing (q ) in-
formation for any pair of locations are considered as two-
dimensional vectors with magnitude d and direction q,
this formula works by computing the distancesbetween the
endpoints of all corresponding pairs of these vectors (see
Figure 1). This technique is similar in spirit to a scaling al-
gorithm proposed by Everittt and Gower (1981). Like
DANSCAL, Everitt and Gower’s technique incorporates
bearing and distance information into a to-be-minimized
stress formula. However, Everitt and Gower’s stress crite-
rion lacked a straightforward geometric interpretation
and, to our knowledge, has never been applied to data in-
volving spatial cognition.

We were interested in determining the relative veridi-
cality, precision, and preferences for maps produced by
nonmetricMDS, ANGSCAL, and DANSCAL. University
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undergraduateswere asked to make distance and direction
judgments about familiar campus locations and were also
asked to construct a map of the campus environment.
Each participant’s pointing and distance data were then
submitted to the three scaling algorithms, producing three
maps of campus. The participants rated the accuracy of
these maps, as well as the map they constructedand the ac-
tual map of campus.

METHOD

Participants
Twenty-eight students (14 men and 14 women) from the Univer-

sity of California, Santa Barbara, participated in the experiment. The
participants received either extra credit in their introductory psy-
chology class (n 5 14) or a payment of $10 (n 5 14). All the par-
ticipants reported being familiar with the campus.

Environment and Materials
The environment that was tested consisted of six locations on the

campus of the University of California in Santa Barbara. Each loca-
tion was near a prominent campus landmark (the Library, the Stu-
dent Center, the Recreation Center, two campus entrances, and a
local restaurant), and none of the locations was visible from the oth-
ers. The positions of these locations (and hence, their relative dis-
tances and directions) were determined with a Garmin GPS 12XL
global positioning system, accurate to at least 15 m.

The participants were tested in the laboratory, in computer-
generated simulations of each of the six locations. These simulations
were created from 360º panoramic photographs of each location that
were applied to the inside surface of a computer-modeled cylinder.
The user’s viewpoint was placed in the center of the cylinder. The
participants viewed these panoramas using a V8 head-mounted dis-
play (HMD) from Virtual Research. The display provided 640 3
480 pixel resolution with a 38º horizontal field of view. Mounted on
the HMD was an inertially based orientation tracker (Intersense
Model IS-300). The tracker was used to update the orientation of the
visual image as the participant moved his or her head, as well as to
record the facing directions in the pointing task described below. The

computer rendered these scenes using a Pentium III chipset and an
NVIDIA GeForce2 MX graphics card, updating the graphics and
display at 72 Hz. Randomization and presentation of the stimuli, as
well as the collection of pointing and distance estimations, were con-
trolled through a scripting facility in the Python programming lan-
guage, supplemented with a utility module written by Andrew Beall
specifically for virtual environment applications. More information
about the validity of this assessment method is available from
Waller, Beall, and Loomis (2002).

Procedure
The participants were run individually through the following four

phases of the experiment: (1) assessment of the participant’s famil-
iarity with the to-be-tested locations, (2) pointing and distance esti-
mations, (3) map construction, and (4) rating of the maps produced
by different algorithms.

Assessment of the participants’ familiarity with the locations began
by showing them the six panoramas in a fixed order in the HMD.
When the participant identified each location (which never failed to
happen), the experimenter gave it a short memorable name that was
used as a label for the rest of the experiment.

The participants then were asked to point and estimate distances
to and from all pairs of these locations. For both distance and direc-
tion estimates, the simulated testing location was perceptually avail-
able in the HMD to the participants. A distance judgment always fol-
lowed each direction estimation. Five of these direction/distance
pairs were given in six blocks, one for each location, resulting in 30
direction and distance estimates. For direction estimations, the par-
ticipants were shown each appropriate testing location in the HMD
and then were asked to face each of the other locations (targets).
While direction estimates were provided, a red arrow in the center
of the screen was overlaid on the depicted testing location to assist
the participants with lining up their estimated direction. After point-
ing to each target, the participants were asked to estimate verbally
the straight (Euclidean) distance to the target. The participants were
instructed that they could use any unit of distance that they wanted
and that it was more important for their distance estimates to main-
tain relative (rather than absolute) accuracy. As a reference, the par-
ticipants were reminded that meters and yards were of similar length
and that there were 100 yards in a football field. The presentation
order of the six simulated locations, as well as each of the five point-
ing locations for each one, was randomized for each participant. The
participants’ verbal distance estimates (entered by the experimenter)
and their motoric bearing estimates (i.e., their facing directions)
were automatically written to an external computer f ile for later
analysis.

Next, the participants were asked to construct a map of the envi-
ronment from memory by placing small cardboard pieces repre-
senting the six locations on a blank sheet of grid paper. The x- and
y- coordinates of the participants’ map placements were recorded
for later analysis.

The participants then waited for about 5 min while the map-
generating routine ran. This routine created a set of nine maps, each
consisting of six labeled points that represented a different configu-
ration of the six campus landmarks. It then printed each one on a
different sheet of paper. The configuration on each of these maps
was rigidly rotated and scaled with (an affine version of) bidimen-
sional regression (Tobler, 1994; see also Kitchin, 1996) to maxi-
mally fit the orientation of the participant’s constructed map. Bidi-
mensional regression is a statistical technique that determines the
amounts by which a two-dimensional configuration must be trans-
lated, rotated, and scaled so that it can be superimposed on another
configuration with as little difference as possible. This procedure
yields estimates of these transformations, as well as a measure of
how similarly shaped the two configurations are. This bidimensional
correlation r (BDr) is very analogous to, and can be interpreted as,
a typical bivariate correlation coefficient (Gatrell, 1983; Nakaya,
1997; Tobler, 1976; Wakabayashi, 1994). The first three maps

Figure 1. The geometric interpretation of the formula for DAN-
SCAL. The distance (d) and direction (u) between two locations
that are judged by the participant are represented as the solid
vector. The distance (d̂) and direction (û) in the derived configu-
ration are represented as a dashed vector. The minimization cri-
terion for this pair of vectors is the distance between their end-
points—the dotted line.
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shown to the participants were the same for all the participants and
were used to illustrate implicitly the possible range of distortions
that subsequent maps could be expected to contain. The first map
was a fairly accurate map of the campus (BDr with the actual con-
figuration 5 .96). This was followed by one that was more distorted
(BDr 5 .82), followed by one that was very distorted (BDr 5 .29).
The next f ive maps contained those generated from nonmetric
MDS,2 ANGSCAL, and DANSCAL, as well as the map portraying
their map placements. (The fifth map in this set was derived from an-

other scaling algorithm not reported in this paper.) These five maps
were presented in a different random order for each participant. The
computer checked the MDS configuration to verify that it was not a
reflected version of the participant’s map. If it was, the MDS map
was reflected before it was fit to the participant’s map placement
data. The ninth map shown to the participants was the actual map of
the campus locations. The participants were instructed to study each
map separately and to rate each one on a scale from 1 to 7, where 1
meant that it was completely distorted and 7 meant that it was per-
fectly accurate . The participants were not told that the first three
maps were serving as anchors for their rating scale, nor were they
told that any of the maps were their own or the actual map. The par-
ticipants’ ratings for the MDS, ANGSCAL, DANSCAL,map place-
ment, and actual maps were recorded for later analysis.

RESULTS

To verify that the ANGSCAL and DANSCAL algo-
rithms had converged on global minima, for both proce-
dures, each participant’s data were later rerun from an-
other set of starting values and were allowed to converge
again to a solution.These results were then compared with
those that had been shown to the participant. Data from 8
participantswere eliminatedbecause the ANGSCAL map
that they were shown either had not convergedor had con-
verged on what was later determined to be a local mini-
mum. For these participants, when ANGSCAL was al-
lowed to converge on a global minimum, it produced a
map that was perceptibly different (BDr , .99) from the
one they were shown. For the remaining 20 participants
(10 men and 10 women), the ANGSCAL and DANSCAL
procedures run during the experiment either were later

Figure 2. Mean ranking (and standard errors) for the ratings
of maps produced by three scaling techniques, the map place-
ments, and the actual configuration.

Map placement
MDS

DANSCAL

ANGSCAL

Actual location

F

D
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B
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E

N

0 50 100 m

Figure 3. Five of the configurations generated for and rated by 1 participant. For this figure, the
five configurations were combined using Procrustes superimposition (described in the text). Cor-
responding locations on each map were then connected to the actual location. The participants rated
the accuracy of each map separately.
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judged to have converged on a global minimum or else
had converged to a solution that resulted in a map that was
extremely similar (BDr . .99) to that implied by the
globalminimum found later. The remaining analyses were
conducted only on this set of 20 participants.

For each participant, the ratings given for the MDS,
ANGSCAL, DANSCAL, map placement, and actual con-
figurations were ranked (assigning mean ranks to ties).
Mean ranks for the ratings of the different configurations
are shown in Figure 2. In general, MDS was rated as being
the most distorted configuration (mean rank 5 2.20,
SD 5 1.22), and the participants’ map placements were
rated as being the most accurate (mean rank 5 4.45, SD 5
1.71). Maps produced by ANGSCAL (mean rank 5 4.20,
SD 5 1.28) were rated as being slightly less accurate than
those produced in the map placement task. The actual con-
figuration of locations (mean rank 5 3.55, SD 5 1.66)
and configurations based on DANSCAL (mean rank 5
3.20, SD 5 1.40) were rated similarly—both slightly
lower than ANGSCAL. These five rated maps from 1 rep-
resentative participant are shown in Figure 3. This partic-
ipant’s distance and bearing estimates, from which these
maps were derived, are presented in Tables 1 and 2.

Differences between the rankings of the ratings for
these configurations were tested in a 2 (gender) 3 5 (con-
figuration) analysis of variance (ANOVA), with the latter
factor represented with repeated measures.3 This ANOVA
revealed a significant omnibus effect of configuration
[F(4,15) 5 7.91, p 5 .001]. Planned pairwise contrasts re-
vealed that most of this effect was due to the relatively low
ranking of MDS. MDS was ranked significantly lower
than DANSCAL [t(18) 5 2.11, p 5 .049], ANGSCAL
[t(18) 5 5.88, p , .001], map placements [t(18) 5 4.26,
p , .001], and the actual configuration [t(18) 5 2.77, p 5
.013]. Pairwise contrasts between the mean rankings for
the non-MDS configurations were not significant. Gen-
der did not significantly affect the participants’ ratings
[F(1,18) 5 0.19, p 5 .667], nor did it interact with the ef-
fect of configuration [F(4,15) 5 0.28, p 5 .886].

To examine relationships among the five maps illus-
trated in Figure 3, we computed for each participant a set
of bidimensional correlations that represented the simi-
larity between all possible pairs of the five configurations.
Mean bidimensional correlations between the configura-
tions derived from the different methods appear in Table 3.
In general, the maps derived from all three scaling proce-
dures were more similar to the actual configuration than

they were to people’s map placements. Indeed, the maps
derived from ANGSCAL were extremely similar to the
actual layout (mean BDr 5 .96). This reflects the fact that,
on average, the participants’ bearing estimations were
quite accurate. Mean signed bearing error ranged from
–8.97º to 4.97º across all participantsand averaged –0.76º
(SD 5 3.71º). Maps derived from MDS were less similar
to the actual layout (mean BDr 5 .83) than those derived
from ANGSCAL or DANSCAL.

Relationshipsamong the various configurationsare de-
picted in Figure 4. To create Figure 4, the x- and y-
coordinates of the derived configuration for each method
were averaged with Procustes superimposition(Dryden &
Mardia, 1998). Procrustes superimposition has the effect
of translating, rotating, and scaling (dilating) each partic-
ipant’s configuration optimally to derive an average con-
figuration across all participants. Each participant’s data,
relative to this average configuration, form a point cloud
around each location. Standard ellipses summarize these
point clouds by enclosing approximately 40% of the ob-
servations (see Batschelet, 1981). Most notable in Figure 4
are the relativelysmall ellipsesassociatedwith ANGSCAL.
In addition to providing the most veridical configurations
(see Table 3), ANGSCAL also appears to have less vari-
ability than the other methods.

DISCUSSION

In this experiment, the participants rated the veridical-
ity of maps derived from three different methods of scal-
ing pairwise estimations of directions and distances. The
participants’ ratings were directly related to the degree to
which the scaling procedure incorporated directional in-
formation.Maps thatwere derivedexclusivelyfrom distance
information (using nonmetric MDS) were consistently
rated as being more distorted than those derived exclu-
sively from directional information (using ANGSCAL).
The technique incorporating both distance and direction
information (DANSCAL) was rated between these two
extremes. Maps derived from ANGSCAL were rated as
being nearly as accurate as maps that the participants had
recently constructed. Part of this is probably because
ANGSCAL maps were, in fact, extremely veridical de-
pictions of the environment—much more accurate than
those derived from other techniques. We will discuss the

Table 1
Interpoint Distance Estimates (From Row to Column) Given

by the Participant Whose Data are Illustrated in Figure 3

A B C D E F

A 400 400 200 120 90
B 250 75 180 225 200
C 300 90 400 160 410
D 160 240 300 320 110
E 175 200 80 420 175
F 75 300 400 100 275

Table 2
Interpoint Bearing Estimates (Degrees Clockwise

From North From Row to Column) Given by the Participant
Whose Data are Illustrated in Figure 3

A B C D E F

A 164 135 200 90 247
B 341 68 273 59 308
C 307 214 252 55 279
D 46 85 75 62 12
E 261 220 225 253 279
F 69 93 84 189 72
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psychological implications of these findings below, after
a brief discussion of several caveats to our conclusions.

One possible reason that the inclusionof directional in-
formation yielded maps that were (and were perceived to
be) more veridical than those using distance information
involves the method we used to assess directional knowl-
edge. In the present study, we measured the participants’
directional knowledge while they were immersed in a
photo-realistic computer simulation of each location. We
have recently shown in another experiment that this as-
sessment techniqueproduces less measurement error than
do those based on more traditional assessment techniques,
such as paper-and-pencil methods (Waller et al., 2002).
By simulating the testing environment, we relieved the
participantsof the need to imagine these locationsand en-
abled them to use landmarks and local directional cues
(such as streets and walkways) to inform their answers. As
a result, the participants’ answers were probably very
close to those they would have supplied if they had been
tested at the actual locationsand, in this sense, were prob-
ably more valid indicators of their directional knowledge

(see Waller et al., 2002). On the other hand, the degree to
which our assessment method aided the participants in
making distance judgments seems less apparent. Unlike
the motoric responses we obtained indicating directions,
distance estimations were produced verbally and were
thus likely to have been influenced by higher level cogni-
tive strategies or heuristics. It is possible that other meth-
ods of eliciting distance estimations (see Montello, 1991)
would have produced results that were more favorable to
MDS. This is clearly a question for further investigation.

Another factor that may limit the scope of our conclu-
sions involves the relatively small stimulus set size in the
present experiment. By testing only six locations, we may
have adversely impacted the effectiveness of MDS in rep-
resenting the environment adequately. It is generally
thought that two-dimensional MDS solutions should be
derived from stimulus sets with eight or more items in
order to avoid spurious solutions (Kruskal & Wish, 1978;
Schiffman, Reynolds, & Young, 1981). Importantly, how-
ever, in the present case, because we did not assume that
distance estimates would be symmetrical, the participants

Table 3
Mean Bidiminesional Correlations Between Configurations

Produced by Three Scaling Methods, the Map Placement Task,
and the Actual Configuration

MDS DANSCAL ANGSCAL Placement

DANSCAL .84
ANGSCAL .83 .92
Placement .81 .87 .90
Actual .83 .90 .96 .89

N

0 50 100 m

Map placement
MDS
DANSCAL
ANGSCAL
Actual location

Figure 4. Standard ellipses (see Batschelet, 1981) for estimated locations derived from different
map-making techniques. For each method, the x- and y-coordinates of the derived configuration
were averaged with Procrustes superimposition (Dryden & Mardia, 1998).
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supplied twice as many pairwise estimates as are used in
most studies with MDS. Thus, our MDS procedure had
relatively high degrees of freedom (30) from which to
compute its 12 coordinates. It is generally believed that
the use of MDS is warranted when the ratio of degrees of
freedom to estimated parameters exceeds two (Kruskal &
Wish, 1978). In any event, it is important to note that in the
present experiment, ANGSCAL and DANSCAL were
both based on the same relatively small stimulus set size,
yet both reached more accurate and more preferred solu-
tions than did MDS. Our results suggest, then, that from a
practical perspective, the reliance of MDS on larger stim-
ulus set sizes is perhaps another of its weaknesses. Of
course, it is important, from a theoretical perspective, to
understand the degree to which MDS models based solely
on distance information are able to represent people’s
knowledge of environmental relationships. This, too, re-
mains an issue for more research.

In our study, scaling methods based on directional
knowledgewere consistentlyrated as yieldingmore veridi-
cal maps than were those based on distance information.
Although it would be naive to conclude from this finding
that angular information is more prominently represented
in people’s mental representation of an environment, our
findingsclearly imply that people’s knowledgeof directions
in a familiar environment contains information that corre-
sponds more closely to performance on tasks that require
the adoption of a bird’s-eye perspective than does knowl-
edgeof distances.To the extent that eithermap construction
tasks or veridicality ratings of spatial configurations mea-
sure cognitivemaps, ANGSCAL and DANSCAL appear to
offer more validmeasures of internal spatial representations.

Another important finding concerns the absolute and
relative accuracy of maps produced by the different scal-
ing methods. Averaged over all of their estimations, the
directional knowledge of our participants was quite accu-
rate and showed no evidence for systematic biases. This
relatively error-free directional knowledge resulted in
ANGSCAL maps that were exceptionallyaccurate depic-
tions of the environment—more accurate than the partic-
ipants’ map placements.The difference in veridicalitybe-
tween maps that were constructed and those that were
derived from ANGSCAL suggests that the two configu-
rations either were based on different internal representa-
tions or resulted from different task-related mental pro-
cesses. In future research,we hope to distinguishempirically
between these two alternatives. By employing scaling
techniques that incorporate people’s relatively accurate di-
rectional knowledge, we feel that we have a sharper ana-
lytic tool for studying mental representations of space
than has heretofore been available.

REFERENCES

Allen, G. L., Siegel,A. W., & Rosinski, R. R. (1978).The role of per-
ceptual context in structuring spatial knowledge. Journal of Experi-
mental Psychology: Human Learning & Memory, 4, 617-630.

Baird, J. C., Merrill, A. A., & Tannenbaum, J. (1979).Studies of the
cognitive representation of spatial relations: II. A familiar environ-
ment. Journal of Experimental Psychology: General, 108, 92-98.

Batschelet, E. (1981). Circular statistics in biology. London: Acade-
mic Press.

Brown, M. A., & Broadway, M. J. (1981). The cognitivemaps of ado-
lescents: Confusion about inter-town distances. Professional Geogra-
pher, 33, 315-325.

Broyden, C. G. (1970).The convergence of a class of double-rankmin-
imization algorithms. Journal of the Institute of Mathematics & Its
Applications, 6, 76-90.

Buttenfield, B. P. (1986). Comparing distortion on sketch maps and
MDS configurations. Professional Geographer, 38, 238-246.

Carroll, J. D., & Arabie, P. (1980). Multidimensionalscaling. Annual
Review of Psychology, 31, 607-649.

Cheng, K. (1998). Distances and directions are computed separately by
honeybees in landmark-based search. Animal Learning & Behavior,
26, 455-468.

Chieffi, S., & Allport, D. (1997). Independent coding of target dis-
tance and direction in visuo-spatial working memory. Psychological
Research, 60, 244-250.

Da Silva, J. A., Ruiz, E. M., & Marques, S. L. (1987). Individual dif-
ferences in magnitude estimates of inferred, remembered, and per-
ceived geographical distance. Bulletin of the Psychonomic Society, 25,
240-243.

Downs, R. M., & Stea, D. (1977). Maps in minds: Reflections on cog-
nitive mapping. London: Harper & Row.

Dryden, I. L., & Mardia, K. V. (1998). Statistical shape analysis.
Chichester, U.K.: Wiley.

Everitt, B. S., & Gower, J. C. (1981). Plotting the optimum positions
of an array of cortical electrical phosphenes. In V. Barnett (Ed.), In-
terpreting multivariate data (pp. 279-287). Chichester, U.K.: Wiley.

Fine, B. J., & Kobrick, J. L. (1983). Individual differences in distance
estimation: Comparison of judgments in the field with those from pro-
jected slides of the same scenes. Perceptual & Motor Skills, 57, 3-14.

Fletcher, R. (1970). A new approach to variable metric algorithms.
Computer Journal, 13, 317-322.

Foley, J. E., & Cohen, A. J. (1984). Working mental representations of
the environment. Environment & Behavior, 16, 713-729.

Gallistel, C. R. (1990). The organization of learning. Cambridge,
MA: MIT Press.

Gatrell, A. (1983). Distance and space: A geographical perspective.
Oxford: Oxford University Press, Clarendon Press.

Goldfarb, D. (1970). A family of variable metric updates derived by
variational means. Mathematics of Computation, 24, 23-26.

Golledge, R. G. (Ed.) (1999). Wayfinding behavior: Cognitive map-
ping and other spatial processes. Baltimore: Johns Hopkins Univer-
sity Press.

Golledge,R. G., Rayner, J. N., & Rivizzigno,V. L. (1982). Compar-
ing objective and cognitive representations of environmental cues. In
R. G. Golledge & J. N. Raynor (Eds.), Proximity and preference: Prob-
lems in the multidimensional analysis of large data sets. (pp. 233-
266). Minneapolis: University of Minnesota Press.

Gordon, A. D., Jupp, P. E., & Byrne, R. W. (1989). The construction
and assessment of mental maps. British Journal of Mathematical &
Statistical Psychology, 42, 169-182.

Haber, R. N., Haber, L. R., Levin, C. A., & Hollyfield, R. (1993).
Properties of spatial representations: Data from sighted and blind sub-
jects. Perception & Psychophysics, 54, 1-13.

Howard, J. H., & Kerst, S. M. (1981). Memory and perception of car-
tographic information for familiar and unfamiliar environments.
Human Factors, 23, 495-504.

Huertas, J. A., & Ochaita, E. (1992). The externalization of spatial
representation by blind persons. Journal of Visual Impairment &
Blindness, 86, 398-402.

Kitchin, R. M. (1996). Methodological convergence in cognitive map-
ping research: Investigating configurational knowledge. Journal of
Environmental Psychology, 16, 163-185.

Kosslyn, S. M., Pick, H. L., & Fariello,G. R. (1974). Cognitivemaps
in children and men. Child Development, 45, 707-716.

Kruskal, J. B. (1964a).Multidimensionalscaling: A numerical method.
Psychometrica, 29, 115-129.

Kruskal, J. B. (1964b). Multidimensional scaling by optimizing good-
ness of fit to a nonmetric hypothesis. Psychometrica, 29, 1-27.



MODELING DIRECTIONAL KNOWLEDGE 293

Kruskal, J. B., & Wish, M. (1978). Multidimensionalscaling. Beverly
Hills, CA: Sage.

Kuipers, B. (1982). The “map in the head” metaphor. Environment &
Behavior, 14, 202-220.

Lockman, J. J., Rieser, J. J., & Pick, H. L. (1981). Assessing blind trav-
elers’ knowledge of spatial layout. Journal of Visual Impairment &
Blindness, 75, 321-326.

MacKay, D. B. (1976). The effect of spatial stimuli on the estimation of
cognitive maps. Geographical Analysis, 8, 439-452.

Magaña, J. R., Evans, G. W., & Romney, A. K. (1981). Scaling tech-
niques in the analysis of environmental cognition data. Professional
Geographer, 33, 294-301.

Montello,D. R. (1991). The measurement of cognitivedistance: Meth-
ods and construct validity. Journal of Environmental Psychology, 11,
101-122.

Nakaya, T. (1997). Statistical inferences in bidimensional regression
models. Geographical Analysis, 29, 169-186.

O’Keefe, J., & Nadel, L. (1978). The hippocampusas a cognitive map.
Oxford: Oxford University Press, Clarendon Press.

Regian, J. W., & Yadrick, R. M. (1994).Assessment of configurational
knowledge of naturally- and artif icially-acquired large-scale space.
Journal of Environmental Psychology, 14, 211-223.

Richardson, G. D. (1981). Comparing two cognitivemapping method-
ologies. Area, 13, 325-331.

Sadalla,E. K., Burroughs, W. J., & Staplin, L. J. (1980). Reference
points in spatial cognition. Journal of Experimental Psychology:
Human Learning & Memory, 6, 516-528.

Schiffman, S. S., Reynolds, M. L., & Young, F. W. (1981). Introduc-
tion to multidimensional scaling. New York: Academic Press.

Shanno, D. F. (1970).Conditioningof quasi-Newton methods for func-
tion minimization. Mathematics of Computation, 24, 647-656.

Sharrack, B., & Hughes, R. A. C. (1997). Reliability of distance esti-
mation by doctors and patients: Cross sectional study. British Medical
Journal, 315, 1652-1654.

Shepard, R. N. (1962a). The analysis of proximities: Multidimensional
scaling with an unknowndistance function: I. Psychometrika, 27, 125-
140.

Shepard, R. N. (1962b).The analysis of proximities: Multidimensional
scaling with an unknown distance function: II. Psychometrika, 27,
219-246.

Shepard, R. N. (1980).Multidimensionalscaling, tree-fitting, and clus-
tering. Science, 210, 390-398.

Shepard, R. N., Romney, A. K., & Nerlove,S. B. (1972). Multidimen-
sionalscaling: Theoryandapplicationsin the behavioral science: Vol. 2.
Applications. New York: Seminar Press.

Sherman, R. C., Croxton, J., & Giovanatto, J. (1979). Investigating
cognitive representations of spatial relationships. Environment & Be-
havior, 11, 209-226.

Tobler,W. (1976). The geometry of mental maps. In R. G. Golledge &
G. Rushton (Eds.), Spatial choice and spatial behavior: Geographic
essays on the analysis of preferences and perceptions (pp. 69-81).
Columbus: Ohio State University Press.

Tobler, W. (1994). Bidimensional regression. Geographical Analysis,
26, 187-212.

Tobler,W. (1996). A graphical introduction to survey adjustment. Car-
tographica, 33, 33-42.

Torgerson, W. S. (1952). Multidimensional scaling: I. Theory and
method. Psychometrika, 17, 401-419.

Tversky, A. (1977). Features of similarity. Psychological Review, 84,
327-352.

Tversky, A., & Gati, I. (1982). Similarity, separability, and the triangle
inequality. Psychological Review, 89, 123-154.

Wakabayashi,Y. (1994)Spatial analysis of cognitive maps. Geograph-
ical Reports of Tokyo Metropolitan University, 29, 57-102.

Waller, D. (2000). Individual differences in spatial learning from
computer-simulated environments. Journal of Experimental Psychol-
ogy: Applied, 6, 307-321.

Waller,D., Beall, A. C., & Loomis, J. M. (2002). Using virtual envi-
ronments to assess directional knowledge. Manuscript submitted for
publication.

Walsh, D. A., Krauss, I. K., & Regnier, V. A. (1981). Spatial ability,
environmental knowledge, and environmental use: The elderly. In
L. Liben, A. Patterson, & N. Newcombe (Eds.), Spatialrepresentation
andbehavioracross the life span: Theoryandapplication(pp. 321-357).
New York: Academic Press.

Wender,K. F., Wagener-Wender,M., & Rothkegel,R. (1997).Mea-
sures of spatial memory and routes of learning. Psychological Re-
search, 59, 269-278.

NOTES

1. Note that as defined, this measure of stress is not invariant over
scale transformations. If comparisons between stress values among par-
ticipants who are judging the same environment are desired, one must
first standardize the participants’ distance estimates, using, for example,
for each participant, predicted values from a regression of the distance
estimations onto the actual values.

2. We thank Mark Steyvers at the University of California, Irvine, for
making this code available.

3. Our results and conclusions do not change when the data are ana-
lyzed with multiple nonparametric tests (as the ranked nature of the data
may more appropriately warrant). We report the results of ANOVA mod-
els because they allow us to test contrasts in a factorial design.
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