
Behavior Research Methods, Instruments, & Computers
2003, 35 (2), 251-254

The personal computer and the Internet have become
necessary tools for research and scholarship in psychol-
ogy, and almost all students develop basic competence in
the use of software applicationsfor research. Most do not,
however, learn to create their own computing solutions. In
this paper, I describe a course developedespecially for grad-
uate and advanced undergraduate students in psychology,
Computingfor BehavioralScientists,which relies on open-
source software to teach basic programming and Web de-
velopment skills that can be applied to psychological re-
search. I will describe the rationale and content of the
course, the specific software used, and the advantages of
relying on open-source solutions rather than commercial
software for such a course.

Why teach basic programming skills to psychologystu-
dents? In certain areas of psychological research (such as
computational modeling), students typically develop ex-
tensive programming abilities, but most of our students
could instead be described as nonprogrammers who are
competent users of basic computer applications.Although
students can benefit from being taught to use existing re-
search software (see, e.g., Goolkasian, 1997), the intro-
duction of students to computer programming in the con-
text of research has additional potential benefits. First,
there is a need for psychological software more special-
ized than what is available commercially, as well as for re-
searchers to be able to develop their own (Beagley, 2001).
If students understand the basics of programming, they
may have better insight into the limitationsof existing soft-
ware, and they may contribute to the developmentof better
research software in the future. Second, basic program-

ming skills can give students more options for accom-
plishing their research objectives. Third, even when a re-
searcher chooses to rely on available software packages or
professional programmers for research software, a basic
working knowledge of programming and Web develop-
ment can make it easier to evaluate and choose among pos-
sible solutions. Finally, coding their own solutions to a
problem can allow students to develop general problem-
solving skills and confidence in their ability to learn new
computer-relatedskills in the future. The educationalben-
efits to students may, in fact, exceed the value of the par-
ticular applications they might develop.

The course is, therefore, aimed at advanced undergrad-
uate or beginning graduate students who, though com-
puter literate, are nonprogrammers or only novice pro-
grammers. The idea of teaching psychology students to
use the Internet for research is not unique (see, e.g., Birn-
baum, 2000, 2001), nor is this the first course designed to
teach programming in the context of psychological re-
search (see, e.g., Sargent, 1996). A distinguishingcharac-
teristic of the course described here, however, is the use of
open-source software. With the development of the open-
source model for software development, teaching pro-
gramming to psychology students may be more useful
than ever, because the open-source model provides a
mechanism for the entire research community to benefit
from the skills that students develop.

Philosophy and Learning Goals of the Course
The two primary goals of the course are for students to

develop problem-solving strategies that can be applied to
a variety of computing tasks, and confidence in their abil-
ities to learn new skills that they might need for specific
projects. The learning goals for specific skills and content
are secondary to these primary learning objectives.

The pedagogical strategy is to immediately reinforce
students’ efforts by having them create functioning Web
pages and programs as soon as possible. Students are en-
couraged to experiment and “muck around with things” to
find solutions to problems. In this way, the course empha-

251 Copyright 2003 Psychonomic Society, Inc.

The author thanks Ching-Fan Sheu for his advice on developing the
course described in this paper, and for helpful comments on an earlier
draft of the manuscript. He also thanks Jonathan Vaughan, Richard
Lehman, and an anonymous reviewer for their valuable comments on
previous versions of the paper. Correspondence concerning this article
should be addressed to D. Allbritton, DePaul University, Department of
Psychology, 2219N. Kenmore Ave., Chicago, IL 60614(e-mail: dallbrit@
depaul.edu).

Using open-source solutions to teach computing
skills for student research

DAVID W. ALLBRITTON
DePaul University, Chicago, Illinois

A course that relies on open-source software for teaching introductory computer programming and
Web development to psychology graduate and advanced undergraduate students is described. The ra-
tionale, content, learning goals and outcomes of the course are described, along with the specific soft-
ware used. The advantages of relying on open-source solutions rather than commercial software for
implementing such a course are discussed.



252 ALLBRITTON

sizes that there are multiple paths through the problem
space for most computing tasks. Studentsare encouraged to
make use of man pages and Internet search engines to get
ideas for solving particular problems, in order to get into
the habit of finding answers and tools on their own rather
than expecting the instructor to provide a step-by-step
recipe. Weekly assignments typicallyprovidestudentswith
exemplars of Web pages or programs that they then have to
modify to fit a particularpurpose,demonstratinga problem-
solving strategy (identify relevant exemplars of solutions
to similar problems and modify them to fit the current task)
that students are also encouraged to use in their projects.

The specific technical skills taught in the course are:

1. The use of basic Unix commands.

2. Creating, debugging, and validating XHTML
markup to create Web applications

3. Basic programming concepts and methods in
JavaScript

4. The use of Perl and PHP for server-side program
ming in Web applications

5. Basic database creation and manipulation, and
databases in Web applications

Course Structure and Learning Activities
Students create working examples for each course topic

and link them to a home page on the course server. The
central focus of the course is the final project, a Web-based
application that each student develops, using skills taught
in the course as well as skills identified and developed on
the student’s own.

The textbook is Dietel, Dietel, and Nieto’s (2002) In-
ternet & World Wide Web: How to Program, a useful ref-
erence for Web development as well as (in the chapters on
JavaScript) a good introduction to basic programming
concepts. Although we have used no other texts in this
course, additional references that might be useful include
texts on Unix/Linux (Siever, Spainhour, Hekman, & Fig-
gins, 2000;Welsh,Dalheimer, & Kaufman, 1999),XHTML
(Graham, 2000), JavaScript (Flanagan, 1998), Perl (Die-
tel, Dietel, Nieto, & McPhie, 2001; Schwartz & Phoenix,
2001;Wall, Christiansen,& Orwant, 2000), MySQL data-
bases (Lane & Williams, 2002; Reese, Yarger, & King,
2002), and PHP (Lerdorf & Tatroe, 2002).

The students use Windows workstations to access the
course server via Web browsers and telnet. Each weekly
3-h class session consists of several cycles of instruction
and practice, with the instructor introducing a topic and
providing a demonstration and students then working
through one or more example problems.

Unix commands and utilities are first used to introduce
the students to a modular and analytic problem-solving
style. The students learn, for example, to use a sequence
of Unix commands connected with pipes to count word
occurrences within a text file—a technique that can be
used to create word-frequency norms for a specialized do-
main not adequately characterized by general-purpose
norms (e.g., KuÏcera & Francis, 1967).

XHTML and JavaScript are the core topics used to
teach the students basic programming concepts and skills;
these serve as a foundation for the rest of the course. The
students learn to create Web pages with the vi and pico
text editors, the free text-based HTML-Kit editor (www.
chami.com/html-kit), or the open-sourcegraphicalAmaya
editor (www.w3.org/Amaya).

JavaScript is used to teach basic programming con-
cepts. Its relatively simple data structures and syntax
make it relatively easy to learn, and being able to imme-
diately see the results of their programming efforts on a
Web page reinforces students’ efforts. Class activities in-
clude creating a simple XHTML survey or experiment
using JavaScript. Some server-side technologies are also
introduced briefly as tools for implementing Web-based
experiments, including databases and server-side script-
ing with Perl and PHP.

Although the wide range of topics limits each to only
partial coverage, we have chosen this strategy for peda-
gogical reasons. We hoped that the experience of devel-
oping skills on their own would give students confidence
in their ability to undertake new tasks in the future.

Course Implementation Using
Open-Source Software

A discarded Pentium desktop was reconfigured for use
as the course server with RedHat Linux 7.1 (www.redhat.
com) as the operating system. The operating system and
all software used on the server are open-source, freely
available over the Internet as both source code and (in
most cases) precompiled binaries. Each student is given
an account on the server that he/she can access via ftp, tel-
net, or ssh. Because of a security problem, the server was
later reinstalled and upgraded to RedHat 7.2, and access
via telnet and ftp was restricted to campus locations. The
Apache Web server (Apache 1.3.22, www.apache.org)
was configured to allow each student to use CGI pro-
grams, server-side includes, and .htaccess files to restrict
access to Web pages. Perl 5.6 (www.perl.com) was in-
stalled for CGI programming, along with the Apache
module for running perl scripts within the Web server
(mod_perl 1.26). For server-side scriptingwithin XHTML
documents, php 4.0.6 (www.php.net) was installed and
Apache was configured to recognize and process PHP
scripts. The MySQL database system (mysql 3.23.41,
www.mysql.com) was installed, along with the Perl and
PHP modules for accessing mysql databases (perl-DBD-
MySQL-1.2216 and php-mysql-4.0.6). A separate data-
base is created for each student’s use.

Learning Outcomes
Learning outcomes are evaluated on the basis of objec-

tive products (students’ f inal projects) and subjective
evaluations(students’comments). Both support the accom-
plishment of the two major learning goals of the course:
developing problem-solving strategies applicable to a
wide range of computing tasks, and developing students’
confidence in their ability to acquire and apply new skills
as needed.



TEACHING COMPUTING SKILLS 253

The final projects created for the course demonstrate
that students develop technical competence in basic Web
design (using XHTML and JavaScript). In many cases an
ability to independently develop additional skills is also
evidenced.The projects range from relatively simple Web
sites and Web forms, to more complex applications that
combine XHTML forms, server-side scripting, and one or
more database tables to present stimuli and collect and
store user input. One student’s project used image maps
within XHTML documents to create a prototype for a
Web site demonstrating the use of a coding system for fa-
cial expressions. Several projects have used XHTML
forms to collect survey data and send the data to the re-
searcher via e-mail, and a few have added Perl CGI script-
ing to store data in files on the server. JavaScript has been
used in several projects, includingone consisting of teach-
ing tools for statistics. Two projects have made extensive
use of PHP scripting and MySQL databases, one to im-
plement a Web-based appointment scheduling system
and the other to implement an experiment on consumer
decision-making. The variety of specific skills that stu-
dents use to complete their projects demonstrates their
ability to apply problem-solving skills to specific tasks,
and their use of techniques not explicitly covered in class
demonstrates students’ confidence in learning and apply-
ing new skills.

Students’ comments about the course have been over-
whelminglypositiveand are also consistentwith the course
objectives, with several specifically mentioning that they
have applied skills from the course to their own work as
researchers. One student’s course project eventually led to
a conference presentation (Arnott & Allbritton, 2002).
Thus students’ confidence in their ability to learn and
apply programming skills extends beyond the context of
the course.

Advantages of Open-Source Software
The use of open-source software has contributed to the

successful implementation of this course in a number of
ways. On the basis of this experience, I can identify sev-
eral advantages of using open-source software, and a few
possible challenges.

A model and a mechanism for collaborativeknowl-
edge construction. The primary advantageof open-source
software is that it provides a model of collaborativeknowl-
edge construction that parallels that of science (Malloy,
Jensen, Regan, & Reddick, 2002). In the open-source
community, knowledge (in the form of source code) is
shared openly, with individual programmers building on
the work of others and returning the products of their
efforts to the community. A version of “peer review” also
takes place, with the entire community able to offer cri-
tiques and suggest improvements. When students are in-
troduced to open-source software, they are shown an ap-
proach to programming that is a natural extension of the
problem-solving strategies and intellectual values that
they learn as scientists.

The collaborative approach to problem-solving that is
characteristic of the open-source software community

also fits well with the learning goals of the course. Open-
source software is typically developed by teams of pro-
grammers working together, and the entire community
serves as a source of information and advice for solving
problems through Web and discussion group postings.
Students in the course learn to use such postings as a re-
source when working on their projects. Introducing stu-
dents to the peer-group problem-solving approach of the
open-source community thus provides them with a gen-
eral problem-solving strategy that they can apply to many
computing tasks.

Control, freedom, and flexibility for the instructor.
Open-source software maximizes the instructor’s free-
dom. There is no need for administrative approval for the
purchase of necessary software if the university does not
have an existing license. Furthermore, all open-source
software can be taken for a full “test drive” to determine
what best fits the instructional needs of the course.

With open-source software, it is easier to make changes
as need arises. In this course, for example, I originally in-
tended to use only Perl for server-side scripting. As I was
teaching basic XHTML, however, it became evident that
many of the studentswere likely to find it difficult to work
with Perl CGI scripts. Although the Common Gateway In-
terface is very useful for implementingexperiments on the
Web (Morrow & McKee, 1998), it adds an additional layer
of complexity and abstraction that is difficult for begin-
ning programmers. To create a Web page with CGI, one
must think about not only what XHTML markup would
produce the desired effect, but also what Perl code would
produce that markup. I decided that server-side code em-
bedded in an XHTML page itself (such as server-side in-
cludes) would be easier for many of the students to work
with. Given its ease of use and rapidly growing user base,
I chose to include PHP as an alternative server-side tech-
nology along with Perl. Because I was using the open-
source Apache Web server, I was able to simply download
and install the required modules and in a matter of minutes
reconfigure the course server to use PHP. Had I been re-
lying on commercial software and needed to purchase a
new product for such an unanticipatedneed, obtaining the
necessary purchase orders and so forth in a timely fashion
could have posed a challenge.Thus open-source software
gave me the flexibility needed to adjust the tools of the
course to better meet my pedagogical goals.

Freedom and accessibility for the students. All the
software students learn to use in the course can be down-
loaded and installedon their own systems. There is no dan-
ger that students will learn to use a certain piece of soft-
ware only to find that they have no access to it and cannot
afford to purchase it themselves once the class ends. Thus,
open-source software increases the likelihoodthat students
will be able to continueto apply and develop their problem-
solving skills beyond the time frame of the course.

Increased learning opportunities for the students.
With open-source software, students have the opportunity
to get a better view of what is “under the hood” and thus
develop a deeper understanding of how things work. Al-
though poring over the source code is not something stu-



254 ALLBRITTON

dents in an introductorycomputing course are likely to do,
students in the class are introduced to the use of configu-
ration files and log files, both of which encourage reflec-
tion on the inner workings of the software. Students can
even install an open-sourceoperating system on their own
computer, and get experience administering as well as
using these tools. Open-source software thus gives stu-
dents additional options for continuing to develop new
computing and problem-solving skills.

Price. My placing price last in this list of advantages is
not accidental. Although the fact that open-source soft-
ware can be downloaded for free is often cited as its chief
selling point, the price was not a primary reason for my
choosing open-source solutions for this course. From the
standpoint of teaching and learning, the advantages of
freedom, accessibility, flexibility, control, and especially
modeling collaborative problem-solving strategies were
more persuasive than cost.

Potential Disadvantages and Challenges
The instructor is also the system administrator.

This is often the case because (at least in my experience)
most universities do not provide as much technical sup-
port for open-source software as for institutionally pur-
chased commercial software. System administration can
be time consuming, particularly when a problem arises.
For example, when the course server suffered a break-in
about 3 weeks before the end of the term, I had to reinstall
the system, upgrade vulnerable software, restore the
course and student files from backups, and formulate a
new security policy to decrease the likelihoodof future at-
tacks while still allowing students sufficient access to the
system. On the other hand, this experienceprovided a per-
fect opportunity to educate students about security issues
in the context of a personally relevant real-world example.

Training students to use commercial software can
be more immediately applicable to their work as psy-
chologists, if the commercial software is more widely
used than its open-source counterparts. The MySQL data-
base system that I use in the course, for example, is not as
widely used as Microsoft Access. In this case, the advan-
tages of using MySQL has outweighed this potential dis-
advantage in my estimation. With MySQL, students must
learn the basics of the Structured Query Language (SQL),
the primary interface to almost all modern databases.
Thus MySQL was more suited to accomplishing the
learning goal of developing a basic understanding that
could be transferred to many different database applica-
tions. Also, because MySQL is open-source, students can
install it on their own computers without cost and can con-
tinue to use it in the future. Whether the advantages of an
open-source solution outweigh the ubiquityof competing
commercial applications as a criterion for adoption for
any particular course would depend on the specific learn-
ing goals for that course.

Conclusion
In conclusion, a course on programming and Web de-

velopment designed specifically for psychology students

providesstudentswith technical and problem-solvingskills
that they are then able to apply to their own work and re-
search. An open-sourceoperating system and open-source
software contributesignificantlyto the feasibility and suc-
cess of the course, both technically in the implementation
of the course and pedagogically as well.

In addition to practical and pedagogical advantages,
there is also a philosophical reason for favoring open-
source solutionsover commercial software in a university
setting.Open-source software is created collaborativelyand
distributed freely, with both the process and the product
open to public inspection, critique, and elaboration. For
institutions that see the free exchange of ideas as central
to their mission, open-source software is not only a prac-
tical alternative, it is also a good fit.

REFERENCES

Arnott, E., & Allbritton,D. W. (2002,November). A Web-based tool
for gathering ordinal rankings. Paper presented at the the 32nd Annual
Meeting of the Society for Computers in Psychology, Kansas City, MO.

Beagley, W. K. (2001). Why we need more psychology programmers/
EL Knife, a data utility for transforming spreadsheets. Behavior Re-
search Methods, Instruments, & Computers, 33, 97-101.

Birnbaum, M. H. (Ed.) (2000). Psychological experiments on the In-
ternet. San Diego: Academic Press.

Birnbaum,M. H. (2001). Introduction to behavioral research on the In-
ternet. Upper Saddle River, NJ: Prentice-Hall.

Dietel, H. M., Dietel, P. J., & Nieto, T. R. (2002). Internet & World
Wide Web: How to program. Upper Saddle River, NJ: Prentice-Hall.

Dietel, H. M., Dietel, P. J., Nieto, T. R., & McPhie, D. C. (2001).
Perl: How to program. Upper Saddle River, NJ: Prentice-Hall.

Flanagan, D. (1998). JavaScript: The definitive guide (3rd ed.). Se-
bastopol, CA: O’Reilly.

Goolkasian, P. (1997). Microcomputers in the social sciences: A new
course. Teaching of Psychology, 24, 204-206.

Graham, I. S. (2000). XHTML 1.0 language and design sourcebook.
New York: Wiley.

KuÏcera, H., & Francis, W. N. (1967). Computational analysis of
present-dayAmerican English. Providence,RI: Brown University Press.

Lane, D., & Williams, H. E. (2002). Web database applications with
PHP & MySQL. Sebastopol, CA: O’Reilly.

Lerdorf, R., & Tatroe, K. (2002). Programming PHP. Sebastopol,
CA: O’Reilly.

Malloy,T. E., Jensen, G. C., Regan,A., & Reddick,M. (2002). Open
courseware and shared knowledge in higher education. Behavior Re-
search Methods, Instruments, & Computers, 34, 200-203.

Morrow, R. H., & McKee, A. J. (1998). CGI scripts: A strategy for
between-subjects experimental group assignment on the World-Wide
Web. Behavior Research Methods, Instruments, & Computers, 30,
306-308.

Reese, G., Yarger, R. J., & King, T. (2002). Managing & using
MySQL: Open source SQL databases for managing information &
Web sites (2nd ed.). Sebastopol, CA: O’Reilly.

Sargent,D. M. (1996).On-line computers in psychology:A laboratory
course for advanced psychologymajors. Behavior Research Methods,
Instruments, & Computers, 28, 354-355.

Schwartz, R. L., & Phoenix, T. (2001). Learning Perl (3rd ed.). Se-
bastopol, CA: O’Reilly.

Siever, E., Spainhour, S., Hekman, J. P., & Figgins, S. (2000). Linux
in a nutshell (3rd ed.). Sebastopol, CA: O’Reilly.

Wall, L., Christiansen, T., & Orwant, J. (2000). Programming Perl
(3rd ed.). Sebastopol, CA: O’Reilly.

Welsh, M., Dalheimer,M. K., & Kaufman, L. (1999). RunningLinux
(3rd ed.). Sebastopol, CA: O’Reilly.

(Manuscript received November 19, 2002;
revision accepted for publication January 15, 2003.)


