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Cognitive addition and multiplication:
Evidence for a single memory network

DAVID C. GEARY, KEITH F. WIDAMAN, and TODD D. LITTLE
University of California, Riverside, California

In an experiment using verification task procedures, 100 subjects responded to simple and com-
plex problems of addition and multiplication. Identical structural parameters were found to model
reaction time accurately to both addition and multiplication problems. Slope estimates for a
memory network parameter did not differ significantly between simple and complex problems
within an operation or between addition and multiplication problems. Both complex addition and
complex multiplication problems were processed columnwise, with column sums or products be-
ing retrieved from an interrated memory network. The two types of complex problems included
similar processes for carrying and for encoding of single digits, and both were self-terminated
when an error in the units column was encountered. Addition and multiplication facts appear
to be retrieved from a single interrelated memory network. A conceptual model for this inter-

related network is discussed.

Chronometric analyses of response latencies to arith-
metic problems enable the modeling of the processing
components involved in solving such problems. Early
research found reaction time (RT) for addition (Restle,
1970) and number comparison (Moyer & Landauer, 1967)
tasks to be a function of the difference between the two
numbers. Restle argued that simple addition problems are
processed by transforming the numbers to be added into
analog magnitudes, which are represented as distances
along an internal number line. According to Restle, addi-
tion involves the concatenation of the shorter line segment
onto the longer line segment, and the sum is represented
by the end point of the concatenated line segments.

Parkman and Groen (1971) found that adult RT to sim-
ple addition problems was best predicted by the smaller
(minimum, or min) of the two addends. The hypothesized
process consistent with this result involves setting an in-
ternal counter to the larger addend and then increment-
ing the counter a number of times equal to the smaller
addend until a sum is obtained (Groen & Parkman, 1972).
However, in Parkman and Groen’s study, the sum of the
two addends explained nearly as much RT variance as did
the smaller addend. Groen and Parkman interpreted this
result, coupled with their finding of uniform RT to tie
problems (problems with two identical integers), as
reflecting direct memory access for most addition facts,
with occasional memory retrieval failure for some
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problems. When memory retrieval failed, adults reverted
to the more reliable min counting strategy.

Ashcraft and Battaglia (1978) empirically tested the
above counting and direct-access/counting models, using
verification tasks for simple addition problems. Adult RT
to these problems, except when the difference between
the stated sum and the correct sum was large (*‘unreason-
able incorrect’’ split), was best predicted by the square
of the correct sum (sum?). This finding was inconsistent
with both the counting and direct-access/counting models.
Ashcraft and Battaglia interpreted their results as suggest-
ing that the correct sum for a simple addition problem
is obtained through retrieval of the sum from a memory
network of addition facts. They conceptualized the
memory network as a square matrix with column and row
entry nodes for the integers 0 through 9. The correct sum
for a given simple addition problem is stored at the inter-
section of the entry nodal values corresponding to the two
addends. Because in their study RT increased exponentially
with the size of the correct sum, Ashcraft and Battaglia
argued that the matrix is *‘stretched’’ in the region of larger
sums, resulting in longer vector distances and therefore in
longer RTs. RT patterns for primed problems and for more
complex addition problems were interpreted as consistent
with this network model (Ashcraft & Stazyk, 1981).

Recently, Miller, Perlmutter, and Keating (1984)
reported that RT for simple addition and simple multipli-
cation problems was better predicted by the correct
product (prod) of the problem digits than by the sum?.
This result, and analyses of errors, suggests that both ad-
dition and multiplication facts are retrieved from a simi-
lar memory network. Widaman, Geary, and Cormier
(1986) replicated the finding that the correct product was
the better predictor of RT to simple and complex addi-
tion problems and argued that the product structural vari-
able is also consistent with retrieval of addition facts from
a memory network. In summary, the use of chronomet-
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ric procedures in the cognitive arithmetic area has led to
the identification of a memory retrieval process involved
in solving arithmetic problems.

However, processing of arithmetic problems involves
components other than retrieval of facts, such as a carry-
ing operation for complex problems (Ashcraft & Stazyk,
1981). Recently, Widaman et al. (1986) outlined a general
theoretical model for the processing components for both
simple and complex addition problems. Widaman et al.’s
model is an elaboration of Ashcraft’s (1982) model, and
includes the same basic processing stages: encode,
search/compute, decide, and respond. The first stage in-
volves encoding of the problem’s operation (e.g., addi-
tion) and the initial two integers (e.g., in the units column
in complex problems) to be summed. Once the encoded
integers are in working memory (Case, 1985), a sum for
these integers is obtained through either a counting process
or a memory search process. For simple addition involv-
ing two single-digit addends, the obtained sum is then
compared with the stated sum (for verification tasks), and
a decision (‘‘true”’ or ‘‘false’’) is made and executed. For
more complex problems, recycling loops that correspond
to the summing of more than one column of numbers
and/or more than two rows of integers are included in
the model. For multicolumn problems, the encoding and
search/compute processes for simple problems are recy-
cled until sums are obtained for each column. This recy-
cling loop may be modified in two ways: First, a carry-
ing operation (Ashcraft & Stazyk, 1981) is required if the
preceding column’s sum is greater than 9; and second,
complex multicolumn problems may be self-terminated
if a column error is encountered before the entire problem
is processed. That is, if the stated sum for the units column
is incorrect, the problem will be exited and the response
‘““false’” will immediately be executed.

Widaman et al. (1986) used multiple regression tech-
niques to model the above process strategies. Regression
equations were fit to RT data for simple and complex ad-
dition problems, with independent structural variables
specified for each component process. Widaman et al.
found that these regression equations predicted RT to ad-
dition problems extremely well. The product and column-
wise product for simple and complex problems, respec-
tively, always provided better fit to RT data than did
alternative search/compute parameters. Furthermore, vari-
ables specifying added elementary component processes
(e.g., encoding of digits) always resulted in significant in-
creases in RT variance explained. Finally, Widaman et al.
tested the assumption that subjects would use a self-
terminating strategy by comparing full-model R*s for
statistical models representing self-terminating strategies
with the R?s for models for exhaustive strategies. The self-
terminating strategy models always provided a better fit
to RT than did exhaustive strategy models.

Although Widaman et al. (1986) tested their model with
addition problems only, the same process components
{e.g., carrying), and perhaps the same search/compute
parameter (i.e., product), may represent process strate-
gies for other arithmetic operations. Indeed. Parkman
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(1972) found that RT to simple multiplication problems
was best predicted by the same structural variables that
best fit RT to simple addition problems (i.e., min, sum).
Parkman argued that multiplication problems are solved
through retrieval of the product from a memory network.
Furthermore, he hypothesized that the network for mul-
tiplication facts is hierarchically related to the network
for addition facts (Parkman, 1972).

Results from experiments that presented confusion
problems, in which the stated sum is correct for a differ-
ent operation (e.g., addition) but incorrect for the given
operation (e.g., multiplication), supported Parkman’s con-
clusion (Stazyk, Ashcraft, & Hamann, 1982, Experi-
ment 3; Winkelman & Schmidt, 1974). Winkelman and
Schmidt presented certain multiplication problems with
stated products that were incorrect for multiplication but
correct for addition, and other multiplication problems
with stated products that were incorrect for both multipli-
cation and addition. RTs and error rates for the former
(confusion) problems were higher than those for the lat-
ter (nonconfusion) problems. Results from Miller et al.’s
(1984) experiment and from confusion experiments
(Stazyk et al., 1982; Winkelman & Schmidt, 1974) are
consistent with the hypothesis that there is an interrelated
memory network for addition and multiplication facts.

However, it has not been shown that added elementary
processes involved in the solving of addition problems
(e.g., encoding and carrying) are necessary to the men-
tal solving of multiplication problems. In fact, no infor-
mation is available at present regarding the process com-
ponents involved in the solving of complex multiplication
problems. Therefore, in the present study, we sought
(1) to further test the hypothesis that addition and mul-
tiplication facts are stored in an interrelated memory net-
work, (2) to provide empirical information on process
strategies involved in complex multiplication, and (3) to
test Widaman et al.’s (1986) model concurrently for sim-
ple and complex multiplication problems.

METHOD

Subjects

One hundred undergraduates (45 male, 55 female) who were en-
rolled in psychology courses at the University of California, River-
side, served as subjects. All subjects received $3 or course credit
for participating in this experiment.

Stimuli

A total of 320 arithmetic problems served as stimuli. The global
set consisted of 80 problems of each of four types of arithmetic:
simple addition, complex addition, simple multiplication, and com-
plex multiplication. These four sets were presented independently
and in the above order.

Simple addition. The 80 simple addition problems consisted of
two vertically presented integers with a stated sum. Forty of the
problems (the *‘true’" problems) were selected from the 90 possi-
ble nontie pairwise combinations of the integers 0 through 9 and
were presented with the correct sum. The frequency and placement
of all integers was counterbalanced. That is, each integer (0 through
9) appeared eight times across the 40 probiems and appeared equally
often as the first addend and as the second addend. The remaining
simple addition problems (the **false’” problems) were the same 40
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pairs of integers presented with a stated sum incorrect by +1 or +2.
The magnitude of the error was counterbalanced across the 40 ‘‘false’
problems. No repetition of either integer or of the stated sum was
allowed across consecutive trials, and no more than four consecu-
tive presentations of ‘‘true’” or ‘‘false’’ problems were allowed.
Complex addition. The 80 complex addition problems consisted
of two vertically placed double-digit integers with a stated sum.
The 40 “‘true’” problems were constructed from 80 of the 90 pos-
sible integers 10 through 99. The larger integer was the first ad-
dend for one half of the problems, and the frequency of individual
digits 0 through 9 was counterbalanced for position. Within a given
problem, all four digits were unique. Finally, the stated sum for the
units column was greater than 9, and therefore required a carrying
operation, for one half of the problems. The 40 ‘“‘false’” problems
were the same 40 pairs of integers presented with a stated sum in-
correct by +1, +2, +10, or +20. The placement of the error was
counterbalanced; that is, each value of the error (e.g., +1 or —-2)
occurred five times, with the constraint that when the sum for the
units column was greater than 9, one half of the errors occurred in
the units column and one half of the errors occurred in the tens
column. No repetition of either addend or of the stated sum was al-
lowed across consecutive trials, and no more than four consecutive
presentations of ‘‘true’” or ‘‘false’” problems were allowed.
Simple multiplication. The 80 simple multiplication problems
consisted of two vertically presented single-digit integers with a
stated product. Problems with two identical integers (ties) and
problems including the integer 0 were excluded because of incon-
sistent performance with these problems (e.g., see Stazyk et al.,
1982). Accordingly, the “‘true’” simple multiplication problems con-
sisted of the remaining 36 unique combinations of nontie and non-
zero problems and 4 randomly selected inverted (e.g., 3 X 7,
7 X 3) problems. The larger value integer was placed in the top
position for half of the problems; thus, each unique integer 1 through
9 appeared four or five times in the top position and four or five
times in the bottom position across the 40 problems. The 40 ““false’”
problems consisted of the same 40 pairs of integers, but with the
stated product deviating from the correct product by +1, +2, or
1 10. Across the 40 problems, the stated product deviated from the
correct product by +1 or 42 for 24 problems, and by .10 for 16
problems. No repetition of either integer or of the stated product was
allowed across consecutive trials, and no more than four consecu-
tive presentations of ‘‘true’’ or ‘“false’’ problems were allowed.
Complex multiplication. The 80 complex multiplication problems
consisted of a double-digit multiplicand placed vertically over a
single-digit muitiplier, presented with a stated product. Multipli-
cands consisted of a random sample of 40 of the 90 integers from
10 through 99. The integers 1 through 9 served as multipliers.
Across the 40 stimuli, the integers 1 through 9 served as the mul-
tiplier four or five times each; the units place for the multiplicand
contained the integers O through 9 four times each; and the tens
place for the muitiplicand contained the integers 1 through 9 four
or five times each. Within each problem all digits were unique.
The “‘false’” problems consisted of the same 40 pairs of multipli-
cands and multipliers, presented with a stated product deviating from
the correct product by +1, +2, 410, +20, or +100. The place-
ment of these errors was counterbalanced across the stated product
columns. That is, there were 14 errors in the units column, 14 er-
rors in the tens column, and 12 errors in the hundreds column. No
repetition of the stated product or of multiplicands or multipliers
was allowed across consecutive trials, and no more than four con-
secutive presentations of ““true’’ or ‘‘false’” problems were allowed.

Apparatus

The arithmetic problems were presented at the center of a 30 cm
X 30 cm video screen controlled by an Apple II+ microcomputer.
A Cognitive Testing Station clocking mechanism ensured the col-
lection of RTs with +1 msec accuracy. The subjects were seated
approximately 70 cm from the video screen and responded by

depressing one of two buttons located on a board directly in front
of them. Each subject responded ‘‘true’’ by depressing the button
on the side of his/her preferred hand and responded ‘‘false’” using
his/her nonpreferred hand.’

For each problem, a READY prompt appeared at the center of
the video screen for 500 msec, followed by a 1,000-msec period
during which the screen was blank. Then an arithmetic problem
appeared on the screen and remained until the subject responded,
at which time the problem was removed. If the subject responded
correctly, the screen was blank for 1,000 msec, and the READY
prompt for the next problem then appeared. If the subject responded
incorrectly, a WRONG prompt of 1,000 msec duration followed
the removal of the stimulus and preceded the 1,000-msec inter-
problem blank period.

Procedure

The subjects were tested individually in a quiet room. They were
told that they were going to be presented with four individual sets
of arithmetic problems in a set order: simple addition, complex ad-
dition, simple multiplication, and complex multiplication.? They
were told that their task was to respond ‘‘true’’ or ‘‘false’’ to the
presented problem by pressing the appropriate key. Equal empha-
sis was placed on speed and accuracy. Subjects were told the type
of problem to be presented before each set, and a practice set of
eight problems was presented at the beginning of each set. A short
rest period followed each set. The entire testing session lasted ap-
proximately 45 min.

RESULTS

Overall error rate in the matrix of 32,000 RTs was 4.9%
(range 3.2% to 8.5%, across sets), and fewer than 1.0%
of the RTs were deleted as outliers (using Dixon’s test;
Wike, 1971). All analyses excluded these error and out-
lier RTs. Processing models for simple addition and mul-
tiplication were fit to average RT data using multiple
regression techniques. Models for the search/compute
process fit to RT data included Parkman and Groen'’s
(1971) five counting-based models, Ashcraft’s (1982)
true-sum-squared parameter, and the correct product
(Miller et al., 1984). A truth parameter (coded O for cor-
rect problems and 1 for incorrect problems) was included
in the regression equations. The truth parameter represents
RT intercept differences between ‘‘true’’ and ‘‘false”’
problems. For simple addition and multiplication, equa-
tions were fit using each of the above search/compute
parameters and the truth parameter.

Regression equations for complex addition and multipli-
cation problems were fit according to the processing stages
described by Widaman et al. (1986). Specifically, the
above search/compute parameters were fit separately for
each column sum or column product, and parameters for
the number of items encoded (NI) and a self-terminating
carrying operation (carryst), as well as the truth
parameter, were included in each equation. The NI
parameter was coded equal to the total number of digits
in the problem, including the stated sum (e.g., 6 or 7 for
complex addition problems, but 3 for compiex addition
problems that were self-terminated because of an error
in the units column). The carryst parameter was coded
0 if the units sum was < 10, or if the stated units sum
was incorrect. If the stated units sum was correct and
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= 10, then the carryst parameter was coded 1. All
processes following a units-column error were coded 0.
The fit of each regression equation was based on the value
of the R* and the significance of the partial F ratio for
each parameter. A partial F ratio tests the significance of
the independent variance explained for each structural
variable in a regression equation (Ashcraft & Stazyk,
1981; Cohen & Cohen, 1983).

Addition

Simple addition. The three best-fitting regression
models for simple addition problems are presented in the
top half of Table 1. Inspection of Table 1 reveals that RT
to simple addition problems was best predicted by the cor-
rect product (prod) of the addends along with a truth
parameter (R? = .737).? The sum? and min structural vari-
ables, each accompanied by the truth parameter, were the
next best predictors for these problems. Initially, the NI
variable was included in each of these equations; however,
the partial F ratios were not significant for this parameter,
so the NI variable was not included in any of the final
equations. The nonsignificance of the NI variable likely
resulted from a lack of variance in the number of integers
in simple addition problems (i.e., 3 or 4). Dropping the
NI variable from the equations resulted in the incorpora-
tion of encoding speed into the intercept value. Across
the three equations, intercept values were highly similar
and the regression weights for the truth variable were iden-
tical. Identical regression weights for truth suggest that
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this parameter was orthogonal to the search/compute
process. The independence of components included in
each equation was supported by the finding that no inter-
action (e.g., prod X truth) was significant for any of the
equations [for equations including the prod, sum*, and min
variables, respectively, F(1,76) = 0.00, 0.05, and 0.01;
p > .50 for all F ratios].

Complex addition. In the bottom half of Table 1, the
three best-fitting equations for complex addition problems
are presented. Inspection of Table 1 reveals that all of the
processing components (NI, carryst, truth) proposed by
Widaman et al. (1986) had highly significant (p < .01)
F ratios for all three equations. The equation that speci-
fied columnwise processing of problems with the column-
wise product as the search parameter, along with the above
process components, provided the best fit to complex ad-
dition RT (R* = .867). In each of the three equations,
the search/compute parameter was initially estimated
separately for each column. Inspection of these results re-
vealed highly similar columnwise slope estimates. Accord-
ingly, the columnwise slope estimates for the units and
tens columns were constrained to be equal. We evaluated
the significance of this equality constraint by using an in-
cremental F test (Cohen & Cohen, 1983) to test the
decrease in R? associated with enforcing the equality con-
straints. Constraining columnwise slope estimates to be
equal resulted in nonsignificant decreases in the full-model
R? for all three equations [for equations including prod,
sum?, and min variables, respectively, F(1,75) = 0.17,

Table 1
Statistical Summaries of Regression Analyses: Addition
Equation R F df MSe
Simple Addition
RT = 888 + 9.87 (prod) + 156 (truth) 737 107.77 2,77 118.41
Partial F: 180.54, 35.0
RT = 832 + 2.54 (sum?®) + 156 (truth) .689 85.47 2,77 128.62
Partial F: 141.28, 29.66
RT = 866 + 79 (min) + 156 (truth) .681 81.88 2,77 130.52
Partial F: 134.95, 28.80
RT =1,150.98 msec
Complex Addition

RT = 727 + 179 (ND) + 8.04 (unitprod) .867 122.38 4,75 197.79

+ 367 (carryst) + 8.04 {tenprod)

+ 232 (truth)
Partial F: 91.40, 54.46, 91.40, 54 .46, 18.82 i
RT = 743 + 165 (NI) + 2.09 (unitsum?) .866 120.68 4,75 198.98

+ 317 (carryst) + 2.09 (tensum?)

+ 223 (truth)
Partial F: 71.91, 52.91, 23.59, 52.91, 17.20
RT = 721 + 170 (NI) + 67 (unitmin) .859 114.17 4,75 203.80

+ 378 (carryst) + 67 (tenmin)
+ 231 (truth)
Partial F: 73.98, 46.93, 43.47, 46.93, 17.65

RT = 2,271.80 msec

Note—All models significant at the p < .0001 level. All partial F ratios significant at the p < .01 level.
Prod = product; truth = intercept differences between “‘true’’ and ‘‘faise’” problems; sum® = square of
the correct sum’ min = smaller of the two addends; NI = number of items encoded; unitprod = units-
column product; carryst = self-terminating carrying operation; tenprod = tens-column product; unitsum®
= units-column sum?; tensum? = tens-column sum?; unitmin = units-column min; tenmin = tens-column min.
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0.50, and 0.16; p > .50 for all F ratios]. Identical slope
estimates are therefore presented in Table 1 for the units
and tens columns.

Across the three equations, the component processes
required in the model were the same, and the regression
estimates were highly similar. The search/compute strategy
X truth interactions were estimated separately for each
column slope, and the significance of these interactions was
tested using an incremental F test (Cohen & Cohen, 1983).
The addition of these interactions to the three regression
equations failed to increase the full-model R* significantly
for any equation [for equations including prod, sum*, and
min variables, respectively, F(2,72) = 2.00, p > .10;
F2,72) = 1.12,p > .25; F(2,72) = 1.88, p > .10].

Multipiication

Simple multiplication. The three best-fitting equations
for simple multiplication problems are presented in the
top half of Table 2. Inspection of Table 2 reveals that RT
to simple multiplication problems was best predicted by
the prod, along with the truth parameter (R* = .721). The
smaller of the multiplicand and multiplier (min) and the
sum?, each accompanied by the truth parameter, were the
next best predictors for these problems. The NI parameter
was initially included in each of these equations. However,
as with simple addition problems, the partial F ratios for
the NI parameter were not significant, so NI was not in-

cluded in the final equations. Speed of encoding was there-
fore encompassed within the intercept value. All verifi-
cation (truth) processes again appeared to be orthogonal
to the search/compute process; this conclusion was sup-
ported by the finding that, once again, no interaction was
significant for any of the equations [for equations includ-
ing the prod, sum?, and min variables, respectively,
F(1,76) = 1.27,0.93, and 1.25; p > .25 for all F ratios].

Complex multiplication. The three best-fitting equa-
tions for complex multiplication problems are presented
in the bottom half of Table 2. Inspection of Table 2 re-
veals that all but one of the processing components (NI,
for the last equation) proposed by Widaman et al. (1986)
for complex addition problems had significant partial F ra-
tios (p < .05) across these three equations. In addition
to the above components, a carrying remainder parameter
(carrem, coded the value of the remainder following the
units-column multiplication) was fit in each of the equa-
tions. The carrem reflects the number of units that must
be incremented onto the product of the multiplier and the
tens-column digit of the multiplicand in order to give the
correct answer in the tens and hundreds columns of the
problem. Consider the problem 27 X 6; following the
units-column multiplication (7 X 6), the remainder of this
operation (4) must be held in working memory during the
tens-column multiplication (2 X 6), and then this re-
mainder (4; the carrem) must be added to the provisional

Table 2
Statistical Summaries of Regression Analyses: Multiplication
Equation R F df MSe
Simple Multiplication
RT = 903 + 10.06 (prod) + 155 (truth) 721 99.50 2,77 131.44
Partial F: 170.92, 23.09
RT = 838 + 92 (min) + 155 (truth) 707 93.23 2,77 134.53
Partial F: 159.64, 26.81
RT = 864 + 2.55 (sum?®) + 155 (truth) .684 83.38 2,77 139.86
Partial F: 141.96, 24.80
RT = 1,231.62 msec
Complex Multiplication

RT = 1,143 + 105 (ND + 13.53 (unitprod) .878 104.78 5,74 362.02

+ 481 (carryst) + 13.53 (tenprod)

+ 160 (carrem) + 191 (truth)
Partial F: 5.17, 31.38, 12.88, 31.38, 14.84, 4.57
RT = 1,086 + 103 (NI) + 2.89 (unitsum?) .866 94.48 5,74 378.72

+ 541 (carryst) + 2.89 (tensum?)

+ 180 (carrem) + 209 (truth)
Partial F: 4.41, 22.38, 14.59, 22.38, 17.21, 4.97
RT = 1,152 + 83 (NI) + 114 (unitmin) .865 93.50 5,74 380.44

+ 361 (carryst) + 114 (tenmin)
+ 201 (carrem) + 182 (truth)
Partial F: 2.71, 21.52, 6.50, 21.52, 24.02, 3.75

RT = 2,839.56 msec

Note—All models significant at the p < .0001 level. All partial F ratios, except the F ratio for NI in the
final equation, significant at the p < .05 level. Prod = product; truth = intercept differences between *‘true™
and ““false” problems; min = smaller of the multiplicand and multiplier; sum® = square of the correct sum;
NI = number of items encoded; unitprod = units-column product; carryst = self-terminating carrying oper-
ation; tenprod = tens-column product; carrem = value of the remainder following the units-column mul-
tiplication; unitsum? = units-column sum®; tensum’® = tens-column sum?; unitmin = units-column min; ten-

min = tens-column min.
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tens-column product (12) to complete the problem. The
carrem parameter showed highly significant partial F ra-
tios for all three equations.

The equation fit with the columnwise product and the
above process components provided the best fit to com-
plex multiplication RT (R* = .878). The equations were
initially fit with the search/compute parameter estimated
separately for each column; again, results revealed highly
similar columnwise slope estimates in each analysis. Con-
straining the columnwise slope estimates to be equal
resulted in a nonsignificant decrease in the full-model R?
for each of the three equations [for equations including
prod, sum?, and min variables, respectively, F(1,74) =
0.02, 0.16, and 0.93; p > .25 for all F ratios]. Identical
slope estimates are therefore presented in Table 2 for the
units and the tens columns.

Process component and intercept estimates showed
somewhat greater variability across the three equations
than did the comparable estimates from complex addition
problems. However, despite some variability in compo-
nent speed estimates across equations, the same encod-
ing, truth, and carrying components were required across
the three equations. The preceding component processes
for complex multiplication were identical to the processes
fit for complex addition. The search/compute strategy X
truth interactions were estimated separately for each
column slope, and the significance of the interactions was
tested using an incremental F test. The addition of these
interactions to the regression equation did not significantly
increase the full-model R* for any equation [for equations
including prod, sum?, and min variables, respectively,
F2,71) = 2.29, p > .05; F2,71) = 0.82, p > .25,
FQ2,71) = 0.82, p > .25).°

Split Effects

Previous results using verification procedures have in-
dicated that RT may vary as a function of the difference
in magnitude, or split, between the correct sum and the
stated sum in ‘‘false’’ problems (Ashcraft & Battaglia,
1978; Krueger & Hallford, 1984). Ashcraft and Battaglia
reported a monotonic decrease in RT as the size of the
split increased (i.e., for ‘‘unreasonable incorrect’’ stated
sums). Furthermore, the split effect may also be in-
fluenced by the use of an odd-even heuristic (Krueger &
Hallford, 1984). In the present study, only columnwise
stated sums or products with ‘‘reasonable incorrect’’
values (i.e., +1 or +2 per column) were used. There-
fore, the split effect found in previous research (Ashcraft
& Battaglia, 1978; Ashcraft & Stazyk, 1981) might not
be evident in responses to these stimuli, as Krueger and
Hallford (1984) reported no difference between splits of
+ 1 and splits of +2. To test the significance of the mag-
nitude of the columnwise split, we added independent
structural variables that were coded the size of the split
for each column to the full-model regression equations
for each problem type. To test each split parameter, we
tested the significance of the increase in the full-model
R associated with each added split variable. These results
indicated that the size of the columnwise split for all four
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problem types and across all columns was never signifi-
cant (all ps > .10).

Combined Analysis

As hypothesized, inspection of Tables 1 and 2 reveals
that identical structural variables and highly similar slope
estimates predicted RT to both simple and complex addi-
tion and multiplication problems. If these estimates do not
differ significantly, this would suggest identical encod-
ing, memory search, and verification processes for both
addition and multiplication, and for both simple and com-
plex problems. To test this hypothesis, we combined data
from simple and complex addition and multiplication
problems and evaluated a series of regression models.

Specifically, we combined data sets two at a time and
conducted significance tests of the difference in the regres-
sion weights for identical structural variables. For the
combined analyses, a dummy coded structural variable,
type, was added to the more complex of the two regres-
sion equations. The partial F ratio for the type parameter
tested intercept differences between the two problem
types. Codes for all other structural variables remained
the same as those reported for the independent analyses.
Partial F ratios for the interaction between the type
parameter and the remaining structural variables provided
a significance test of the difference between regression
weights for each parameter for the two problem types in
a given combined analysis. Because of the large number
of variables and interactions tested with these analyses,
a significance level of p < .01 was adopted.

Simple operations. Inspection of Tables 1 and 2 re-
veals highly similar intercept and slope estimates for sim-
ple addition and multiplication. The first combined anal-
yses compared regression weight differences for simple
addition and multiplication. In this combined set, the type
parameter (coded O for addition and 1 for multiplication)
was added to the equation with the prod and the truth
parameters. The partial F ratio for the type parameter
tested the intercept difference between addition and mul-
tiplication. The partial F ratio for the type X prod inter-
action tested the slope difference between addition and
multiplication for the prod parameter, and the partial F ra-
tio for the type X truth interaction tested the truth
parameter difference.

The regression equation for the combined simple addi-
tion and multiplication data sets is presented in the top
portion of Table 3. Inspection of the equation reveals that
both the prod parameter [F(1,157) = 371.17, p < .0001]
and the truth parameter [F(1,157) = 63.21, p < .0001]
were highly significant. The addition of the type parameter
and its interactions revealed that the type [F(1,154) =
0.17, p > .25], type X prod [F(1,154) = 0.03,
p > .25], and type X truth [F(1,154) = 0.00,p > .25]
parameters were not significant.

The first equation presented in Table 3 forced the in-
tercept, prod, and truth values to be equal for simple ad-
dition and multiplication and provided a highly signifi-
cant fit to the combined data (R* = .735) [F(2,157) =
217.19, p < .0001]. Furthermore, allowing the intercept,
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prod, and truth estimates to differ for addition and multi-
plication did not significantly increase the full-model R?
[F(3,154) = 0.05, p > .25]. These results suggest iden-
tical encoding, truth, and memory search processes and
identical memory search rates for simple addition and mul-
tiplication problems.

Simple and complex addition. For a comparison of
simple with complex addition, the type parameter was
coded O for simple addition and 1 for complex addition,
and the carryst parameter was coded O for simple addi-
tion. The NI parameter for simple addition was coded the
number of digits in the problem (3 or 4). The regression
equation for the combined analysis of simple and complex
addition is presented as the second equation in Table 3.

As with simple operations, the addition of the type
parameter and the appropriate interactions revealed that
the partial F ratios for the type [F(1,151) = 0.50,
p > .25], type X prod [F(1,151) = 0.07,p > .50}, and
type X truth [F(1,151) = 0.80, p > .25] parameters
were not significant. However, the type X NI interac-
tion was significant [F(1,151) = 8.49, p < .01]. In all,
these results suggest highly similar truth parameter and
memory search processes and memory search rates for

simple and complex addition problems. Widaman et al.
(1986) found that speed of encoding integers increased
linearly as the number of integers in the problem in-
creased. On the basis of Widaman et al.’s finding and the
value estimated for speed of encoding integers for sim-
ple addition (50 msec) and complex addition (179 msec)
in the present study, we coded the NI parameter in the
combined analysis so as to allow encoding speed for com-
plex addition to be estimated as three times the value es-
timated for simple addition encoding speed. The slower
encoding rate for complex addition (64 X 3, or 192 msec
per digit) than for simple addition (64 msec per digit)
replicates the finding of Widaman et al. (1986).
Simple and complex multiplication. Identical proce-
dures were used to compare simple and complex multipli-
cation problems, with results similar to those reported
above. Inspection of the third equation in Table 3 again
reveals a single equation that provides a good represen-
tation of the combined multiplication RT. Adding the type
parameter and interactions revealed nonsignificant par-
tial F ratios for the type [F(1,150) = 1.40,p > .10], type
X prod {F(1,150) = 2.25, p > .10], type X truth
[F(1,150) = 0.17, p > .50], and type x NI [F(1,150)

Table 3
Statistical Summaries of Regression Analyses: Combined
Equation R F daf MSe
Simple Addition and Multiplication
RT = 895 + 10.05 (prod) + 156 (truth) 135 217.19 2,157 124.2
Partial F: 371.17, 63.21
Simple and Complex Addition
RT = 694 + 64 (ND* + 8.01 (prod) .942 634.14 5,155 169.0
+333 (carryst) + 199 (truth)
Partial F: 763.93, 132.68, 52.30, 53.56
Simple and Complex Multiplication
RT = 455 + 62 (NDt + 9.73 (prod) 931 410.33 5,154 290.3
+ 419 (carryst)
+ 202 (carrem) + 228 (truth)
Partial F: 219.49, 58.86, 15.49, 48.94, 24.05
Complex Addition and Multiplication
RT = 998 + 141 (NI) + 9.35 (prod) .874 211.32 5,154 305.5
+ 352 (carryst)
+ 250 (carrem) + 188 (truth)
Partial F: 38.29, 56.31, 27.41, 153.55, 11.35
Simple Addition and Complex Multiplication
RT = 476 + 61 (N1 + 9.74 (prod) 935 443.19 5,154 287.4
+ 419 (carryst)
+ 202 (carrem) + 225 (truth)
Partial F: 222.95, 54.41, 15.83, 48.71, 23.99
Simple Multiplication and Complex Addition
RT = 704 + 63 (N)* + 8.26 (prod) 934 545.29 5,154 173.8

+ 329 (carryst) + 197 (truth)
Partial F: 715.52, 145.19, 48.16, 49.89

Note—All models significant at the p < .0001 level. All partial F ratios significant at the p < .01 level.
Structural variables are identical to those described for the individual analyses, with the coding changes.
Prod = product; truth = intercept differences between ‘‘true’’ and ‘‘false’’ problems; NI = number of
items encoded; carryst = self-terminating carrying operation; carrem = value of the remainder following

units-column multiplication.

*The regression parameter estimate presented refers to encoding time per digit

for the simple operation; thus, encoding time per digit for complex addition is exactly three times the esti-

mate shown.

1The regression parameter estimate presented refers to encoding time per digit for the simple

operation; thus, encoding time per digit for complex multiplication is exactly two times the estimate shown.
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=0.32, p > .50] parameters. As for addition problems,
these results suggest highly similar, if not identical, truth
parameter and memory search processes and memory
search rates for simple and complex multiplication. Fur-
thermore, initial encoding speeds for the two types of mul-
tiplication did not appear to differ. However, forcing en-
coding speeds to be equal resulted in an unreasonably low
intercept value for the combined equation. Therefore, on
the basis of initial NI estimates (50 msec for simple,
105 msec for complex), we coded the NI parameter in
the combined equation so as to allow encoding speed for
complex multiplication to be estimated as double the value
estimated for simple multiplication encoding speed. Al-
lowing these NI estimate differences yielded a reasona-
ble intercept value for the combined equation presented
in Table 3.

Complex operations. Intercept and slope estimates
were compared for complex addition and complex mul-
tiplication. Table 3 presents a single regression equation
for complex addition and multiplication RT. Here, the ad-
dition of the type parameter and interactions revealed non-
significant F ratios for the type [F(1,149) = 1.83,
p > .10], type X NI [F(1,149) = 2.14, p > .10], type
X carryst [F(1,149) = 0.93, p > .25], type X truth
[F(1,149) = 0.04, p > .25], and type X prod [F(1,149)
= 491, p > .01] parameters. These results suggest that
identical process components are involved in the solving of
both complex addition and complex multiplication problems,
and that the speed of execution of these components does
not differ significantly between the two operations.

Simple addition and complex multiplication. A proce-
dure identical to that used to compare simple multiplica-
tion with complex multiplication was used in this analy-
sis. Inspection of the fifth regression equation in Table 3
reveals that a single equation provided a good fit to the
combined RT data for simple addition and complex mul-
tiplication (R* = .935). Adding the type parameter and
interactions revealed nonsignificant partial F ratios for the
type [F(1,150) = 1.34, p > .10], type X prod [F(1,150)
= 2.38, p > .10], type X truth [F(1,150) = 0.16,
p > .50], and type X NI [F(1,150) = 0.38, p > .50]
parameters. Although the type X NI interaction was non-
significant, it was necessary to specify a linear increase
in encoding time per digit across problem type (as previ-
ously found by Widaman et al., 1986) in order to allow
estimation of an intercept term of reasonable magnititude.
This equation and the equation for simple and complex
multiplication produced nearly identical regression
weights for the same parameters, and nearly identical R’s.

Simple multiplication and complex addition. A proce-
dure identical to that used to compare simple addition with
complex addition was used in this analysis. Inspection of
the final equation in Table 3 again reveals that a single
regression equation provided a good fit to the combined
RT data (R* = .927). The addition of the type parameter
and the appropriate interactions revealed that the partial
F ratios for the type [F(1,151) = 0.47, p > .50], type
x prod [F(1,151) = 0.36, p > .50], and type X truth
[F(1,151) = 0.75, p > .25] parameters were not signifi-
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cant. The type X NI interaction was, again, significant
[F(1,151) = 9.70, p < .01], necessitating a linear con-
straint for the NI parameter across problem types.® This
equation and the equation for simple and complex addi-
tion produced highly similar regression weights for the
same parameters, as well as comparable amounts of RT
variance explained.

Self-terminating versus exhaustive processing

A separate structural variable for the self-terminating
strategy was not included in the regression equations for
complex problems. Rather, we tested the validity of this
strategy by comparing the fit of equations representing
exhaustive processing of problems with the fit of equa-
tions reflecting self-terminating processing. If a self-
terminating strategy was used, the only process executed
following a units-column error would be the response
““false.”” Accordingly, for equations reflecting a self-
terminating strategy, in problems with a units-column er-
ror, structural variables representing any processes (e.g.,
carrying, carrem) following the units column were
recoded to O values. For equations reflecting exhaustive
processing, codes of structural variables were left un-
changed, thereby representing execution of the processes
following a units-column error.

The same structural variables were used in the regres-
sion equations for both exhaustive and self-terminating
strategies, given the coding changes for the self-
terminating processes. As a result, nested comparisons
and F tests could not be derived to compare the two types
of strategies. However, our assumption that subjects used
the self-terminating strategies was based on the change
in the full-model R*s compared with the full-model R*s
under exhaustive processing. Table 4 presents full-model
R?s for complex addition and multiplication problems un-
der exhaustive and self-terminating strategies. Inspection
of Table 4 reveals that the self-terminating strategy, com-
pared with the exhaustive strategy, resulted in a mean in-
crease in RT variance explained of 42.2% for complex
addition problems and 19.3 % for complex multiplication
problems. The assumption that subjects used a self-
terminating strategy is thus supported for both addition
and multiplication problems.

Table 4
Fuli-Model R’s Comparing Exhaustive with
" Seif-Terminating Strategies

Percent Increase

Column Self- In RT Variance
Parameter Exhaustive Terminating Explained
Addition
prod 438 867 429
sum’ .449 .866 4i.7
min 439 .859 42.0
Muluiplication
prod .679 .878 19.9
sum? .674 .866 19.2
min .676 .865 18.9

Note—Prod = product; sum® = square of the correct sum; min = smaller
of the two addends (or multiplicand and multiplier).
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DISCUSSION

Converging evidence has suggested the existence of an
interrelated memory network for addition and multipli-
cation facts (Miller et al., 1984; Parkman, 1972; Stazyk
et al., 1982; Winkelman & Schmidt, 1974). The results
of the present study further support this hypothesis, and
suggest that it is true for both simple and complex
problems. The prod parameter, which has been interpreted
as representing search distance in long-term memory for
multiplication facts (Stazyk et al., 1982) and addition facts
(Miller et al., 1984; Widaman et al., 1986), provided the
best representation of RT data for both simple and com-
plex forms of addition and multiplication problems.
Although the prod variable provided the best fit to RT
across all four problem types, its fit was only slightly bet-
ter, in several cases, than that of the min and sum?
parameters. Thus, a strong argument favoring the prod
variable over the min or sum? variables cannot be made.
Nevertheless, slope estimates for the prod structural vari-
able did not differ significantly, either between simple and
complex problems within operations or across addition and
multiplication operations. The memory retrieval process,
therefore, appears to have highly similar, if not identical,
search speeds for both addition and multiplication facts.

The prod structural variable allows for a conceptual
model of the memory network search that is simpler than
models proposed previously. Widaman et al. (1986)
showed that the prod was compatible with a geometric
matrix representing a memory network similar to that pro-
posed by Ashcraft and Battaglia (1978). Like Ashcraft and
Battaglia, Widaman et al. conceptualized the memory net-
work as a square symmetric matrix, with two orthogonal
axes representing nodes for the two integers to be added.
However, in Widaman et al.’s model the distance between
the nodal values is assumed to be constant, not
““stretched’” in the region of larger sums, as in Ashcraft
and Battaglia’s model. The network is entered at the ori-
gin, and the rate of activation of the network is assumed
to be a constant function of the area of the network acti-
vated. The prod structural variable represents the total area
of the matrix activated, and the prod is then linearly related
to the search time required to arrive at the correct answer.

A third axis, representing the different operations of
addition and multiplication, is a reasonable addition to the
model of the memory network for arithmetic facts. The
third axis results in a three-dimensional model of simple
arithmetic facts. The three dimensions include one dimen-
sion, or node, for the first addend (or multiplicand); a
second dimension, or node, for the second addend (or
multiplier); and a third dimension that specifies the oper-
ation performed (addition vs. multiplication). Such a
model allows for the representation of arithmetic facts for
different operations at different levels in the long-term
memory network. Thus, declarative knowledge of the cor-
rect answer for the problems 7 + 3 and 7 X 3 would be
represented in the same region of the matrix, but at differ-
ent levels. The activation of the three-dimensional matrix
would commence with the encoding of presented integers

(e.g., 7 and 3) and with the activation of information at
all levels of the operator axis. The specification of the
correct operation for the stated problem (e.g., addition)
would result in preferential activation of the matrix at this
level, but remaining levels of the operation axis would
be activated in accord with the similarity of the operator
to the correct operation for the problem. The retrieved
arithmetic fact would then be represented by the activated
area of the matrix at the level of the operator axis given
preferential activation.

The preceding conceptual model for the long-term
memory network of arithmetic facts is an elaboration of
previous conceptual models (Ashcraft & Battaglia, 1982;
Parkman, 1972; Widaman et al., 1986) that allows spe-
cifically for confusion effects (Stazyk et al., 1982;
Winkelman & Schmidt, 1974). Confusion effects would
occur with the simultaneous activation of differing levels
of the operator axis in the same region of the memory
network. Accordingly, the probability of retrieving cer-
tain arithmetic facts (e.g., 7 + 3 = 10,0r7 X 3 = 21)
is greater than 0 for any single operation at the area of
the region represented by the product of the integers. The
greater the probability of retrieving conflicting informa-
tion from the same region of the network, the greater the
confusion effect.

The second purpose of this study was to assess the fit
of Widaman et al.’s (1986) model for cognitive multipli-
cation. We found support for the idea of identical process
components for both simple and complex forms of addi-
tion and multiplication. Complex multiplication problems
appear to be processed columnwise, and the best-fitting
model included the same structural variables for encod-
ing, memory search, carrying to the next column, and
for the differences between ‘‘true’’ and “‘false’’ problems
as did the model for complex addition problems. Regres-
sion weight estimates did not differ significantly for the
search (product) and verification (truth) processes, or for
the carrying operation.

The combined analyses suggested that encoding time
per digit may increase as the number of digits in the ad-
dends or multiplier and multiplicand in a problem in-
creases. Such a finding was previously reported by Wida-
man et al. (1986) for different types of addition problems,
and is similar to a finding by Poltrock and Schwartz (1984)
for multidigit number comparison. In the present study,
simple problems had two digits in the addends or mul-
tiplier and multiplicand, complex multiplication problems
had three digits, and complex addition problems had four
digits. Statistical tests of encoding time per digit compar-
ing the above three problem types were not always sig-
nificant. However, a linear increase of 60 to 65 msec in
the per-digit encoding time was observed with each in-
crease of one digit per problem. The above finding is con-
sistent with Widaman et al.’s report of a linear increase
of 57 msec in per-digit encoding time as the number of
digits per problem increased.

Finally, Widaman et al.’s (1986) finding of self-
terminating processing of arithmetic problems was repli-
cated for addition problems and verified for multiplica-
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tion problems. Appropriate self-termination requires the
action of a metacognitive process that monitors the course
of problem solution, selecting and executing proper
process components at each step. Thus, the processing
of tens-column information under a self-terminating
strategy is contingent upon whether an error is encoun-
tered in the units column; under an exhaustive strategy,
the complete problem is processed regardless of whether
errors are encountered. Under a self-terminating strategy,
the component process most efficient in solving the problem
is executed; that is, either the response ‘‘false’’ is made
following a units-column error, or the tens-column infor-
mation is processed if the units-column answer is correct.
The R* differences between models reflecting self-
terminating and exhaustive processing were larger for ad-
dition than for multiplication. This result likely reflects
physical, rather than operational, differences between these
two problem types (see Widaman et al., 1986).

To conclude, the present study provides further evi-
dence for a single memory network for addition and mul-
tiplication facts. Furthermore, identical processing com-
ponents, including a metacognitive component, appear (o
be used for the processing of both addition and multipli-
cation problems, and these processing components may
prove important for the study of other arithmetic opera-
tions. Finally, the combined regression analyses described
provide an adjunct methodology, complementing the use
of confusion experiments, for the comparison of compo-
nent processes within operations and across arithmetic
operations.
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NOTES

1. Hand assignment was not counterbalanced, because previous studies
in our laboratory have indicated that the magnitude and direction of the
“‘true”’/*“false’” intercept differences are not different regardless of
whether or not hand assignment is counterbalanced.

2. Order of presentation of problem type was not counterbalanced,
because of our concern that repeated transitions from one operation to
the other might be confusing for some subjects. The period between
the second addition set and the first multiplication set was at least 5 min,
and subjects were told that they would be presented with multiplication
problems before beginning this new operation. These precautions were
taken to ensure that subjects did not confuse addition with multiplica-
tion, and multiplication with addition.

3. The determination of best fit was made in terms of variance ex-
plained. Thus, the prod structural variable provided a better fit than did
the min and sum’ variables. However, the R? differences for equations
including each of these variables are small; therefore, it cannot be ar-
gued that the prod variable is absolutely the best search/compute predictor
for these data. Rather, the prod was better than all other search/com-
pute variables tested.

4. Miller et al. (1984) reported that simple multiplication problems
that included 2 | as the multiplicand or multiplier were processed rather
quickly, relative to problems not containing a 1 (or a 0). In the present
study, this effect was found only for simple multiplication problems when
the multiplicand was a 1, and only for complex multiplication problems
when the multiplier was a 1. However, analyses excluding the above
multiplication problems yielded results that were identical in all essen-
tial respects to the results of analyses including these probiems. That
is, excluding the above problems made no difference in terms of the
relative fit of particular regression equations, and made no noticeable
difference in terms of the size of the regression estimates for variables
in each regression equation. Therefore, results from the full set of stimuli
were presented.

5. The NI parameter for the combined regression equation (in Ta-
ble 3) was coded in the same manner as the NI parameter for the com-
bined simple and complex multiplication analysis.

6. The NI parameter for the combined regression equation {in Ta-
ble 3) was coded in the same manner as the NI parameter for the com-
bined simple and complex addition analysis.
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