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A cognitive analysis of number-series problems:
Sources of individual differences in performance
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Two experiments were conducted to identify the roles of three hypothesized procedures in the
solution of simple number-series problems and to determine whether individual differences in
these solution procedures are related to performance on a number-series subtest from a stan­
dardized test of intelligence. The three procedures are recognition of memorized series, calcula­
tion, and checking. Subjects verified whether number sequences formed rule-based series. True
series included both memorized counting series (e.g., "5 10 15 20") and unfamiliar noncounting
series (e.g., "1 4 7 10"). False series could not be described by simple rules. The results of Experi­
ment 1 indicated that (1) counting series were verified more quickly than were noncounting se­
ries, and (2)partial counting information in false series facilitated rejection. In Experiment 2,
reliable differences in recognition of memorized sequences and calculational efficiencywere found
between individuals who scored well on a standardized test of number-series completion and those
who scored poorly. The results provide a basis for understanding how individual differences in
knowledge influence performance on problems often used to assess inductive reasoning skill.

Inductive reasoning, defined as inferring a general rule
or relation from specific elements, is generally considered
to be an integral component of many cognitive activities
(Greeno, 1978; Holyoak, 1984; Pellegrino & Glaser,
1980, 1982; Simon & Lea, 1974). Reliable individual
differences in inductive reasoning exist (Sternberg &
Gardner, 1983), and psychometric tests of intelligence
often consist in large part of items that are presumed to
require inductive reasoning. Recent research on induc­
tive reasoning has been focused on identifying the cogni­
tive processes involved in psychometric tasks, such as
analogy problems (Holzman, Pellegrino, & Glaser, 1982;
Mulholland, Pellegrino, & Glaser, 1980; Sternberg, 1977)
and series-completion problems (Holzman, Pellegrino, &
Glaser, 1983). Another goal of recent research has
been to identify the cognitive bases of individual differ­
ences in performance (Goldman & Pellegrino, 1984;
Keating, 1984; Pellegrino & Glaser, 1979). The research
reported in this paper is focused on the process of
solving number-series completion problems and, speci­
fically, on identification of the know ledge and process­
ing components that contribute to differential problem­
solving success.

Solution of series-completion problems is considered
to be a prime example of inductive reasoning because a
problem solver must detect or formulate a relation or rule
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among elements in a series. Previous research on series
completion has been based on a general model of solu­
tion that consists of four component processes (Holzman,
Glaser, & Pellegrino, 1976; Holzman et al., 1983;
Kotovsky & Simon, 1973; Simon & Kotovsky, 1963).
Consider, for example, the problem "345 6 13 14 15
16 23_ __, " which consists of three, four-element
periods. The first solution component, detection ofrela­
tions, involves examination of the series and generation
of a hypothesis about the relation that exists among adja­
cent elements (e.g., the relation is +1 among the first four
elements). Relations among numbers may vary consider­
ably in the type of arithmetic operation (e.g., addition,
exponentiation) and the magnitude of the operation (e.g.,
+ 1 vs. +8). The second solution component, discovery
ofperiodicity, involves detection of period boundaries or
structure, and the third component, completion ofpattern
description, involves generation of a rule that accounts
for the position of all elements, both between and within
periods. The fourth component, extrapolation, is the
means by which numbers are generated to fill the blanks.

The first three components combine to produce a pat­
tern description. Conclusions about performance on
series-completion problems are based primarily on a pre­
sumed relationship between pattern descriptions and work­
ing memory: more complex pattern descriptions cor­
respond with greater demands on working memory. In
support of this hypothesized relationship, memory-load
requirements appear to contribute considerably to the
difficulty of alphabetic series (e.g., "aaabbbcc..":
Kotovsky & Simon, 1973) and number series (e.g., "3
7 II 15 19 23 "; Holzman et al., 1983). If working­
memory capacity is important for performance, then in­
dividual differences in capacity should be related to differ­
ences in solution accuracy. Holzman et al. (1983) found
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qualified evidence with children in grades four and five
for a relationship between individual differences in
working-memory capacity and performance on number
series, but no such evidence was found with adults.' Other
factors, such as the type of arithmetic operation and the
magnitude of arithmetic operations within the number se­
ries, also contributed to item difficulty. Holzman et al.
also found that individual differences in performance on
number series might be related to differences in computa­
tional skill among children.

These findings provide a preliminary basis for under­
standing performance on series-completion problems, but
the four separate components of the model have not been
well specified. A more detailed analysis of the compo­
nent processes might be useful for explicating the nature
of reasoning on this task, as well as providing a basis for
detecting individual differences that are important for
reasoning. The first component, detection of relations,
is of special interest because it is an elementary case of
rule induction and because it is involved, in some form,
in the operation of the second and third components as
well. In our research, we sought to provide a more
detailed account of the processes involved in this critical
first component and to determine whether individual
differences in this component are related to scores on a
psychometric test of reasoning that consists of a diverse
set of number series. We hypothesize that three proce­
dures are important for detecting relations among num­
bers: recognition of memorized numerical series, calcu­
lation, and checking.

Recognition 0:numerical series refers to a direct and
relatively rapid comparison between a sequence of num­
bers presented visually and a corresponding sequence
available in semantic memory. In existing formulations
(Holzman et al., 1983; Kotovsky & Simon, 1973), no dis­
tinction is made between series such as "3 69_" and
"25 8 _": presumably, the same rule is induced in both
cases and, therefore, processing demands are equivalent.
In contrast, we hypothesize that the two problems are
solved quite differently. We assume that familiar se­
quences of numbers, such as "3 6 9 12," are stored as
units in semantic memory and can be retrieved relatively
rapidly, much like sections of the alphabet (Klahr, Chase,
& Lovelace, 1983). Thus, identification of a sequence in
a number-series problem occurs when the memorial repre­
sentation of that sequence is activated. Subsequent num­
bers in the sequence are generated by means of retrieval
processes.

When processing unfamiliar sequences, such as "2 5
8 _," attempts to retrieve the sequence fail and calcula­
tionis invoked: Subjectscalculate interelementdifferences
(+3, +3), identify the rule that characterizes these differ­
ences, and then mentally add an appropriate number to
the last element to obtain an answer. Thus, solution of
problems such as "3 6 9 _" is assumed to be based
primarily on recognition of familiar, memorized numer-

ical series, whereas solution of problems such as "2 5
8 _" requires calculation of interelement differences.

It is important to note that the distinction between
"familiar" and "unfamiliar" sequences is entirely heuris­
tic at this point. Our assumption that some sequences are
stored as units in semantic memory is consistent with the
observation that children commonly develop counting
strings (e.g., "5 10 1520 ... ") that can be recited quickly
and accurately (Ashcraft, Fierman, & Bartolotta, 1984).
To operationalize the distinction between familiar and un­
familiar sequences, we assume initially that familiar se­
quences include common, memorized counting strings and
that unfamiliar sequences include other strings that also
have constant interelement differences.

These two procedures, recognition of memorized se­
quences and calculation, operate until a discrepant ele­
ment is discovered, such as the fourth element in "3 6
9 13... " or "2 5 8 12.... " These particular elements
are discrepant in the sense that they violate the simple rule
(+3) that relates the first three elements. A discrepant ele­
ment may mark the boundary between two periods, and
so detection of the discrepancy is important for initializ­
ing recognition of memorized sequences and calculation
procedures on the new period. In problems without a peri­
odic structure, detection of a discrepant element may in­
dicate that the current rule is incorrect. At this point, the
subject may reprocess the sequence to determine whether
the discrepancy is simply the result of an error in the origi­
nal procedure (e.g., an incorrect encoding or a mistaken
calculation). This reprocessing is referred to as checking.
We assume that checking is a relatively lengthy proce­
dure that is invoked as a function of certain problem
characteristics, much like the justification process
described by Sternberg (1977). In particular, checking
should be more evident when the discrepant element
differs only slightly from the expected value (e.g., "25
8 11 13" than when it is completely anomalous (e.g., "2
58 11 93"). In the former case, the discrepancy is more
likely to be due to a simple error in encoding or calcula­
tion, and thus checking would be appropriate for detect­
ing the error; in the latter case, the discrepancy is likely
to be too large to be the result of a simple encoding or
calculation error.

We conducted two experiments, one to identify the roles
of series recognition, calculation, and checking in the so­
lution of simple number-series problems (Experiment 1),
and the other to determine whether individual differences
in these solution procedures are related to performance
on a number-series subtest from a standardized test of in­
telligence (Experiment 2). In both experiments, subjects
judged whether or not sequences of numbers formed
"valid" series, that is, series that could be described by
simple rules. This type of two-choice verification format
has been employed to examine solution processes used
on other tasks of inductive reasoning (e.g., Mulholland
et al., 1980). It is especially appropriate in the present
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context because our primary concern is with processes
that contribute to detection of relations, rather than with
subsequent processes (e.g., extrapolation).

Table 1
Examples of Number-Series Problems Used in Experiment 1

Series Type

Results and Discussion
Accuracy wasveryhigh, averaging 98.6% overalland

ranging from 93.7% (true noncounting series) to 100%
(anomalous counting series). Median response latencies

Invalid
Position 2 2368 I 57 10
Position 3 510 1620 3 7 12 15
Position 4 4 8 12 15 26 10 15

Anomalous
Position 2 548 1520 3 45 11 15
Position 3 1 2 31 4 I 436 10
Position 4 36956 37054

second, third, or fourth positions of corresponding true counting
series.

True noncounting series consisted of less familiar number se­
quences. Each of the true noncounting series in Table I was
presented three times. Corresponding invalid noncounting and
anomalous noncounting series were constructed in the same man­
ner as were counting series.

Thus, the entire set consisted of 36 true, 18 invalid, and 18
anomalous problems. Two different presentation orders were con­
structed so that each third of the problem set (24 problems) con­
tained (I) each of the 6 true counting series and 6 true noncount­
ing series and (2) 3 of each of the four remaining classes of
problems. The order of problems within each third of the set was
randomized with the constraint that no more than 3 true series or
3 false series appeared consecutively.

Procedure. Problems were presented on a video display unit,
and subjects responded by pressing an appropriate key on a response
panel that contained three keys arranged horizontally. Subjects were
instructed to place the index finger of the preferred hand below the
middle key and to return the finger to that position after each
keypress. Presentation of each trial was initiated by pressing the
middle key. A string of four numbers was presented after a 700­
msec delay, and the subject used the right and left keys to indicate
whether the string represented a valid number series. Response
latency and accuracy were recorded by a microcomputer. Follow­
ing a response, the stimulus was removed from the screen and
replaced by a prompt, which remained until the middle key was
pressed again. Both position of the valid or "true" key and stimu­
lus order were counterbalanced across subjects. When presented
at a distance of .6 m from the subject, the series subtended 3.0°
to 5.4° horizontally and 0.5° vertically.

Subjects were informed that a sequence of numbers forms a true
number series if "the numbers are related to each other in a regu­
lar and systematic way," "they form a pattern," or if the sequence
is described by a "regular pattern or rule." Examples of true and
false series were provided. Subjects were also given 10 practice
trials with feedback, including items from each of the six problem
types. They were asked to answer as quickly as possible without
making mistakes.

Note-Discrepant elements are underscored,

258 11
147 10
471013
I 59 13
26 10 14
3 7 11 15

Noncounting Series

1 234
2468
1 357
369 12
4 8 12 16
5 10 15 20

Counting SeriesValidity

True

Method
Subjects. The sample included 16 university undergraduates, 8

males and8 females. Two additional students were tested, but their
data were discarded because of unusually high error rates (greater
than 30%) on specific types of problems.

Materials. The six classes of problems presented in Table I were
defined by the combination of series (counting, noncounting) and
validity (true, invalid, anomalous). True counting series consisted
of familiar sequences of four numbers. Each true counting series
listed in Table I was presented three times, for a total of 18
problems. Both invalid counting series and anomalous counting se­
ries were derivatives of true counting series. Invalid counting se­
ries were constructedby adding I to, or subtracting I from, a number
in a corresponding true counting series. This discrepant alteration
appeared three times in each of the second, third, and fourth posi­
tions, for a total of9 such problems. Similarly, 9 anomalouscounting
series were constructed by substituting a very large number in the

EXPERIMENT 1

Adults werepresented withfour-element, numerical se­
quences and asked to respond to each one by pressing a
"true" or a "false" key, depending on whether the se­
quence formed a valid number series. Valid series in­
cludedbothcounting series (familiarnumberseries) and
noncounting series (unfamiliar series). If the distinction
between counting series and noncounting series is plau­
sible, thenlatencies for truecounting series should be con­
siderably faster than for true noncounting series.

Invalid and anomalous sequences were identical to true
problems, except that one number was altered. For in­
valid problems, the altered number was only slightly
different in magnitude from its correct counterpart,
whereas for anomalous problems, thedifference wasvery
large.Ifchecking is inversely relatedto thedegreeof dis­
crepancy, then anomalous problems should be rejected
much more quickly than invalid problems. Moreover,
latencies for both types of problems can be examined as
a function of the position of the discrepant element to de­
termine whether solution procedures are self-terminating
or exhaustive. Self-termination is often an efficient and
characteristic modeof processing on problems of induc­
tivereasoning (Mulholland et al., 1980; Sternberg, 1977).
For trueproblems, processing must be exhaustive because
all elements mustbe evaluated to determine whether they
fit a rule. For invalid andanomalous problems, however,
processing could terminate as soon as a discrepant ele­
mentin the series is detected. If checking is not invoked
and if self-terminating procedures are used with number
series, thenlatencies for invalid andanomalous problems
should be faster than for corresponding true problems,
because solution of the latter requires exhaustive process­
ing. Ifsolution procedures operate fromleft to right, then
latencies for invalid andanomalous problems also should
increase monotonically as a function of theposition of the
discrepant element.
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for correct responses were computed, and a 2 (series:
counting vs. noncounting) x 3 (validity: true vs. invalid
vs. anomalous) analysis of variance was performed with
repeated measures on both factors. No effects or interac­
tions involving sex were found in preliminary analyses,
so this variable was omitted from subsequent analyses.
Mean values are illustrated in Figure 1. Counting series
were solved more rapidly than were noncounting series
[F(I,15) = 46.45, P < .001]. Latencies also varied reli­
ably by validity [F(2,30) = 36.04, p < .001] and the two
factors interacted [F(2,30) = 8.49, P < .01]. Tests of
simple effects and supplementary analyses of variance
were employed to clarify these effects.

Latencies for true items. Latencies for true counting
series were much faster than for true noncounting series
[F(1,45) = 41.90, p < .001], in support of the distinc­
tion between these two series types. An alternative ex­
planation for this effect is that some of the interelement
differences for true counting series are smaller than the
interelement differences for true noncounting series and
that computation of larger differences simply takes longer
(cf. Groen & Parkman, 1972). To test this hypothesis,
a separate analysis was performed only on problems of
both types for which the interelement differences were
+3 and +4 (e.g., "36912" for counting series and "2
5 8 11" for noncounting series). The +3 problems were

verified faster than were +4 problems [F(1,15) = 8.77,
P < .01]. More importantly, true counting series were
verified more quickly than were true noncounting series
[F(1,15) = 45.52, P < .001], so the difference between
the two types of series cannot be attributed solely to dis­
crepancies in the size of interelement differences.

These results are consistent with the hypothesis that
different processes operate for true counting series than
for true noncounting series: Verification of counting se­
ries may be facilitated by means of counting-recognition
processes, whereas noncounting series may be verified
by means of slower processes that involve the calcula­
tion of interelement differences. Moreover, the difference
between +3 and +4 problems indicates that all instances
within the counting and noncounting categories are not
homogeneous. These differences were explored further
in Experiment 2.

Latencies for invalid items. For both counting series
and noncounting series, latencies for invalid problems
were longer than for true problems [Fs(1,6O) > 15, ps <
.001]. Because true problems appeared more frequently
than invalid or anomalous problems, these latency differ­
ences might reflect an advantage of increased practice on
true problems. However, even when latencies for the first
third of the true problems were compared with latencies
for all invalid and anomalous problems, true items were

4.5

SERIES TYPE
EZ2J COUNTING

4.0 o NONCOUNTING

35

'iil'
-0
c
0 30
o
cv
~

>-u
z 25w
'<t
...J

2.0

1.5

1.0-

TRUE INVALID ANOMALOUS

Figure L Mean verification latencies for the six problem types in Experiment L



INDIVIDUAL DIFFERENCES ON NUMBER-SERIES PROBLEMS 291

Figure 2. Mean verification latencies as a function of the position
of the discrepant element for invalid and anomalous problems in

.Experiment 1. C refers to counting series; N refers to noncounting
series.

solved more quickly. The fact that invalid noncounting
series required considerably more solution time than true
noncounting series is inconsistent with simple hypotheses
about either self-terminating or exhaustive procedures that
predict that no more than an equivalent amount of time
would be spent on invalid as opposed to true problems.
We suggest that, because invalid problems differ only
slightly from their true counterparts, they may elicit a

.degree of checking to confirm that evaluation is correct.
Such checking would be less likely for true problems be­
cause repeated calculations of the same interelement
differences would partially confirm their accuracy.

Invalid noncounting series latencies were even slower
than invalid counting series latencies [F(l,15) = 19.06,
P < .001]. This difference may be attributable to facilita­
tive effects of partial counting information that is present
in invalid counting series but not in invalid noncounting
series. More specifically, partial counting sequences
among the first two or three elements of a series would
make it possible for a subject to process the item rapidly,
facilitated by counting recognition, up to the point of the
discrepant element. The opportunity to use such partial
counting sequences would exist only for invalid counting
series and, if processes operate from left to right, the ad­
vantage would only be apparent when the discrepant ele­
ment was in the rightmost positions. To test this hypothe­
sis, an analysis was performed on median latencies for
invalid counting series and invalid noncounting series
problems with the discrepant element in the second, third,
and fourth positions. The data are presented in the top
portion of Figure 2 and are consistent with these conjec­
tures. When the discrepant element was in the second po­
sition, the difference between counting series and non­
counting series problems was negligible [p > .25]. In
contrast, invalid counting series were solved more quickly
than were invalid noncounting series when the discrepant

234
POSITION OF DISCREPANT ELEMENT

element was in the third or fourth positions [ps < .001],
and latencies for invalid counting series decreased as a
function of position [F(l,60) = 6.88, p < .025]. In ef­
fect, having the discrepant element in the second posi­
tion made invalid counting series and noncounting series
functionally equivalent by eliminating any facilitative ef­
fects due to recognition of partial counting sequences.

In summary, no evidence for self-terminating solution
procedures was found for invalid problems. For invalid
noncounting series, the relatively long solution latencies
and the lack of a position effect are most indicative of
exhaustive processing that includes checking. The
descending function for invalid counting series was un­
expected and is consistent with the notion that exhaustive
procedures are facilitatedby identificationof partial count­
ing information early in the solution process.

Latencies for anomalous items. For both counting se­
ries and noncounting series, latencies for anomalous
problems were much shorter than for invalid problems
[Fs(l,60) > 20, ps < .001] (see Figure 1), as would be
expected if checking is involved only in the latter case.
Anomalous counting series were solved somewhat faster
than were anomalous noncounting series, but the differ­
ence was not reliable. The failure to find a reliable differ­
ence between anomalous counting series and noncount­
ing series appears to indicate that the recognition
procedure is not involved in solving anomalous problems.
Such a conclusion is contradicted, however, by an analy­
sis on median latencies for anomalous problems as a func­
tion of the position of the discrepant element. As illus­
trated in the bottom portion of Figure 2, the effect of po­
sition varied for counting series and noncounting series
[F(2,20) = 11.41, P < .001]. For anomalous non­
counting series, latencies increased linearly as a function
of position [F(l,60) = 17.32,p < .001]. This result is
consistent with the notion that processing proceeds from
left to right and is terminated as soon as an anomaly is
identified.

If processing is self-terminating for anomalous non­
counting series, then the same type of processing might
be expected for anomalous counting series, because the
subject has no prior basis for distinguishing the two types.
Consequently, an ascending function would be found for
anomalous counting series. To the contrary, latencies for
anomalous counting series declined somewhat as a func­
tion of position, but the effect was negligible. One possi­
bility is that processing is exhaustive and partial count­
ing information facilitates rapid analysis on these problems
in much the same way as on invalid counting series. The
need for checking is eliminated by the gross discrepancy
of the anomalous element and, hence, latencies are much
faster. The negative direction of the slope suggests that
partial counting information is recognized more quickly
when the leftmost elements of the counting string are not
disrupted, as was the case for invalid counting series. The
fact that the slope was not significant may indicate that
a "floor" has been reached for recognition of four­
element numerical series, an interpretation that is con-

• N.,
<,.•-,

"<, C

~~N·
ANOMALOY·o--·__·o

INVALID

2.0

4.0

1.5

'Ul'
"0
§ 3.5
o
Ql
III
'-' 3.0

liz
w 2.5
~
...J

4.5



292 LEFEVRE AND BISANZ

sistentwith the fact that latencies for anomalous count­
ing series were similarto those for true counting series.
A second possibility is thatprocessing is self-terminating
and facilitated by partial counting information whenit is
available. Self-termination wouldproduce an ascending
function, partial counting information would produce a
descending function, and the combination couldyieldno
overall effectof position. We favor the second explana­
tion, because it suggests that anomalous counting series
and noncounting series are both processed in a self­
terminating fashion. In either case, partial counting se­
quences facilitate processing.

Thus, the dataare consistent withthe notion thatverifi­
cation of anomalous strings is facilitated by a relatively
rapid process that involves neithercomputation of differ­
encesnor lengthy checking processes. Processing appears
to be self-terminating, but for anomalous counting series,
the usual position effectsof self-termination are negated
by facilitative effects of partial counting information.

Summary
Evaluation of simplenumberseries involves a variety

of procedures that are invoked selectively, depending on
problemcharacteristics. The dataare consistent with the
hypotheses that (1) recognition of memorized sequences
facilitates verification of certain numerical sequences
(counting series) and(2) a self-terminating procedure per­
mits relatively rapidrejection of somesequences contain­
ing grossly discrepant numbers (anomalous items). Verifi­
cationof true and invalidnoncounting series and invalid
counting series depends on slower procedures that most
likelyinvolve mental calculations andcomparisons of in­
terelement differences. Solution procedures used on in­
valid problems appear to be exhaustive and to entail a
degreeof checking. Most striking was the facilitative ef­
fect of partial counting information on invalid counting
seriesand, to a lesserextent, on anomalous counting se­
ries, especially when the discrepant element was in one
of the rightmost positions.

EXPERIMENT 2

Thereweretwomajorobjectives of Experiment 2. The
first was to look for individual differences in the proce­
dures identified in Experiment 1. A large group of sub­
jects were pretested with a number-series subtest from
the Lorge-Thorndike Testof Intelligence (Lorge & Thorn­
dike, 1957). Two smaller samples were isolated from
either end of the range of scores. If expertise at solving
number-series problems is related to individual differences
in counting recognition (cf. Chi, Glaser, & Rees, 1982),
thenthehigh-scoring group might process moresequences
in a uniformly fast mannerthan the low-scoring group.
Wealsosuspected thatcalculational efficiency might differ
between high- and low-skill subjects. In sum, we were
interested in determining whether relatively task-specific
knowledge could contribute to differences in a measure
of inductive-reasoning skill.

The second objective was to replicate and extend the
counting/noncounting and position effects found in Ex­
periment 1. We modified the problemset in a numberof
ways. First, thebasicset of counting serieswasrestricted
to series with differences of 2, 3, 4, and 5, to make the
average interelement differences equivalent between
counting series and noncounting series. Second, the length
of each series was extended from four elements to five,
thus allowing a more stringent test of the various posi­
tioneffectsfound in Experiment 1. Finally, to determine
whethera rangeof sequences that mightbe calledcount­
ingseriesare in factprocessed in a homogeneous fashion,
two extra true counting series were added to the count­
ing set, "12345" and "6 12 182430," and perfor­
mance for each of the true counting series was analyzed
separately.

Method
Pretest. One hundred eight undergraduates were tested in group

sessions lasting about 35 min. Each person received course credit
for participating. Three tests were administered: the number-series
subtest from the Lorge-Thorndike Intelligence Test (Lorge & Thorn­
dike, 1957); the Addition Test (N-l) from the French Kit (French,
Ekstrom, & Price, 1963), which consists of three-term, two-digit
addition problems; and the Subtraction and Multiplication Test
(N-3), also from the French Kit, which consists of two-term sub­
traction and multiplication problems. The latter two, which are es­
sentially speeded tests of fluency with simple arithmetic computa­
tions, were included in order to provide an independent test of simple
arithmetic skill. The number-series subtest consists of 28 number­
series-completion problems in which subjects select the correct an­
swer from five alternatives. The number-series subtest was ad­
ministered first with a 9-min time limit. The arithmetic test was
administered next, each with the standard 4-min time limit. Speed
and accuracy were emphasized in the instructions. No subject com­
pleted all of the items on any test. The mean number of items an­
swered correctly on the number-series subtest, with 28 problems,
was 13.8.

Subjects. Sixteen subjects were selected according to their scores
on the Lorge-Thorndike number-series subtest. One subject was
later replaced because of his high error rate on the experimental
task. Five of these subjects were paid $5 each for participating,
and the others received course credit. Eight of these subjects (4
males and 4 females) were selected from the lower 26%of the to­
tal sample and were designated as "low skill"; the remaining 8
(4 males and 4 females) were selected from the upper 12%and were
designated "high skill." Mean Lorge-Thorndike scores for the low­
and high-skill groups were 8.6 and 20.5, respectively.

Materials and Procedure. The procedure was identical to that
used in Experiment 1. Stimuli consisted of five-element number
strings but were otherwise similar to those in Experiment 1. Each
of the four true counting series and true noncounting series in Ta­
ble 2 was presented eight times, for a total of 64 valid items. Another
64 false items (32 invalid and 32 anomalous) were constructed as
in Experiment 1, except that the discrepant elements appeared in
each of four positions an equal number of times. Examples are
presented in Table 2. In addition to those 128 items, two extra true
counting series-"1 2 3 4 5" and "6 12 1824 30"-were each
presented eight times, for a total of 144 items.

Two presentation orders were constructed such that, within each
quarter of the problem set (32 problems), each true item appeared
twice and the discrepant element appeared an equal number of times
in each of the four positions for both invalid and anomalous items.
The order of the problems was randomized with the constraint that
no more than three true or false problems appeared in a row.
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Table 2
Examples of Number-Series Problems Used in Experiment 2

Series Type

Invalid
Position 2 256810 48 10 13 16
Position 3 3 6 ~ 12 IS 2 59 II 14
Position 4 4 8 12 1520 59 13 18 21
Position 5 510 1520 M 3 7 II 15 20

Anomalous
Position 2 583 152025 3 83 II 15 19
Position 3 4 873 1620 5 9 73 17 21
Position 4 369 ~ 15 25 863 14
Position 5 246892 47 10 13 92

Results
The 16 extra true problems were omitted in the follow­

ing analyses, except as noted. As in Experiment I, ac­
curacy was high, averaging 97.2 % overall. Median
response latencies were computed and analyzed in a
2 (skill: low vs. high) X 2 (sex: male vs. female) x
2 (series: counting vs. noncounting) X 3 (validity: true
vs. invalid vs. anomalous) analysis of variance with
repeated measures on the last two factors. 2 As in Experi­
ment 1, counting series were solved more quickly than
were noncounting series [F(1, 12) = 72.51, P < .001],
response times varied with validity [F(2,24) = 28.88,
P < .001], and the two factors interacted [F(2,24) =
5.46, p = .01]. Furthermore, high-skill subjects were
faster than low-skill subjects [F(1, 12) = 6.68, p < .05].

Note-Discrepant elements are underscored.

Skill also interacted with series [F(1,12) = 5.23, p <
.05], and the interaction of skill, series, and validity just
missed the conventional level of significance [F(2,24) =
3.07,p = .065]. Mean values are illustrated in Figure 3.
Tests of simple effects and supplementaryanalyses of vari­
ance were used to clarify these effects.

Latencies on true items. True counting series were
solved more quickly than were true noncounting series
[F(1,36) = 62.52,p < .001]. To identify possible differ­
ences among counting series and between groups, laten­
cies on the four true counting series shown in Table 2,
plus the two extra true counting series, were analyzed in
a 2 (skill: low vs. high) x (2 sex: male vs. female) x
6 (counting series: + I, +2, +3, +4, +5, +6) analysis of
variance with repeated measures on the last factor. High­
skill subjects were faster than low-skill subjects [F(1, 12)
= 6.10, p < .05], response time varied with the type
of counting series [F(5,60) = 19.35,p < .001], and these
two factors interacted [F(5,60) = 2.89, p < .05]. Mean
values are shown in Figure 4.

For the + I (1 2 3 4 5), +2 (2 4 6 8 10), and +5 (5
10 IS 20 25) counting series, there was no latency differ­
ence between high- and low-skill subjects [Fs(l,72) < 1].
In contrast, for the +3 (3 69 12 15) series, the skill differ­
ence approached significance [F(1,72) = 3.36,p < .1],
and for the +4 (4 8 12 16 20) and +6 (6 12 18 24 30)
series, high-skill subjects responded more quickly than
low-skill subjects [Fs(1,72) > 9,ps < .01]. Thus, there
were reliable skill differences on a subset of the counting
series, suggesting that all such series were not processed
in the same way.

A related issue involves within-group counting series
differences. Neuman-Keuls analyses of the verification
times for the six counting series were done within each

258 II 14
4 7 10 13 16
3 7 II IS 19
59131721

Noncounting Series

246810
3 6 9 12 15
4 8 12 1620
5 10 152025
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Figure 3. Mean verilkation latendes for low- and bigh-skill subjects on tbe six problem types
in Experiment 2.
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N

+1 +2 +3 +4 +5 +6
INTERELEMENT DIFFERENCES

5. ' , Verification times across counting series for in­
dividual subjects are illustrated in Figure 5. Essentially,
the variability across counting series and skill levels sup­
ports the conclusions drawn from the Neuman-Keuls anal­
yses. All subjects were relatively fast and uniform on the
+1, +2, and +5 counting series, but low-skill individuals
were extremely variable on the other counting series.
High-skill subjects were less variable across all counting
series, with the possible exception of +6.

Another potential source of individual differences in
number-series solution is calculational efficiency. Anal­
ysis of the true noncounting items (the short lines in
Figure 4) suggests that speed of calculation is a source
of individual differences on number-series problems. A
2 (skill) X 2 (sex) x 2 (size: +3 vs. +4) analysis of vari­
ance indicated that, in addition to main effects of skill and
size, there was a reliable interaction of these two factors
[F(1,12) = 22.96, P < .001]. Low-skill subjects veri­
fied +3 problems more quickly than +4 problems [F(1,12)
= 56.17, P < .001], whereas high-skill subjects did not
[F < 1]. Thus, not only are low-skill subjects slower at
calculating interelement differences than high-skill sub­
jects, but the size of the interelement difference only in­
fluences latencies for the low-skill subjects. This result
suggests that low-skill subjects use less efficient mental
calculation processes. Two additional observations sup­
port this conclusion. First, the differences between low­
and high-skill subjects was relatively small on items that
could be solved without calculations (435 msec on true
counting series) but very large on items that require cal­
culations (1,864 msec on true noncounting series). This
discrepancy between groups may even be an underesti­
mate of the difference in calculational efficiency if some
low-skill subjects were using mental calculations on some
true counting series. Second, high-skill subjects solved
many more problems than low-skill subjects on the
speeded tests of arithmetic fluency (122.8 vs. 76.1 cor-
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skill group, using an alpha level of .01. For low-skill sub­
jects, the +1, +2, and +5 counting series did not differ
from each other, although all were verified significantly
faster than the +3, +4, and +6 series, and the +3 series
was verified more quickly than the +6 series. For high­
skill subjects, however, the only difference was that "6
12 182436" was verified more slowly than "1 2 3 4

Figure 4. Mean verification latencies for true problems as a func­
tion of interelement differences in Experiment 2. C refers to count­
ing series; N refers to noncounting series.

LOW-SKll GlOlJl

+1 +2 +3 +4 +5 ~

tmIIIllNT IJfEJOOS
+1 +2 +3 +4 +5 ~

tI1OO.EIlNT IJfEJOOS

Figure 5. Median verification latencies for each subject on the six true count­
ing series in Experiment 2.
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Figure 6. Mean verification latencies as a function of theposition
of the discrepant element for invalid and anomalous problems in
Experiment 2. C refers to counting series; N refers to noncounting
series.

anomalous counting series were rejected more quickly
than anomalous noncounting series [F(1,36) = 13.9,
P < .01].

Latencies for anomalous problems were analyzed in a
2 (skill: low vs. high) x 2 (sex: male vs. female) x
2 (series: counting vs. noncounting) x 4 (position) anal­
ysis of variance with repeated measures on the last two
factors. High-skill subjects were faster than low-skill sub­
jects [F(l, 12) = 5.61, P < .05], and counting series were
solved more quickly than noncounting series [F(l, 12) =
17.62, p < .001]. Although there was no overall effect
of position, series interacted with position [F(3,36) =
9.84, P < .001] and these two factors interacted with skill
[F(3,36) = 5.08, p < .01].

The interaction of series and position is shown in the
bottom part of Figure 6. The configuration is very differ­
ent from that for invalid problems. There was no effect
of position for counting series, and an increase as a func­
tion of position for noncounting series occurred. Qualita­
tively, these results were similar to those obtained for the
anomalous problems in Experiment 1 (compare Figure 2
and Figure 6). Differences between the two experiments
appear to bedue primarily to two factors. First, the aver­
age latency for noncounting series was greater than for
counting series in Experiment 2, because longer series
were used, and the mean latency for noncounting series
was influenced more by the relatively lengthy times to
reject items with the discrepant element in later positions.

rect across the two tests). More generally, the correla­
tion between Lorge-Thorndike scores and scores on the
arithmetic fluency tests for the total sample were moder­
ate but significant [r(I06) = .36 for the Addition Test,
and r(106) = .29 for the Subtraction and Multiplication
Test, ps < .01].

In sum, analyses of the true data indicate that (1) a sub­
stantiallatency difference exists between counting series
and noncounting series, (2) some numerical sequences are
recognized quickly by all subjects, (3) high-skill subjects
process different counting series in a more homogeneous
fashion then do low-skill subjects, and (4) calculation
slows the latencies of low-skill subjects more than those
of high-skill subjects. Interestingly, although low-skill
subjects may process fewer sequences at a very fast rate,
they benefit from the facilitative effects of counting in­
formation more than do high-skill subjects because their
calculations are so time-consuming.

Latencies on invalid items. As in Experiment 1, in­
valid problems were analyzed according to the position
of the discrepant element in a 2 (skill: low vs. high) x
2 (sex: male vs. female) x 2 (series: counting vs. non­
counting) x 4 (position: 2 vs. 3 vs. 4 vs. 5) analysis of
variance with repeated measures on the last two factors.
High-skill subjects were marginally faster than low-skill
subjects [F(l,12) = 4.32,p = .06]. Counting series were
solved more quickly than noncounting series [F(l, 12) =
22.31, P < .001], latency varied as a function of posi­
tion [F(3,36) = 4.90, P < .01], and these two factors
interacted [F(3,36) = 3.80, P < .05]. Mean values are
shown in the top part of Figure 6.

As in Experiment 1, the facilitating effect of partial
counting information was evidenced by the fact that verifi­
cation times for invalid counting series varied as a func­
tion of position [F(3,72) = 6.42, P < .001], and the
decreasing linear component of the trend was significant
[F(l,72) = 16.87, P < .01]. In contrast, latencies for
invalid noncounting series varied only marginally with po­
sition (p < .10).

In sum, the results of the position analysis for invalid
problems are consistent with those found in Experiment I
and support the conclusions that partial counting infor­
mation facilitates solution, and checking processes con­
tribute to relatively long latencies on these problems. In
addition, this experiment demonstrated that partial count­
ing information facilitates rejection latency on invalid
items for both low- and high-skill subjects.

Latencies on anomalous items. As in Experiment I,
latencies on anomalous problems were much faster than
on invalid problems for both counting series and noncount­
ing series [Fs(l ,48) > 31, ps < .001], true counting se­
ries and anomalous counting series did not differ [F(I,48)
< 1], and anomalous noncounting series were solved
more quickly than true noncounting series [F(1,48) =
10.95, P < .01]. Contrary to the results in Experiment 1,
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Second, the performance of low-skill subjects differed
markedly from thatof bothhigh-skill subjects andthe sub­
jects in Experiment 1 (see Figure 7).

For bothhigh-and low-skill subjects, latencies did not
vary as a function of position on anomalous counting se­
ries, a finding that replicates the results of Experiment 1.
Thetwogroups differed considerably in theirperformance
on noncounting series, however. For high-skill in­
dividuals, the linearcomponent of the position effectwas
significant [F(1,144) = 3.97, p < .05], representing an
increaseof about 300 msecper position. This moderate
increase is comparable to thatfound in Experiment 1 (ap­
proximately 400 msec per position). For low-skill in­
dividuals, the effect of position is much more striking.
The elevation of the Position 2 latency was due primar­
ily to one subject who was extremely slow on certain
problems. Whenhis latencies are excluded, latencies for
noncounting problems increaselinearly as a function of
position. However, this increase is about 1 sec per posi­
tion, more than three times that of the increase for high­
skill subjects, and over twice that of the Experiment 1
subjects.

The results with anomalous items are consistent with
our interpretations of performance in Experiment 1,
although somemodification is requiredto account for the
data of low-skill individuals. Processing of anomalous
items is relatively rapidandself-terminating, although for
counting series, the facilitative effectsof counting infor­
mation balance theposition effects usually associated with
self-termination. For noncounting series, the magnitude
of the slope for low-skill subjects in Figure 7 indicates
that theyinvoke slowcalculational processes fromthebe­
ginning,whereas high-skill subjects eitherdetectanoma­
lies without calculating or calculate veryquickly. Count­
ing series information clearlybenefits low-skill subjects
more than high-skill subjects.

2 345
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Figure 7. Mean verification latencies as a function of the position
of the discrepant element for anomalous problems in Experiment 2.
C refers to counting series; N refers to noncounting series.

Summary
Theresults of thisexperiment generally replicated those

of Experiment 1. In addition, this experiment provided
evidence for sourcesof individual differences in solution
of number-series problems. First, high-andlow-skill sub­
jects were equally fast on somecounting series (+1, +2,
and +5), butlow-skill subjects weregenerally slowerand
morevariable on othercounting series(+3, +4, +6). Sec­
ond, partialcounting information facilitated performance
of high- and low-skill subjects to a similardegree on in­
valid problems, but low-skill subjects benefited more on
anomalous problems. Low-skill subjects were slower at
calculation and, hence, weremore likelyto benefitin sit­
uations whererecognition of memorized sequences could
be used. Thefactthat the two groupsdid not showdiffer­
ent degreesof benefiton invalid items may indicate that
high-skill subjects are more likelyto checktheir calcula­
tions than are low-skill subjects.

GENERAL DISCUSSION

Previous models of series-completion solution (Holz­
manet al., 1983; Kotovsky & Simon, 1973) include four
processes: relations detection, discovery of periodicity,
completion of pattern description, and extrapolation. In
thispaper, we focused on relations detection in an attempt
to specify the component procedures that might be in­
volved in the initial stages of formulating a pattern descrip­
tion or rule. At least three procedures are involved in re­
lations detection: recognition of memorized sequences,
calculation, and checking. These three procedures were
utilized in various combinations to verifysimple number
series. Recognition was usedto quickly verify counting,
but not noncounting, sequences. Similarly, partialcount­
inginformation facilitated processing of the sequence and
hence rejectionof both invalid and anomalous counting
series. Calculation of interelement differences was used
when a number sequence could not be retrieved from
memory. Checking, or partial reprocessing, wasusedon
invalid problems thatdifferedonlyslightly fromvalidse­
ries. Finally, these procedures were self-terminating on
problems that contained highly anomalous elements and
were obviously false, thus saving unnecessary process­
ing. Individual differences in the component procedures
werealso identified: High-skill subjects used recognition
of memorized series on a wider ranger of number se­
quences andcalculated moreefficiently thandidlow-skill
subjects.

Whenseveral procedures are involved in a routine such
as relations detection, the question that arisesis howthese
procedures are organized and implemented. Sieglerand
Shrager (1984) described a modelof how childrensolve
simple arithmetic problems (e.g., 2+3) that mayalsobe
applicable to relations detection in our task. In theirmodel,
an initial fast retrieval of the correct answer is attempted.
If retrieval is unsuccessful, then slower, more elabora-
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tive processes (e.g., counting) are used to find an answer.
In our task, subjects first attempted to match the presented
number sequence to a memorized series. If the attempt
to match the series was unsuccessful, they then used
slower, more effortful processes (e.g., calculation) to as­
sist verification. In our studies, certain problems (e.g.,
"5 10 152025") reliably elicited recognition of memo­
rized sequences in all subjects. Other problems (e.g., "4
8 12 1620") elicited recognition of memorized sequences
for some subjects and calculation for others. These results
suggest that the particular procedures used during rela­
tions detection depend both on the characteristics of the
problem and on the knowledge base of the individual solv­
ing the problem. Knowledge, in this case, is indexed by
accurate and rapid retrieval, rather than by accuracy alone.

Series-completion problems are often used as a mea­
sure of inductive reasoning, so we can speculate as to
whether and how the differences between high- and low­
skill subjects in Experiment 2 are related more generally
to individual differences in reasoning. The differences in
recognition of memorized sequences and calculation be­
tween high- and low-skill individuals are consistent with
two recent observations about performance on various in­
ductive reasoning tasks: (1) estimates of various
information-processing parameters correlate significantly
with factor loadings that represent psychometric measures
of inductive reasoning (Sternberg & Gardner, 1983) and
(2) adults who score well on tests of inductive reasoning
generally process information more efficiently than other
adults (Goldman & Pellegrino, 1984).

Our findings provide some basis for refining these
generalizations. High- and low-skill subjects differed from
each other on both forms of rule induction that were as­
sessed: a rapid process (recognition of memorized se­
quences) and a slower, more elaborative process (calcu­
lation). The nature of the difference varied, however: In
the case of recognition of memorized sequences, low-skill
subjects were as efficient as high-skill subjects on some
stimuli, but on others they were variable and generally
less efficient; in the case of calculation, low-skill subjects
were consistently less efficient. Both types of skill appear
to be relatively domain-specific. The ability to recognize
patterns or configurations of information in the domain
is a characteristic of expertise in chess (Chase & Simon,
1973), electronics (Egan & Schwartz, 1979), physics (Chi
et al., 1982), and even baseball (Chiesi, Spilich, & Voss,
1979). Similarly, striking individual differences exist in
manipulating numerical information (e.g., Hunter, 1977).
Recognition of memorized series and calculation may well
be domain-specific forms of knowledge, but they proba­
bly are not task-specific: both procedures may be applica­
ble to a wide variety of tasks that require numerical skills
(Holzman et al., 1982; Muth, 1984). In contrast, check­
ing and self-termination are related to efficiency and may
well be both task- and domain-independent, but neither
characteristic appeared to be related to skill in Experi­
ment 2. Thus, we speculate that differences in efficiency

between high- and low-skill individuals may be most evi­
dent for processes that are relatively domain-specific.

In the present studies, we examined an aspect of per­
formance on a particular task, rather than seeking to iden­
tify processes that apply to many tasks. This approach is
quite limited in scope, but it does have some advantages.
Consider, for example, the research by Sternberg and
Gardner (1983) on inductive reasoning. Sternberg and
Gardner postulated such components as inference, map­
ping, and justification to account for performance on
series-completion problems and on other tasks of induc­
tive reasoning. These postulated components appear to
have some degree of commonality across different tasks,
but as Goldman and Pellegrino (1984, p. 194) noted, the
processes to which these labels refer are not well described
(see also Pellegrino & Lyon, 1979). Indeed, the task anal­
ysis provided by Sternberg and Gardner is not sufficient
for distinguishing such vastly different procedures as
recognition of memorized sequences and calculation,
which clearly need to be incorporated into any compre­
hensive model of number-series solution. Thus, the
present approach, although limited in its initial general­
ity, complements Sternberg and Gardner's approach by
providing a more finely grained view of underlying solu­
tion procedures and, hence, a more detailed perspective
on potential sources of individual differences.
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NOTES

1. Holzmanet al. (1983) used backwarddigit span as a measure of
working-memory capacity. Given more recent evidence that working
memoryand short-term memory may be functionally distinct(Brainerd
& Kingma, 1985;Klapp, Marshburn, & Lester, 1983)and that back­
ward digit span may reflect short-term rather than working memory,
failureto findcompelling correlations betweenbackwarddigitspanand
performanceon number series may not be a satisfactory basis for re­
jecting the hypothesized relationship.

2. There were no main effects of sex in the responsetime analyses.
Sex was involvedin some interactions, but the failure to find similar
effectsin Experiment I limitsthe generalityof the results. Information
about effects related to sex is available on request.
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