
Behavior Research Methods, Instruments, & Computers
1984, 16 (4), 388-394

COMPUTER TECHNOLOGY
The TMS 9918A VDP: A new device for

generating moving displays on a microcomputer
BENNETT I. BERTENTHAL and STEVEN J. KRAMER

University of Virginia, Charlottesville, Virginia

A procedure for creating smooth and continuous moving displays on a microcomputer using
the TMS 9918A video display processor (VDP) is discussed. This processor shares all of the fea­
tures of other VDPs and, in addition, enables the user to directly program smooth motion of
specified graphics shapes (sprites) with multilevel pattern overlaying. The general principles
for programming this video chip are described, and a machine language driver is presented.
Three illustrative applications from the event perception literature-wheel-generated motion,
kinetic disruption of optical texture, and biomechanical motions-are presented as demonstra­
tions of how the unique features of this video chip can be implemented in the creation of dy­
namic displays.

The microcomputer is fast becoming a major tool of
the visual perception laboratory (Cavanagh & Anstis,
1980). Included among its functions are the creation and
rapid presentation of well-defined shapes, texture
patterns, and scenes, the implementation of interactive
displays, and the simple presentation of apparent­
motion phenomena. One remaining function that has
proved more elusive to implement involves smooth and
continuous animation, especially when surfaces occlude
and disocclude one another as they move. Yet, the
availability of this last function is no less important
than the others, since it is essential to the study of the
kinetic specification of objects and their spatial layout,
a topic beginning to receive increasing interest in the
visual perception literature (Johansson, von Hofsten,
& Jansson, 1980).

Machine language programs represent one solution
to the animation problem (e.g., Jochumson, 1983),
but the availability of this programming skill is fairly
restricted and programming in machine language is
certainly much more laborious than programming in
higher level languages. Furthermore, the frequent need
for hidden line and surface algorithms adds substantially
to the complexity of the programming task and, more
importantly, places additional demands on the relatively
slow-operating microprocessor. The net result is that,
even with a machine language program, the rate of
movement is often slowed to a level that compromises
the perception of smooth and continuous motion,
especially when large shapes are involved.

In this paper, we introduce an alternative solution for

Preparation of this paper was supported in part by NICHD
Grant HD-16195. We wish to thank Dennis Proffitt for his
assistance in the creation of some of the figures and Marshall M.
Haith for his comments on a previous version of this manuscript.
Reprint requests should be addressed to: Bennett I. Bertenthal,
Department of Psychology, Gilmer Hall, University of Virginia,
Charlottesville, VA 22901.

producing animated displays that is more powerful than
the standard machine language approach, and yet easier
to implement. The major component of this solution
is an integrated circuit by Texas Instruments, the
TMS 9918A video display processor (VDPV This chip
includes certain features that make it ideally suited for
creating animation. In particular, it provides the oppor­
tunity for displaying and moving sprites.

SPRITES AND OTHER FEATURES OF THE
TMS 9918A VDP

A sprite is a colored block shape that can be drawn
on a video plane in a position given by a single pair of
coordinates specifying a particular vertical and hori­
zontal location on the screen. These graphic objects can
be programmed in two sizes: 8 x 8 and 16 x 16 pixel
(picture element) arrays. The size of the individual
elements can be increased from 1 pixel to a 2 x 2 array
of pixels through a magnification factor. User-defined
shapes are created by programming a subset of the
pixels in the array to appear as a particular color (15
possible colors) and setting the remaining pixels to
transparent.

Animation of each shape is accomplished by simply
changing the values of the x,y coordinates correspond­
ing to the upper left-hand comer of the sprite. This
procedure provides a method for quickly and smoothly
moving patterns at a resolution of I pixel: The full
screen resolution is 256 pixels horizontally and 196
vertically. In contrast, programming animation with
other VDPs necessitates that a shape be drawn at one
location, erased, and then redrawn at a new location.
Even for those readers unfamiliar with the programming
demands of the latter procedure, it should be apparent
that the use of sprite graphics is the simpler of the two
alternatives.

Copyright 1984 Psychonomic Society, Inc. 388

Programming with sprites also eliminates many of the
difficulties encountered when overlaying a moving ob­
ject on top of another surface. Each sprite occupies 1
of 32 separate video planes organized together as a set
of vertically stacked display planes, not unlike 32
panes of glass sandwiched together (see Figure 1).
Sprites are assigned priorities of visibility as a function
of their position in depth relative to the observer. The
closest plane is assigned a priority of 0, and the furthest
plane is assigned a value of 31. Any time portions of
two or more sprites occupy the same location on the
screen, that portion of the sprite with the lower priority
(i.e., higher number) will be occluded by the sprite
with the higher priority. For example, notice how the
front of the car is occluded by the tree in Figure 1.
Also, as the car continues to move behind the tree, there
will appear a progressive deletion and accretion of tex­
ture corresponding to the car. The point to be empha­
sized is that neither of these effects needs to be pro­
grammed; occlusion of the car occurs simply because it
is composed of sprites with lower priorities than the
sprites composing the tree. Thus, the unique graphics
architecture of the TMS 9918A VDP enables the pro­
grammer to simulate both static and kinetic occlusion
without any need for complex hidden -surface algorithms.
This feature is especially useful for simulating three­
dimensional displays, since it is well known from the
visual perception literature that occlusion information
is perceived as specifying the depth-order relations
among different surfaces, especially when one surface
is moving relative to another (Gibson, Kaplan, Reynolds,
& Wheeler, 1968).

In addition to the first 32 sprite planes, there exist
3 additional display planes (listed in their order relative
to the observer)-pattern, backdrop, and external VDP
input (see Figure 1). The pattern plane operates in any

Figure l. A computer-generated scene created through the com­
bination of multiple display planes. Each video plane is assigned a
priority of visibility as a function of its position in depth relative to
the observer. [From Texas Instruments TMS 99I8A VDP Data Man­
ual (Texas Instruments, 1981), reprinted courtesy of Texas Instru­
ments, Incorporated]

SPRITE-ORIENTED GRAPHICS 389

of three graphics modes and one text mode. In each of
the graphics modes, the screen is divided into different­
sized pattern blocks ranging from the equivalent of low­
to high-resolution graphics. The backdrop plane is pro­
grammed to appear in 1 of 15 colors and provides a
border around the sprites and pattern plane. Finally, it
is possible to input an external video signal that will
appear behind the other planes. (Note-some versions
of this chip allow the external signal to emanate from
the host microcomputer's VDP.) In all cases, the visi­
bility of a particular location on anyone display plane
assumes that all the preceding planes are transparent in
that location.

In sum, the TMS 9918A VDP incorporates all of the
features of other VDPs, but its unique architecture
enables the user to program smooth motion of certain
graphics shapes (sprites) with multilevel pattern over­
laying. These features make it possible for investigators
interested in motion perception phenomena to program
dynamic events with a modicum of programming skill.

GENERAL PRINCIPLES OF OPERATION
FOR THE TMS 9918A VDP

The objective of this section is to provide a general
overview of the procedure involved in programming the
TMS 9918A VDP. [More specific information can be ob­
tained from the Texas Instruments TMS99I8A VDP Data
Manual (Texas Instruments, 1981).] There are two basic
components of this task: (1) writing the data that define
the patterns and their locations on the graphics screen to a
buffer of dynamic memory (henceforth referred to as
video random access memory-VRAM) attached directly
to the VDP; and (2) initializing the eight registers of the
VDP.

The data are organized into five discrete blocks in
VRAM. Two define the sprite patterns, and the other
three define the pattern appearing on the background
plane. With regard to the sprites, one block contains
the pattern definitions. They are arranged into subblocks
of 8 bytes each and are bit-mapped such that each row
of an 8 x 8 sprite corresponds to 1 byte of the block.
Each bit assigned" 1" causes the sprite to be defined at
that point; each bit assigned "0" causes the sprite to be
transparent at that point. A 16 x 16 sprite can be con­
structed from four 8-byte subblocks corresponding to
four 8 x 8 sprites arranged as the quadrants of a square.
(As many as 256 8 x 8 sprites or 64 16 x 16 sprites can
be specified in the Pattern Definition Table at one time.)
The second block specifies a Sprite Attribute Table
containing the vertical and horizontal positions of the
sprite, its video plane assignment corresponding to 1 of
the 32 planes available, and its color. In order to move a
sprite on the screen, it is necessary only to change the
x,y coordinates in the Sprite Attribute Table; the color
of the sprite can be changed in the same manner.

The pattern plane is defined by the three other blocks
consisting of a Pattern Definition Table, a Pattern Name

390 BERTENTHAL AND KRAMER

Listing 1
Machine Language Driver for Displaying Sprites

Table. and a Pattern Color Table. These three tables
provide a library of colored pattern blocks and their
screen locations. Although these tables are similar to
those created for displaying sprites, the logic governing
how a background pattern is defined and displayed is
somewhat more complex and will not be described
further, since our primary emphasis is on the generation
of sprites.

The eight registers of tl-e VDP contain information
concerning different modes of operation as well as the
starting addresses for each of the tables stored in VRAM.
For the purpose of displaying sprites, it should be noted
that Register 5 contains the upper 7 bits of the 14-bit
Sprite Attribute Table address and Register 6 contains
the upper 3 bits of the 14-bit address of the Sprite
Definition Table. The lower 4 bits of Register 7 contain
the color code for the backdrop plane. Finally, Bits 6
and 7 of Register I specify sprite size ("0" selects
8 x 8 pixels; "I" selects 16 x 16 pixels) and magnitude
("0" selects I pixel per array element; "I" selects
:2 x :2 pixeIs per array element), respectively.

Listing I presents a general-purpose machine language
driver for the TMS 9918A VDP written in 6502 assembly
language. It is designed so that separate routines can be

iSET-UP ADDRESS _ BYTE2
;SET_UP ADDRESS _ BYTEl
ii/RITE TO YOP
i INITIALIZE COUNTER
;LOAD DATA
ii/RITE TO VDP RAI·j
; INCREI-lENT COUNTER
; FIRST PAGE FULL?
i YES, INCREMENT HEYTE
;LOAD HEYTE
iCOMPARE TO HEYTE FOR EIID OF TABLE
;LAST PACE?
;YES, COHPARE TO LBYTE FOR END OF TABLE
;LAST PAGE DONE?

;STORE BYTE1
,STORE 3YTE2

LDY BYT£2
WA 1$00
JSR SREO
wr #$00
LDA ($06), Y
STA VRA1!
my
BNE SKIP
INC $07
tnr $01
CPX ~09

BNE tlORE
CPX $08
BrIE HORE
nTS

.:iTA VREO
STY VREG
HTS

LOAD VRAM 'tABLES

WRITE TO VDP

63
64
65
66
67
68
I)9 ~lORE

70
71
72
7J
14 SKIP
t:
76
77
"8
79
80
81
82
83 SHEO
D'
85

8D C1 CO
8C C1 CO
60

All 1A
0\900
204403
AD 00
E106

: BD CO CO
C8
DO 02
E607
A601
E409
DOFO
E:408
DO EC
60

--End a:;::;el1lbli--

Er-r-or-s : 0

15 bytes

The study of wheel-generated motion has had a long
and venerable history in the visual perception literature
(Proffitt & Cutting, 1979). In essence, this event involves
the presentation of two or more points of light moving
as if placed on various locations of a rotating invisible
wheel translating across a surface. Although observers
typically report seeing the lights rotate around the
centroid (center of rotation for any system of lights),
an analysis of the motions of the individual lights reveals

AN ILLUSTRATIVE EXAMPLE:
WHEEL-GENERATED MOTION

called to initialize the registers, clear VRAM, and load
specific blocks of data to VRAM. Note that each block
must be loaded into that portion of VRAM specified by
the corresponding VDP register address for that parti­
cular function, for example, sprite attributes, sprite
pattern definitions, etc. This goal is accomplished by
loading a 2-byte address setup value into the VDP at
the beginning of the data-transfer routine that is equiva­
lent to the address specified by the corresponding VDP
register. In addition, Bit 6 of the second byte of the
address setup value must be set high to indicate that the
CPU is transferring data to the VRAM through the
VDP. This transfer uses a 14-bit auto incrementing
address register; thus, once the starting address is set up,
data are transferred I byte at a time to the VRAM. In
a similar fashion, data are written to each of the eight
registers in the VDP by transferring the data in the
first byte and selecting the register in the second. The
chip convention requires that this second byte have the
most significant bit (MSB) set high, the next 4 bits set
low, and the lowest 3 bits set to correspond to the
destination register number.

In our lab, we have used this driver for creating a
number of different dynamic displays on an Apple II
microcomputer. One particular application displays
wheel-generated motion and illustrates especially well
how to use the machine language driver in conjunction
with a program written in a higher level language.

;S::T_UP ADDRESS - BY;':2
;SET-UP ADDRESS - 3YTS~

;WRITE TO VDP
;COUNTER - HIGH BYTE
; COUNTER - LOW BYTE
iWRITE 0 TO VDP RAM
; INCREMEI:T LOW COUNTER
;1S LQ'.' COUNTEIl FULL?
;I:~CREHEIIT ,UGH cocsrm
; HIGH COUNTER FULL?

i SELECT REGISTER
i IllITIALIZE COUNTER
jLOAD DATA FOR REG!3TER
i'rJRITE TO VDP
;1NCREl-IEIlT SELECTED REGISTER
; INCREMENT SELECTED COUN,ER
;ALL REGISTeRS LOADm:-
; If ;10T. aRAiKH

~$08

LOOP

HTS

ORG $300
OB~l t300

LOY 1$80
WX 11$00
WA RECADR,X
JSR SREO
INY
!NX

"X8m:;
HTS

EQU $40 iSLOT , FOR SPRITE CARD
EQU $1A ;SET-UP ADORES::: FOP. TRA1:3FER:ln:G ;;:."::. 10 '.'P..\!'

tQU $e081 +SLOT ;VDP REGISTER
EQU $C080+SLOT iVDP RAM
EeU $380 iSTARTIllG ADDRESS OF REGISTERS

CLEAR VRA1-1 MEI·lORY

IlHTIAUZr: REC:;:STERS

~I:FINE LABELS

WY BYTE2
LDA §~OO

JSll SHEG
LOX 'tCO
WY 1$00

count STA VRAH
INY
BilE COUNT
IN::
BllE COUNT

• Thi~ program also ae cumes that ti',e sp r i t e ca r d

• is in slot 4.

'" ih~:; program 85SUl:leS that all b~CCKS 0:' ceta
• beg i.n at a page boundary.

SPRITE DRIVER
BY BEN~IETT I. BERTENTflAL

;l~!!!! 11I1 t.t';:::;~':;'~;~~''1'1.• t •••• ~ *11.

SL::;'T
32 BY1E2
33 VREO
34 VRA~~

35 REOADR
36
31
3S
39
40
41 LOOP
42
43
44
4\
46
"7

48

49
50
51

• All b Lccka of dat a to be loaded j nto VFI.\:~ :.::
• have their starting and ending address rcao cc
• into 11 consecutive locations on Page zero.

17 ~ Startine address: LE'fTE" teo, HBY:: ': ~::;7

,8 • Ending accreee: LOUE = ~C8, :,jJYTE = ~09

:9
20
21
22
2'
24
25
25
27
28
29
30
31

,
6
7 • This driver performs the following functions:
8 • 1. Initializes 8 registers of the Video
9' Display Processor (VDP)
1:) • 2. Clears video RAJ.! (VRAM)
t ' !I 3. Loads any :lu~ber of sprites (0-32)
~2' and t be.i r- pattern ::Ierini~ions

I'
14
1\
16

,\; OC 52
204403 53
A2 CO 5lJ
AO 00 55
8D CO CO 56
ce 51
DC ?;. 58

5\
20:1 60
~ ~ 61

62

0300; AO 00
0302: A20C
0304: EO 80 03
::;307: 2C 44 03
J~OA: C8
G3CB: £8
ONC: EO 08
j;0E; DO Fq
;j310: 60

SPRITE-ORIENTED GRAPHICS 391

CYCLOID

...............................
• WBEEL-GERERJTED MOTIONS •
• BY BElfIIETT I. BERTENTRAL •
• & STEVEN J. KRAMER •
• MARCH 2, 1981l •...............................

•••••••••••••••••••••• IJ••••••••

• INITIALIZE VARIABLES AND •
• LOAD mCHDE LANGUAGE PIIGHS •...............................

250
260
270
280
290
300
310

REM
REM
REM
REIl
REM
REIl
REM
HOM!! : VUB 7: RUB 8: IRVEIISE : PRINT SPC(23)
VTAB 8: HTAB 8: PRDiT "WBEEL-GEJlEIUTED R)TIORS'
VI.lIl 9: HT.lIl 8: PRIIIT SPC(23), NOIll<AL
VTAB 12: HTAB 5: PRINT "THIS PI!:OGRDl DISPLAYS AS MAN! AS"
VTAB 13: HTJB 5: PRINT -6 LIGHTS ROTUIHG AND TWSLATIHG"
VTAB PI: RUB 5: PRINT "AROOND THE CENTROID OF J. WHEEL"
VTAB 23: HUB 8: INVERSE: PRINT 'PRESS iNY rET to CONTINUE": NORMAL: GET
I.: PRIIIT Z: ROllE

150 REIl
160 REM
170 REIl
180 REM
190 REIl
200 REM
210 OIM 1(300,6),Y(300,6),COL(6),N(6)
220 VTAB 10: BTAB 8: INVERSE: PRINT "LOADING SPRITE DRIVER": ¥TAB 12: HTAB 9:

PBINT " AND PATTERN TABLE-: NOJIMAL
230 PBIRT CHlI$ P"j"BLOAD sPRITE PATTEIUI' TABLE, 1$8100": PRINT CHR. (4)i

"BLOAD SPIlITE DRIVER, .&$300": BOME
2.40 VTAB 10: HTAB 9: INVERSE: PRINT" PLEASE BE PATIENT ": VTAB 11: STAB 9:

PRINT "INITIALIZING VARIABLES": NORMAL
REM
REM OEPIIIE CONSTANTS
PI. 3.14159:0EG • 57.2956
REM
R9I DEFINE VA.RIABLE ADDRESSES
BlTE2 :: 26: REM MEMOJ! LOCATION FOR VRAM ADDRESS SET-UP VALUE
DO:: 896:111 :: RO + 1::R2 ;: 11 + 1:113 ;: R2 + 1:1.1& ;: 113 + 1:R5 ;: R4 + 1:
R6 ;: 115 + 1: R7 ;: 116 + ,: REM REGISTER LOCATIONS

320 SPT;: 32768: P'1' ;: SPT + 256: RD1 STARTING LOCATIONS FOil SPRITE ATTRIBUTE
AND PATTERN TABLES

330 SL;: 6:SH ;: 7:EL :: 8:EB ;: 9: REM POINTERS FOR BEGINNING AND END OF BUFFERS
340 IR. 768:CM e 785:TO • 806: REM STARTING LOCATIONS FOR MACRIIIE LANGUAGE

ROUTIIIEs
REM
REM OEP IIIE FUNCTIONS
OEF FN LO(I). INT (I - INT (I / 256) • 256)
OEF FN HI(I). INT (1/256)
REM
liD! ••••••••••••••••••••••••••••••
REM • USER-DEFINED VARIABLES •
REM ••••••••••••••••••••••••••••••
HOME: VTAB 3: HTAB 10: DfVEIISE : PRIlIT "USER-DEFINED VARIABLES": NORMAL
VTAB 5: STAB 5: PRINT "ENTER 1(5-30). Y(10-150) "

450 VIAB 6: HT.lIl 5: IllPUT "FOR LIGHT ,,: ';cU,CY$:CI • -VAL (CI.):
CY. VAL (CY.): IF CI < 5 OR CI > 30 OR CY < 10 OR CY > 150 THEN
GOSUB 1030: GOTO 450

460 VIAB 8: HT.lIl 5: IIII'UT "VlIEEL RADIUS (5-30) • ·;U:R. VAL (R.):
If R < 5 OR R > 30 TIIEII GOSUB' 030: OOTO 460

470 VTAB 10: BTAB 5: INPUT "ROTATION INCIIDI!JlT (2-30) ;: ";RI$:III;: VAL (RIt):
If BY < 2 OR RI > 30 TIIEII GOSUB 1030: GOTO 470

480 VTAB 12: BTAB 5: INPtn' "TRABSLATION SPEED (0-5) :I' "jTS.:TS;: VAL (TS$):
If YS < 0 OR TS > 5 THEIl GOSUB 1030: GOTO _80

490 VI.lIl 14: HT.lIl 5: PRINT 'CORRECTIOI FACTOR FOR'
500 VTAB 15: BTAB 5: IRPUT "SCREEN (0.65-1.00) • "jCF$:CF:II: VAL (eF.):

If CP < .65 OR CP > 1.0 TBER GOSUB 1030: GOTe 500
FOIII:t1T06
VTAB 17 + I: BTAB 5: PRINT "LIGHT' "i!;: INPUT· COLOR (0-15) ;: ";COL$:
COL(I). VAL (ca..): If COL(I) < 0 OR COL(I) > 15 TIIEII GOSUB 1030: GOTO 520
POlE SPT + 3 + «I - 1) • Jll ,Cm..(I): REM POlE SPRITE COLOR VALUE
POkE SPT + 2 + «I - 1) • 1",1 - 1: REM PeKE SPRITE NJ.HE
NEIY I
RDl ••••••••••••••••••••••••••••••
REM· INITIALIZE REGISTERS •
RDI ••••••••••••••••••••••••••••••
POlE RO j2: POlE Jl1,192: POlE R2,1: PCl:E ft3,21: POlE RII,255: POlE R5,62:
POD 1I:6 t3: P~E R7, 1

600 CALL Ul: REM CALL)(ACHIllE LANGUAGE 30DTltiE FOR TRANSFERlUNG VALOIS rsro
VDP RECISTERS

610 REIl
620 RmI CLUR VIDEO RJ.M
630 CALL CM: REM MACHINE UNGUAGE ROIlTIIIE FOR CLEARING VIW4
6.-0 A = P1': GOStJB 1130:A = PT + 118: GOSDB 11110
650 POlE BlTE2.88: CALL TD: RmI MACHIME UNGUAGE ROOTINE FOR TWSFERRING SPRITE

PATTERN TABLE DTO VRAM
REM ••••••••••••••••••••••••••••••
REM • C0!4PUTE I &: I COORDINATES •
RD!'· FOR EACB LIGHT •
REM ••••••••••••••••••••••••••••••
HOME : VTAB 10: DVERSE : PRDlT "CClfPUTING 1 &: I COORDINATES-: NOIlMAL
REM
REM INITIALIZE COUNTERS
IC • 0: REM IIIITIALIZE COUNTER POR LOOP
TR ;: 0: REH INITIALnE TRANSLATION DISTANC!
REIl
REM COl!PUTE LOCATIOR OF LIGHTS AROUND WHEEL (III RADIANS)
N(1) = N(1) • RI I OEG:I(2) • N(1) • PI I 2:1(3) • N(1) • PI
N(4) • N(3) • PI / 2:N(5) • N(l) • PI /4:1(6) • N(1) • PI / 8
FOR I;: 1 TO 6: IF I ;: 6 THEN RR e R:R :: R' .6
I(NCtI) ;: ex + R. SIN (N(I» + TR
Y(NC,I) • (CY - R' COS (R(I))) • CF
If I(NC,I) > 255 THEN I(NC,I) • 255: GCTO 860
HEIY I

:R~~R:N~:;: NC + , :TR ;: TR + 1S: GOTO 770
REM .
REM· DISPUY LIGHTS •
REM ••••••••••••••••••••••••••••••

530
540
550
560
570
580
590

510
520

10
20
30
40
50
60
70
80
90
100
110
120
130
140

350
360
370
380
390
400
410
420
430
..0

660
670
680
690
700
710
720
730
740
750
760
770
780
790
800
810
820
830
840
850
860
870
880

890 HOME: VTAB 10: HTAB 9: PRINT IIPRESS SPACE BAR TO BEGIN": VTAB 11:
RTAB 12: PRINT "DISPLAYING LIGHTS": GET At: POlE - 16368,0:
If AI < > CRR. (32) TEEN 890

900 VTAB 16: HTAB 10: INVERSE: PRUIT -PRESS ANY lEY TO STOP": NORMAL

Listing 2
Demonstration Program for Displaying Wheel-Generated Motions

TRANSLATORY MOTION

CIRCULAR
MOTION

Figure 2. In the top panel is shown the motion of two points
on a rolling wheel, with the center represented as a small dot and
a perimeter point as a large dot. The middle panel likewise pre­
sents the motion of two points on a rolling wheel, one being the
center and the other a point within the perimeter. The lower
panel shows the circular and translatory components of motion.
(From Proffitt & Cutting, 1979)

PROLATE
CYCLOID

that each moves along a path describing a cycloid or
prolate cycloid (see Figure 2). The one exception is
the point at the center of the wheel that moves along a
linear path (Proffitt & Cutting, 1979). For example,
the absolute motions of two lights located on the rim
of a wheel 180 deg apart from each other both trace
identical cycloidal paths corresponding to the same
sinusoidal function differing only in phase. It follows
therefore that programming wheel-generated motion on
a computer involves displaying a series of lights that all
undergo sinusoidal motions along a common path with
the motion of each light out of phase with the others.

Our approach to creating wheel-generated motion
was to keep the task as simple as possible by program­
ming all initial procedures in Applesoft BASIC (see
Listing 2). These procedures include loading the machine
language driver and Sprite Pattern Table, initializing
variables, and computing and storing in arrays the x
and y coordinates for each sprite prior to the time that
it is displayed on the screen. (An even more efficient
procedure is to poke these values directly into RAM.)
Thus, the processing demands during the display portion
of the program are reduced to simply reading the next
pair of x,y values from the array and writing them via
the machine language driver into the appropriate loca­
tion of the Sprite Attribute Table in VRAM. In addition,
the program is compiled (Microsoft Tasc Compiler) not
only to further reduce processing time during the
display portion of the program, but also to reduce
processing time during the earlier portion when the
x and y coordinates are computed.

This program allows the user to display between one

392 BERTENTHAL AND KRAMER

910 REM
920 RD! TIlANSPER I • Y COOIlDINATE V&LIlES TO SPRITE ATTRIBUTE TABLE
930 POlE BYTE2,95;A '" 3PT: GOSUB "30:A = SPT + 24: GOSUB "40
9J10 FOR I = , TO N.e
950 POR J = 1 TO 6
960 POlE 8FT + «J - 1) • "'),I(I,J): POlE SPT + , + «J - 1) • 4),I(I,J)
970 NEXT J
980 CALL TD
990 IF PEEl (- 16384) > 128 THEI 1020
1000 ROT I
1010 GUTO 94G
1020 END
1030 REM .
10",0 REM • SUBRO[JTINB FOR PRInING •
1050 RDI • INPUT ERROR TO SCHEU •
1060 REM .

1070 CV = PEEl: (37): VTAB CV: BTAB 5: CALL - 868: INVERSE: :PRINT ·OUT OF
RANGE V&LIlE': POR II = 1 TO 350: NEXT II: NOIlHAL

1080 VTAB CV: HTAB 5: CALL - 868: RETnRN
1090 REM •••••••••••••••••••••••••••••
,,00 REM. SUBROUTINE FOR Pt:KING •
1110 REM *.sT1RTDiG 6 ENDING LOCATIONS.
1120 REH •••••••••••••••••••••••••••••
1130 PCKE SL, 'II LOCA): POD 58, PH HI(A): RETUJUII
""'0 PCCE EL, FI LOCA): POD EB, FM BI(A): RE'I'URII

and six sprites rotating around the center of an invisible
wheel translating from left to right across the screen.
The sprites are designed to appear as small circles of light
moving on a dark background. Each sprite contains a
separate pattern defmition stored in the Sprite Pattern
Table. (A binary dump of this table is presented in
Listing 3.) The initial locations of the sprites around the
circle are presented in Figure 3. These locations are

presented in radians rather than degrees because the
trigonometric functions in Applesoft expect the argu­
ment to correspond to radians.

Some of the parameters of the display must be
specified by the user in Lines 300-430. These user­
defined parameters include: (1) initial location for
sprite #1 (20,85)2; (2) wheel radius (measured in
pixels displayed on the screen) (20); (3) rotation incre­
ment (5)-this value corresponds to the number of
degrees incremented around the circle each time the
positions of the sprites are updated; (4) translation
speed (l.7)-this value corresponds to the number of
pixels incremented on the horizontal axis each time the
location of the sprites is updated; (5) correction factor
for screen (.80)-this value is designed to correct for
screens for which the aspect ratio between horizontal
and vertical pixels is not equal to 1.00; (6) color for each
of the six sprites-the value 15 corresponds to white,
and the value 0 corresponds to transparent. It is thus
possible to control the number of sprites to be displayed
by setting the color of unwanted sprites to O.

ADDITIONAL APPLICATIONS IN THE CREATION
OF DYNAMIC DISPLAYS

·8100.812F

Figure 3. The initial locations (in radians) of the six sprites
around the wheel.

Listing 3
Binary Dump of Sprite Pattern Table

Kinetic Occlusion of Randomly
Textured Surfaces

Two randomly textured surfaces appear as a flat
continuous surface as long as both remain stationary.
Yet, as soon as one begins to move relative to the
other, there occurs an accretion of texture at the trail­
ing edge of the nearer surface and a deletion of texture
at the leading edge. Observers report seeing one surface
going behind another at an occluding edge and use this
information for specifying which of the two surfaces
is nearer (Gibson et al., 1968). Kaplan (1969) was the
first to test this phenomenon empirically by creating a
movie film of two moving randomly textured surfaces.
This approach must have been painstakingly slow,
since each frame had to be filmed separately. In con­
trast, we created this demonstration in a relatively
short period of time using both sprites and the pattern
plane of the TMS 9918A VDP.

The first step was to create a random texture pattern
using a dart-throwing technique to determine which
pixels should be colored (the probability of lighting
any pixel was .3). This pattern was programmed in
Apple II high-resolution graphics and then converted to

Although the above program is a good illustration of
how sprites can be used in dynamic displays, it by no
means exhausts the possible applications or makes use
of all of the special features provided by the TMS 9918A
VDP. In this last section, we will illustrate some of the
other features available to the user by discussing the
creation of two additional displays: segregation of two
randomly textured surfaces through kinetic occlusion,
and specification of a human form through biomechani­
cal motions.

2'1r
(1)

'Ir/2

3'1r/2

'Ir
(2)

8100- 00 30 78 78 30 00 00 00
8108- 00 30 78 78 30 00 00 00
8110- 00 30 78 78 30 00 00 00
8118- 00 30 78 78 30 00 00 00
8120- 00 30 78 78 30 00 00 00
8128- 00 30 78 78 30 00 00 00

a pattern that could be displayed by the TMS 9918A
VDP using a commercially available conversion program
(E-Z Color Graphics Editor, by Micromint). The nearer
occluding surface was created from sprites designed with
the same dart-throwing algorithm used for creating the
larger pattern plane. Note that the size of the occluding
surface need not be constrained by the size of a single
sprite, since a moving unitary shape can be composed
of more than one sprite. For example, the car displayed
in Figure 1 was composed of two sprites that occupied
different screen locations and were assigned to two
successive video planes. For the purpose of this demon­
stration, we arranged four sprites together in such a way
that each sprite represented one quadrant of an array
twice as large as a single sprite. When the sprites are
programmed to move back and forth over the pattern
plane, they produce an accretion and deletion of texture
of the more distant surface because the sprites automati­
cally occlude the texture on the more distant pattern
plane.

Although the above procedure was quite successful
in creating a demonstration of the kinetic disruption
of optical texture, a small caveat is in order. Recall
that each sprite is assigned only one color; thus, all
pixels not corresponding to the pattern remain trans­
parent. Accordingly, this particular demonstration of
surface segregation through texture occlusion differs
from Kaplan's (1969) original demonstration in one
unusual way. Whereas Kaplan's demonstration involved
two opaque surfaces, this new version created with
sprites depicts a moving transparent surface occluding
a more distant opaque surface. Phenomenally, the nearer
surface appears to be like a thin pane of glass with a
texture pattern randomly distributed over its area. A
simple procedure for modifying the present demonstra­
tion to depict an opaque moving surface is to add four
additional sprites directly behind the four composing
the moving occluding surface. As long as these sprites are
programmed to represent a solid pattern sharing the
same color as the background, and all lie in video planes
that will be occluded by the four sprites defining the
texture of the moving surface, then the nearer moving
surface will appear opaque.

In sum, the creation of this demonstration highlights
two points about using sprites in the generation of
dynamic displays: (1) The creation of kinetic occlusion
is reduced from an extremely complex programming
task to one that is relatively simple when the TMS99l8A
VDP is used; and (2) the size of anyone moving shape
is not limited by the size of a sprite, but rather is defined
by the number of contiguously arranged sprites that
move together.

Biomechanical Motions
Johansson (1973) showed that adults can almost

immediately recognize the form of a person walking
when they view a two-dimensional projection of 10 to
12 point-lights attached to the head and major joints of

SPRITE-ORIENTED GRAPHICS 393

an unseen walker (see Figure 4A). This same event has
more recently been simulated on a computer by Cutting
(1978). In essence, Cutting has written a program that
displays points of lights mimicking the movements of
a human walker. These lights appear to be mounted on
the major joints (near shoulder and hip, and both wrists,
elbows, knees, and ankles) and head of a person walking
along a path normal to the observer's line of sight. There
exists, however, one significant difference between this
computer-synthesized display and those created using
real people. In versions of this event involving the film­
ing of real people, there appears a gradual deletion and
accretion of the more distant point-lights as they are
hidden and unhidden by the invisible form. Specifically,
the more distant wrist, elbow, knee, and ankle, as well
as the hip light, undergo some degree of kinetic occlu­
sion twice during each gait cycle. In contrast, the com­
puter simulation has each of the relevant point-lights
disappear and appear all at once as if the point-lights
were blinking on and off. When one considers how much
complexity is added to the programming task by trying
to achieve gradual accretion and deletion of the point­
lights, it is not surprising that this effect was omitted.

An implementation of the point-light walker program
with the TMS 99l8A VDP overcomes this programming
limitation by using sprites to represent both the point­
lights and the invisible occluding forms. In essence, we
used the basic logic of Cutting's (1978) FORTRAN
program, but rewrote it in Applesoft BASIC and also
modified it to write the x,y coordinates to the sprite
driver rather than to an oscilloscope driver. In this
sprite-oriented version, Sprites 0-6 and 11-14 are used to

B •
\
\•
!\
~

hf\' 12: '

,,

~I I
, I I
~ \1 _

"--e---
Figure 4. Depicted in A is the array of 11 point-lights

attached to the head and joints of a walking person: The head
and near side of the body are numbered 0 through 6, and the
more distant joints are numbered 11 through 14. These numbers
correspond to the priority of visibility possessed by each sprite
used to display that particular point-light. Depicted in B is the
shape and relative location of those sprites (7 through 10) used
to occlude the far joints (11 through 14) of the walker as they
pass behind the invisible form of the body.

394 BERTENTHAL AND KRAMER

represent the point-lights in the display and are arranged
so that the higher numbered (lower priority, or more
distant) sprites correspond to the point-lights depicting
the more distant joints (see Figure 4A). Sandwiched
between the more distant point-lights and those appear­
ing closer are four additional sprites (Sprites 7-10)
shaped to correspond to the human form at those
relative positions (see Figure 4B). These four sprites are
not visible to the observer because they are of the same
color as the background; still, they serve to gradually
hide and unhide the sprites corresponding to the far
joints of the walker, since these background-colored
sprites have higher priorities of visibility.

There is one additional point-light, corresponding
to the hip, that should also undergo gradual accretion
and deletion, but does not in the present scheme. The
reason for this omission highlights the only significant
limitation we have found in using the TMS 9918A VDP.
As currently designed, this VDP can display only four
sprites on anyone horizontal line. If more than four
are programmed to appear on the same line, then the
four highest priority (or closest) sprites on the line are
displayed normally and the fifth and subsequent sprites
are not displayed at all. In order to occlude the hip
light as the implicit arm of the walker passes in front of
it, an additional sprite would have to be sandwiched
between the near wrist and hip. This manipulation is not
possible, however, because there are already four sprites
overlapping in the same location; these sprites corre­
spond to the hip, the two wrists, and the invisible oc­
cluder sandwiched between the hip and the more distant
wrist light. Although there are procedures for getting
around this limitation (such as computing the period
during the gait cycle when the hip light should be
occluded and then changing the priority value of the
occluding sprite for that portion of the gait cycle), it
must be recognized that these procedures can be imple­
mented only by adding to the complexity of the pro­
gramming task.

In spite of the one limitation described above, the
ease of depicting the gradual hiding and unhiding of the
point-lights remains an important advantage in using
sprites for programming point-light displays of bio­
mechanical motions. Furthermore, these displays appear
almost as smooth and continuous as those created by
Cutting (1978) using an HP 1350A display system driven
by an HP lOOOL computer; thus, they provide a further
endorsement for the effectiveness of sprite-oriented
graphics in the creation of moving displays.

CONCLUDING REMARKS

As recently as 3 years ago, we were convinced that it
was impractical to create dynamic displays on a micro-

computer. Since that time, we have begun to create
moving displays with a microcomputer using sprites
and other features provided by the TMS 9918A VDP.
Many of our applications have involved moving point­
light displays, for which sprites are especially well suited.
Still other types of dynamic displays are also possible,
as demonstrated by our discussion of the kinetic disrup­
tion of optical texture. Most importantly, we are finding
that many of our moving displays are comparable to
those created with much more expensive minicomputers
and oscilloscopes.

REFERENCES

CAVANAGH, P., & ANSTIS, S. M. (1980). Visual psychophysics on
the Apple II: Getting started. Behavior Research Methods & In­
strumentation, 12, 614-626.

CUTTING, J. E. (1978). A program to generate synthetic walkers
as dynamic point-light displays. Behavior Research Methods &
Instrumentation, 10,91-94.

GIBSON,J. J., KAPLAN, G. A., REYNOLDS, H. N., & WHEELER,
K. (1968). The change from visible to invisible: A study of op­
tical transition. Perception & Psychophysics, S, 113-116.

JOCHUMSON, C. (1983). Arcadegraphics techniques. CaIlA.P.P.L.E.,
6,9-14.

JOHANSSON, G. (1973). Visual perception of biological motion
and a model for its analysis. Perception & Psychophysics, 14,
201-211.

JOHANSSON, G., VON HOFSTEN, C., & JANSSON, G. (1980). Event
perception. Annual Review ofPsychology, 31, 27-63.

KAPLAN, G. A. (1969). Kinetic disruption of optical texture: The
perception of depth at an edge. Perception & Psychophysics,
6, 193-198.

PROFFITT, D. R., & CUTTING, J. E. (1979). Perceiving the cen­
troid of configurations on a rolling wheel. Perception & Psycho­
physics, 25, 389-398.

TEXASINSTRUMENTS, INC. (1981). Texas Instruments TMS 9918A
video display processordata manual. Houston, TX: Author.

NOTES

1. This chip is designed to interface with a host of micro­
processors via an 8-bit bidirectional data bus and three control
lines. Its output is a composite color video signal defined by the
contents of dynamic VRAM (ranging between 4K and 16K)
attached directly to the VDP. The VRAM is automatically re­
freshed by the VDP and needs no direct connections to the host
computer. Video output is asynchronous with other functions of
the VDP, and thus the host processor and the VDP can com­
municate at any time without interfering with the video output.

2. A prototypical display is created with the values enclosed
in parentheses following the listing of each user-defined variable.

(Manuscript received March 31, 1984;
revision accepted for publication June 5, 1984.)

