
Behavior Research Methods& Instrumentation
1982, Vol. 14 (2), 254-263

SESSION XIV
LABORATORY APPLICATIONS

PASTOR: A new schedule
programming language

JUERG ELSNER
Institute ofToxicology, SwissFederal Institute of Technology, Zurich, Switzerland

A new schedule programming language is presented, including its implementation on a
PDp·ll running under RSX·llM. This language combines modern syntax concepts of
PASCAL with the state notation of SKED. The present implementation includes event-driven
activation for fast response time and shared code for minimal storage requirements, allowing
the simultaneous control of many experiments.

In the many years of its existence, SKED1 (Snapper,
1976) has enjoyed an ever increasing popularity in
behavioral research. The main reason for this success
seems to be its state notation, which is as close as it
can be to the behavioral scientist's way of thinking.
Little effort is needed to translate an experimental
concept of a schedule into a SKED program. As SKED
is a specialized language with a limited set of different
instructions, it is easy to learn and its implementation
may well be optimized.

The major problem one encounters in programming
in SKED is the lack of structure within a composite out
put statement. The compiler's interpretation of one's
program is often unpredictable. For the same reason,
it is difficult to write a compiler for SKED, as its syntax
does not follow some basic rules necessary for using
standard compiler techniques.

Computer programming language developments have
been very active in the past few years. Emerging from
the structured program principles promoted by the
PASCAL language (Jensen & Wirth, 1975), a multitude
of new languages have been defined, some of which
include process control features, such as MODULA
(Wirth, 1980) ADA (Johnson, 1981), and FORTH
(Dessy & Starling, 1980). These languages present the
advantage of very concise syntax rules, forcing the
programmer to have clear concepts of what he is doing
and to write readable programs that document them
selves.

These languages departed from traditional state nota
tion concepts implemented in SKED by using the notion
of parallel processes. A process is defined as a structured
program module whose execution may be started or
stopped by other processes. The program flow may be
delayed at a point until one (and only one) specified
event occurs (time or I/O). This way of thinking presents
not only advantages. The communication between pro-

cesses often becomes quite cumbersome, and the mem
ory and programming overhead is generally high. High
sophistication and training are also demanded from a
programmer using these languages.

A state notation combined with the possibility of
defining parallel state sets implicitly allow the definition
of parallel processes in the same way as the modern
languages enforce it. It seems to be an optimal compro
mise to combine SKED's limitations of a specialized
language and its state notation with modem syntax
concepts that allow structured programming down to
the lowest language level. This compromise has been
created in the PASTOR language, which also introduces
several new features that allow one to use novel pro
gramming techniques.

THE PASTOR LANGUAGE

A sample program written in PASTOR is presented
in Figure 1. One may note that most of the basic fea
tures contained in SKED have been maintained: A
program is structured in state sets, which in turn are
composed of states. The main difference from SKED
lies in a concise PASCAL-like syntax. The analysis of
this variable-interval schedule is left to the reader, as
it is claimed that a PASTOR program documents itself.
The following discussion of PASTOR's syntax and
semantics may resolve any arising doubts.

The PASTOR Syntax and Semantics
Figure 2 represents the syntax rules of PASTOR

using syntax definition techniques described by Wirth
(1977). A schedule is composed of a schedule name, a
device-type defmition, and a sequence of blocks. A
block is an optional series of declarations followed by a
state set.

An identifier is defined in the same way as in

Copyright 1982 Psychonomic Society, Inc. 254 0005-7878/82/020253-11$01.35/0

Variable Interval Schedule

SCHED vie I
DEVICE sb,
RESP lever=LVl+LV2 END,
STIH lIight=LLl+LL2, rnfenbI=VSI+VS2, rnf=VLV ENOl
CONST vilst =

(c6", 66", I", 35", 20", 90", 42", 4", 32", SO",
13", 61", 40", 53", 23", 10", 22", 72", 2", 5",
24-, 50·, 7-, 7-, S-, IS·, 57-, 37-, 3-, 44-,
4", 2", S", 18",135", 14", 30", 12", 34", 17",

47", 6", 15", 27", 11",105", 11", 1", 16", 29"):
nvi=501 rnfdlu=O.I", sesstim=30', moxrnf=50 END,

VAR IX,vivol ENOl
SYNCH reinf ENOl

STSET sessetll
STATE session, stortI IX:=OI SEND Ilight,

PARALLEL
AFTER sesstim DO SWITCH TO woitidlel
WHEN reinf moxrnf TIMES DO SWITCH TO woitidle

END
ENOl

STATE woitidlel
IF (lever CLEAR) AND lrnietl IN rnfidIl THEN stoPI
PRRRLLEL

WHEN lever CLEAR DO SWITCH TO woitidIe;
WHEN rnf CLEAR DO SWITCH TO woitidle

END
END

ENOl

STSET v i c t Lr
STATE vioet, SET rnfenbl,

Ix.=lx+l: IF Ix>nvi THEN Ix:=I, vivol.=vilstllxl,
WHEN lever SET DO
BEGIN

SIGNAL reinf, CLEAR rnfenbl, SWITCH TO rwoit
END

END;

STATE rwoit;
WHEN lever CLEAR DO SWITCH TO viidle

END;

STATE viidle;
AFTER vivol DO SWITCH TO vioet

END
END,

SlSET rnrct I;
STATE rniidl, CLEAR rnf,

WHEN reinf DO SWITCH TO rnfoet
ENOl

STATE rnfoetl SET rnf,
AFTER rnfdlU DO SWITCH TO rnfidl

END
END.

Figure 1. Sample schedule written in PASTOR.This schedule
controls a variable-interval schedule with even reinforcement
probability over time. The state set "sessctl" controls the
session duration: After 30 min or 50 reinforcements, the state
"waitidle" stops the schedule if there is no response and if no
reinforcement is active; otherwise, it waits for such a situation.
The state set "vied" controls the reinforcement interval: A
new interval is started at the moment the subject releases the
pressed lever. The virtual stimuli declared as "mfenbl" mark
the availability of the reinforcer in the event logging me. The
state set "rnfctl" controls the delivery of a water reinforcement:
Upon an internal synchronizing signal, "reinf" the valve is
opened for .1 sec.

PASCAL: While an identifier may be as long as one
desires, only the first six characters are significant.
Numbers are unsigned 32·bit integers. Time is internally
stored as such a number representing hundredths of
seconds. For the program, a time magnitude may be
represented as hours.minutes'seconds.fraction" (e.g.,
2: 16'57.45" or 5'30").

In the declaration section, all constants, variables,
synchronization signals, labels, responses, and stimuli

PASTOR 255

used in the program have to be declared by identifier.
These declarations are globally valid; no local names
are allowed. An internal synchronization signal (synch)
has the same function as the z-pulse in SKED. A list of
constants may be defined by the inclusion between
parentheses of numbers separated by commas. Such a
list may be referenced like an array. Only one-dimensional
arrays may be declared as variables by indicating the
array length within brackets. Response and stimulus
masks are defmed by combining predeclared mnemonics
specific to the given device type or by the specification
of octal mask words separated by commas indicating
the selected bits in the I/O record described below.

A state set consists of its name declaration followed
by a number of states. A state is identified by its name
followed by a sequence of statements that are executed
immediately upon state entry. The possibility to write
state entry statements allows for a state notation tech
nique, as described in Martin and Conner, 1975. A
stimulus condition may be set upon state entry instead
of only upon state transition or as result of an event,
as in SKED. A one-to-one relationship between a state
and a stimulus condition may thus be established.

After this state entry segment, a state waits for an
event, or for several different events, by structuring
wait statements with a PARALLEL specifier. A state
set may be blocked forever in the absence of any wait
specification. Responses, stimuli, or synchs are awaited
using the WHEN specifiers, absolute time of day, using
AT, and time intervals, using AFTER. A state may await
more than one occurrence of a signal by the specifica
tion of TIMES. This number of occurrences, as well
as a time value, is given by a general expression evaluated
just after execution of the state entry statements.

A change of stimulus conditions is treated like any
other event. This allows for an additional triggering
mechanism between state sets besides the synch pulses.
The specifier SENT means that the whole response or
stimulus pattern must correspond exactly to the
declared one. If SET is specified, 1 or more of the bits
have to be set, and CLEAR asks for all specified bits to
be cleared in order to be recognized as the awaited
event.

A statement must be labeled in order to be used by a
GOTO statement. A statement may be jumped at in this
way only if it is in the same program section as the
GOTO statement (state entry section or wait section of
the same state). Several statements are defined as they
are in PASCAL. No user-defined procedures and func
tions can be declared in the actual version of PASTOR,
so they have to be predeclared in the implementation.
Additional statements are specific process control func
tions of PASTOR. A SEND statement copies the stimuli,
overwriting any previously set or cleared stimuli. The
specifier SET causes those stimuli that are set in the
mask to be set, leaving the others unchanged; the speci-

tv U
l

0
\

tT
l t;; Z rn :::t
'

I
n

t
_

co
n

st
an

t
Id

e
n

ti
fi

e
r

re
sp

o
n

se
ld

e
n

tl
fl

.r

H
s
t

ld
e
n

tl
H

e
r

v
a
ri

a
b

le
Id

e
n

ti
fi

e
r

co
n

st
an

t
~
l
a
r
a
t
l
o
n

co
n

st
an

t
ld

en
U

fl
e
r

v
a
ri

a
b

le
cl

ea
la

ro
tl

o
n

a
rr

a
u

Id
e
n

ti
fi

e
r

c1
ev

lo
e

ld
e
n

tl
fl

e
r

lf
C

lh
ed

ul
e

Id
en

ti
fl

e
r

Id
e
n

ti
fi

e
r

bl
oc

k
f
j
-
-
-
l
s
t
a
t
..

.t
r-

-
'
~

cl
ea

la
ro

tl
o

n

lI
O

tle
cl

ul
e

.t
s
.t

ld
e
n

tl
H

e
r

s
ta

t.
Id

e
n

ti
fi

e
r

st
o

t.
..

t

st
a
te

I
n

t
_

I
n

t
_

r=
@

=
J

cl
ea

la
ra

U
on

,
•

(E
N

D
)

•

.1
~1
~

tr
a
n

sf
e
r
~
~

•
i\lF

IO
h

ld
en

tI
f€

e
x

P
r_

lo
n
~

~
..
~

tr
a
n

s
fe

r
S

H
lI

lU
l\

J8
id

e
n

ti
fi

e
r

re
e
p

o
n

se
id

e
n

ti
fi

e
r

-_
.~

®-
-c=

¢
<V

1
==(

b
¢

-

F
ig

ur
e

2.
P

A
S

T
O

R
sy

nt
ax

de
fi

ni
ti

on
.

T
er

m
in

al
sy

m
bo

ls
ar

e
fr

am
ed

by
ro

u
n

d
w

in
do

w
s,

an
d

n
o

n
te

rm
in

al
sy

m
bo

ls
ar

e
fr

am
ed

by
re

ct
an

gl
es

.
E

ac
h

gr
ap

h
de

fi
ne

s
a

no
n

te
rm

in
ll1

sy
m

bo
l

la
be

le
d

at
th

e
st

ar
to

f
th

e
gr

ap
h

pa
th

.A
pr

og
ra

m
's

st
ri

ng
m

ay
be

cr
ea

te
d

b
y

fo
ll

ow
in

g
th

e
ar

ro
w

s,
ha

vi
ng

th
e

ch
oi

ce
at

bi
fu

rc
at

io
ns

to
fo

llo
w

ei
th

er
d

ir
ec

ti
o

n
.

~ d :;:
tl

e
x

p
r
_

io
n

a
r
~
t
a

lo
g

io
a
l

te
rl

lc
:
:
=

@
o

o
t
o

r
~

AN
D

•

Id
e
n

ti
fi

e
r

v
a
ri

a
b

le
Id

e
n

ti
fi

e
r

lo
g

lo
a
l

fa
c
to

r

~
a
tl

-u
lu

s
Id

e
n

ti
fi

e
r

.t
a
t.

{
d

en
t!

ti
e
r

cr
rO

ll
id

e
n

ti
fi

e
r

.
t
a
t
-
.
t

tv V
l

-.
.J

258 ELSNER

Main
program

device
speci f ic

deBni Hons

Schedule Source Processing

communication with the experimental units. Also,
problems may arise if other interfaces are to be connected.

general
definitions

RTS Libraru
sumbol
table

Figure 4. The program flow for the creation of a schedule
task based on a PASTOR source program. The ellipses mark
processing programs of which only the compiler is specific to
PASTOR. The PASTOR compiler is written in PASCAL. The
MACRO assembler and the task builder are those provided by
Digital Equipment Corporation. The modules at the left of the
graph are general to all schedules and define the run-time
environment, as well as device-specific data.

The PASTOR Compiler
The compiler has been written in PASCAL, using

top-down techniques described by, among others, Wirth
(1977). The compiler structure consists essentially of a
formal reproduction of the syntax defmition of Figure 2
following certain rules also described in Wirth (1977).

Figure 4 shows the program flow for the creation of a
schedule task based on a PASTOR source program, The
compiler creates a MACRO program that consists of a
collection of Polish routine addresses and MACRO calls.
This program is assembled using the standard DEC
MACRO-II assembler. A general defmition file describ
ing table offsets, standard response and stimulus bits,
and I/O function codes, as well as a macro library con
taining device-specific defmition macros for the creation
of the response and stimulus masks, are used in this step.
The standard RSX-IIM task builder links the created
object with a general main program and resolves the
Polish routine addresses using the symbol table of a
resident PASTOR library. The task may subsequently be
installed, run, and be attached to any number of experi
mental units of the appropriate type. A general indirect
command file assists the program developer to perform
automatically all steps from a program source to the
active schedule task.

predefined procedures

THE PASTOR IMPLEMENTATION

Figure 3. Predefined procedures and functions of the actual
version of PASTOR.

time - time of dau in lOOth of seconds
random - random number between 0 and 1000

predefined functions

Predefmed Procedures and Functions
Figure 3 lists all implemented procedures and func

tions. The procedure "start" induces no other action
than the lighting of a green status lamp on the unit's
hardware controller in order to give information about a
schedule's activity. A schedule's execution is actually
started through the activation of a switch on the unit's
controller, which is part of the experimental hardware in
the laboratory. The logical "start" may be delayed until
an event occurs (i.e., a specific time).

A scheduled "stop" extinguishes the status lamp and
all other stimuli and sets a schedule dormant for this
unit. In this condition, it does not recognize any events
other than the unit's switch off, an action that stops the
schedule. It may subsequently be restarted by switching
it on. A schedule may be stopped any time by switching
it off.

The function "time" gives the time of the day as a
32-bit value of .00-5ec units since midnight, and "ran
dom" delivers a pseudorandom number between a and
1,000.

start - start unit
stop - stop schedule

The development and implementation of PASTOR
and all of its associated programs have been carried out
on a PDP-I 1/34 running under the RSX-llM operating
system.f Extensive use of the multitasking features of
RSX-llM has been made. The transport of the actual
implementation to other computers and operating sys
tems may therefore not be straightforward. BIS, an
interface system of our own design, briefly described in
Elsner and Wehrli (1978), was used for the hardware

fier CLEAR causes them to be cleared. A synch may be
created using a SIGNAL statement. A state switch to a
state belonging to the same state set is executed through
the SWITCH TO statement.

An expression is formulated as in PASCAL, with the
limitation to the unsigned integer data type only. A
condition is analogous to an expression. It may only be
used in IF and WHILE statements, as no Boolean vari
ables exist in the current version of PASTOR. The status
of stimuli and responses can be tested in a condition, as
can the active state of another state set.

PASTOR 259

: Experimental
, Uni Is

task 1inks

one may not have thought of at the time of experiment
planning. This is particularly important in behavioral
toxicology. In this discipline, the type of effect a new
substance may present is generally unknown beforehand.
The amount of data produced in the course of an experi-

Device
Driver

Event
Logging

Tasks

Protocol
Tasks

Schedule
Tasks

Figure 5. An example for a possible task4ink configuration
as it may be active in the multitasking environment of the
RSX·llM operating system. The protocol tasks supervise the
activity and linkages of the schedule and event logging tasks
and establish logical connections of ongoing experiments with
the protocolar structures (i.e., association of a log file to a
session of an animal in a given group).

The Software Environment
Figure 5 shows a possible task configuration and the

respective links that may be active at one time. Protocol
tasks control the activity of whole sets of experiments
structured in sequences of animals belonging to specified
groups performing a session according to the actual date.
These protocol tasks are written as indirect command
files processing a protocol definition file created with
programmed assistance. Different schedules may be
active for different units belonging to the same experi
ment protocol. There is only one schedule task per
schedule type controlling all linked units.

One may notice in the syntax description of PASTOR
that no I/O statements are defined other than those for
interaction with the experimental units. All slow pro
cesses are excluded from a schedule task, in order to
maintain a high responsiveness. The creation of sequen
tial files containing experimental events is committed to
special event logging tasks, one for each unit, linked
with its respective unit and running with a lower priority
than the schedule task. Such a task is activated by
switching the unit on. It stores all ongoing data transfers
from and to the unit into a sequential event file until
the switch is turned off. An event file is identified by
the unit number, the date, and a sequence number.
This identification is associated by the protocol task to
the corresponding session, animal, group, experiment,
and so on.

Integral event logging presents the advantages of
avoiding all prejudice concerning the analysis of an
experiment and of allowing the investigation of aspects

Brs driver QrO functions

QIO$ IO.LIO•...• <[tnl.tn21.tevf. lost J> I ink task to uni t I/O
QIO$ IO.UIO, ...• <ltnl.tn2J> unl ink task from uni t I/O
QIO$ IO.Ur:lL, ... unl ink all tasks from uni t I/O
QIO$ IO.RVB •...• <ibuf.isz> read next record from buffer
QJO$ 10.RIO, ... ,<ibuf.isz.obuf,osz> read last I/O
QJO$ 10.HVB ••..• <obuf.osz> send data to uni t
QIO$ IO.CTI, ...• <id.timl,timh> mark delta time
QIO$ IO.CTr:l, ...• <id.timl.timh> mark absolute time
QIO$ 10. DlI •...• <id> remove clock queue entrlJ

ast aSynchrounous system trap routine address
ibuf input buffer address
id clock queue entry identification
isz input buffer size in blltes
obuf output buffer address
osz output buffer size in bytes
tevf trigger event flog
timh time in IOOth seconds (higher significant port)
timl time in IOOth seconds (lower significant partl
tnl task name in Rr:lDIX-50 (first three characters)
tn2 task nome in Rr:lDIX-50 (second three characters)

Figure 6. The HISdriver queue-I/O functions. A link between an installed task and a unit
results in all data transfers from and to the unit to be buffered in a ring buffer; the selected
event flag of the linked task is set upon a transfer, and the data may be read by the task
using a read command. A task is attached if an AST routine addftu is given. An attached
task gets the data in the stack through the asynchronous system top mechanism. Only
attached tasks may use the mark-time functions.

260 ELSNER

Response Record Format

bl/te count
hour I lIIinute

second I IOOth second
o ~ uni t number - 21 control bits

o ~ 15 response bits

Stimulus Record Format

bl/te count
hour I minute

second I IOOth second
I ~ unit number - 21 control bi ts

o ~ 15 stimulus bits

Time Record Format

bl/te count
hour I minute

second I IOOth second
o ~ unit number - 2
I ~ identification

Figure 7. The data record formats. The first 4 bytes after the
byte count contain the event's daytime at the precision of
.01 sec. The number of response- or stimulus-data words in one
data record may be set individually for each unit, according to
the needed number of signals.This number, as well as the associ
ations of the individual bits with their signals, is defined in the
MACRO library of device-specific definitions shown in Figure 4.
The different types of records are identified by Bit 0 of the
flrst and second data word.

ment is considerable and demands sufficient mass
storage space.

Besides the schedule and event logging tasks shown,
any number of other tasks may run and be linked to
the units In order to provide for special functions such
as the real-time inspection of an experiment's activity
on a terminal screen, or the hardware testing of an
inactive unit.

The Device Driver
A very flexible device driver has been developed for

the Behavioral Interface System (BIS) in order to allow
the implementation of above mentioned links and func
tions. Figure 6 lists the QIO functions for the BIS driver.
A task may link or unlink itself or other installed tasks
to a unit through the function LIO, DIO, and VAL,
respectively. Any number of tasks may be linked to a
unit, and at the same time, any number of units may be
linked to one task. If a linked task is not active upon
occurrence of a data transfer from or to a unit, it is
activated by such an event (as, for example, by switching
the unit on).

The driver notifies a task about a new data transfer
from or to a linked unit by setting an event flag, indicat
ing that the data are stored in a ring buffer within the
driver. These data may be read by the use of the func
tion RVB.

An attach is a special link that is created by the speci
fication of an asynchronous system trap (AST) routine
address. Only one task per unit may be attached. An
attached task gets I/O information through an AST (a
fast task activation and data transfer mechanism imple
mented in RSX-IIM). If a schedule task is attached, a
write protection is erected against other tasks, in that
only privileged tasks are allowed to send data to a unit
through the function WVB. Unattached units are not
protected.

The special functions CTI, CTA, and DTI may be
used only by an attached task. A time event is scheduled
by using these functions. The same entry point and data
handling mechanisms are used for time events as for all
other events.

Figure 7 represents the record format of a data trans
fer between a task and a unit. It is inherent in BIS
that the number of lti-bit words per data transfer may
be selected individually for each unit. Thus each record
is assorted with a byte count that reflects the length of a
transfer. Each record contains the time of day in a resolu
tion of .01 sec. The first data word after the time con
tains the transfer direction indicator bit, the unit
number, and some general control bits, such as the status
of the unit's switch. The additional words contain device-

Figure 8. Event processing algorithm. The program sets itself
into the correct event-type condition by establishing the cor
responding state table's offset. A processing pass consists of
executing the corresponding event code of all state sets' active
states. If synchronizing signals (synebs)are created during a pass,
a synch-event pass is executed. Synch pass iterations may not
exceed a certain maximum.

specific bits whose meaning is described in the MACRO
library mentioned above. The time record format is
analogous to the data records. It identifies itself by an
uneven second data word, something excluded in BIS
data, which use BIT 0 of additional words as a continua
tion indicator.

State
entry code
execut ion

Figure 9. The processing of a state. A state switch or a stop
may both be scheduled in the entry section of a state or in its
event section.

run time sustem routines

program start and exit
attach and detach RST routine

event handling RST routine

state tables
sunch, response and stimulus masks

PASTOR 261

THE PASTOR RUN-TIME SYSTEM

The processing of an event by a schedule task is repre
sented in Figure 8. The execution of all event codes,
including time events, synch events, state entries, and
exits are strictly event driven (no poIling) and are called
over identical routines. If an external event occurs, all
state sets are serviced in sequence. A time event is asso
ciated to a specific state set's state and does not elicit
any direct action for the other state sets. If the event
processing creates intemal synchronization signals,
they are processed in a pass through all state sets. A pass
counter monitors the number of such synch processings
elicited by a single event and inhibits any further itera
tion after a maximal number (presently 10).

Figure 9 shows how a state is processed from initial
ization to exit. Part of the state entry code is under pro
gram control. The other part is determined by the wait
statemen ts: The even t counters are reset, and the absolute
times or time intervals are initialized. If a state switch or
a stop occurs in any of the state sections, the state is
left by executing its exit code, mainly canceling its
still hanging time requests. A stop resets the active states
of all state sets to the initial state.

PASTOR's Code Structures
Figure 10 presents the schedule task structure. A

resident library contains all necessary Polish routines
and other subroutines. Figure 11 lists all currently imple
mented Polish routines. These routines are written in
reen trant code, in order to be used by all active schedules
in common.

resident library

main program

global tables

states entry code
stimulus handling code
response handling code

sunch handling code
time handling code
states exit code

polish code

unit pointers

unit buffers and pointers
initial states table

variables and counters

unit buffers and pointers
active states table

variables and counters

unit pointer table

template unit table

uni t tables

Figure 10. A schedule's task structure. The resident library contains Polish routines and other subroutines written in reentrant
code to be used by all active schedules in common. Per schedule and unit type, only one task is needed. It handles all units attached
to the schedule. The task is divided in pure and impure code. An impure unit table is created dynamically as a new unit is attached to
the schedule.

262 ELSNER

Figure 13. The unit table format. Each unit attached to a
schedule is governed by such a table containing the impure data.
The fixed-format table header contains pointers to variable
length buffers in the table body.

Figure 12. The state table format. Each state of a schedule is
defined by a state table. They are pointed to by the unit's active
state table entries. A state table entry points to its corresponding
event code entry point.

is a list of the entry points of the events' Polish code.
The event type to be processed is coded as offset in this
table, through which the proper code of each active
state is found.

All stimulus, response, and synch masks are stored
and labeled in a mask defmition table, referenced by
the Polish code.

The Polish code section is separated into its respec
tive event types. If a state waits for severalevents of the
same type in parallel, they are serviced in sequence as
they appear in the program.

The unit pointer table has one entry for each unit

active states table pointer
initial states table pointer

I/O status block

sunch depth counter
present response pointer I---
present stimulus pointer I----

actual event buffer pointer I---
stimulus accumulator pointer

sunch accumulator pointer
present response buffer I--

(length device tUPe specific)

present stimulus buffer -(length device tUPe specific)

actual event buffer --(length device tupe specific)

stimulus accumulator
(length device tupe specific)

sunch accumulator
(lenght schedule specific)

active states table
(one pointer per stateset) I--

I-- state t

variables and counters
(one double yard per entru)

abIes

exit code pointer

entru code pointer

sunch handling code pointer

response handling code pointer
stimulus handling code pointer

state 8.The main program consists of program entry and exit
sections and two AST routines.

The attach and detach AST routine is triggered by
two separate tasks (SAT for attach and SnT for detach)
that allow the operator or an indirect command file to
establish a link between a schedule and a unit. These
tasks communicate with the schedule task through
standard RSX-llM task communication mechanisms.
Upon an attach command, this AST routine extends the
task size by the amount needed by a unit table, copies
the template unit table into the new memory area,
relocates the pointers, and enters the table into the unit
pointer table.

The event handling AST routine dispatches all incom
ing events and time interrupts to the appropriate attached
unit table and calls the main event handling routine in
the resident library.

For each state in the schedule, there exists a state
table, which is represented in Figure 12. A state table

polish mnemonics

$PSRD - add stack value into stack value
$PSRN - 'and' tya boolean values on stack
$PSRT - mark absolute time
$PSRV - convert address on stack into value on stack
$PSCS - clear stimuli
$PSDT - mark delto time
$PSDV - divide stack value into stock value
$PSDl - decrement variable and test if zero
$PSES - set stimuli equal to mask
$PSEG - compare tyO stack values if equal
$PSEX - exit polish mode
$PSGE - compare stack values if greater or equal
$PSGT - compare tyO stack values if greater than
$PSIC - test if mask bits clear in input
$PSIE - test if input value equal mask
$PSIS - test if an~ mask bits set in input
$PSIX - convert index and address on stack into address
$PSJC - Jump conditionallU if false
$PSJH - Jump unconditionallu
$PSLR - load address into stack
$PSLC - load constant into stack
$PSLD - load variable value into stack
$PSLE - compare tyO stack values if less or equal
$PSLO - convert offset to· address and load into stack
$PSLT - compare tyO stack values if less than
$PSHC - move constant into variable
$PSHL - multiplU stack value into stack value
$PSHV - move variable into variable
$PSNE - compare tya stack values if not equal
$PSNG - negate stack value
$PSNT - ·not· a boolean value on stack
$PSOC - test ii mask bits clear in output
$PSOE - test if output value equal mask
$PSOR - 'or' tyO boolean values on stack
$PSOS - test if anu mask bits set in output value
$PSRC - test if mask bits clear in response
$PSRE - test if response value equal mask
$PSRS - test if anu mask bits set in response
$PSRT - remove time queue entru
$PSSB - subtract stock value into stack value
$PSSR - store stack vnlue into address on stack
$PSSS - set mask bits into output
$PSSZ - set sunch signal
$PSTR - suitch to state
$P8TS - test if stateset in state

Figure 11. list of cunently implemented Polish routines.

in the system. At the time a unit is attached and a unit
table is created, the respective entry in the unit pointer
table points to the unit table.

A unit table is structured as represented in Figure 13.
It contains all impure data of the units. For each table
entry, there exists a pointer in the header. An additional
entry points to the template initial states table for the
restart of a schedule. The header also contains the I/O
status block for I/O error handling and the synch depth
counter, which counts the synch handling iterations.

The present response and stimuli buffers serve to test
the active status of responses and stimuli in a condition
statement. The event buffer contains the responses,
the stimuli, the synchs, or the time event identification,
whichever is appropriate. In the stimulus accumulator,
all stimulus changes occurring during an event processing
are monitored. The updated buffer is sent, if changed,
to the unit just before entering again in wait status. The
synch accumulator stores all synchronizing signals
created during one state set pass. At the end of the pass,
the accumulated signals are copied into the event buffer
and cleared.

The active states table has one entry per state set. It
contains the pointer to the state table of the active state
of this state set. A state switch updates this pointer.

The last impure data section contains the variables
and counters. They are referenced in the Polish code by
offset, rather than by absolute address.

CONCLUSION

The described software system is field proved. It has
been employed in the present form for over 1 year in
our laboratory for the execution of experiments in
behavioral toxicology. It handles the activity of two
residential mazes and eight Skinner boxes working
generally day and night in several experimental protocols.
These use a variety of different schedules, including an
overnight autoshaping procedure with performance
controlled schedule switching.

The run-time system has very low memory require
ments. The variable-interval schedule presented in
Figure 1 needs, besides 800 words of resident library,
992 words of working memory plus 164 words/unit.
An event logging task needs about 900 words, of which a

PASTOR 263

great deal is needed by the block buffer. Many more
experimental units may be added to the system without
substantial reduction of responsiveness. The only limit
is the available memory and the number of 128 units/
interface system.

A whole set of modular programs performs special
functions, such as the planning of experimental proto
cols, the testing of the hardware, the real-time observa
tion of the activity in an experiment on a screen, the
data processing of the event sequences, the storage of
reduced data in structured data banks, and the graphical
representation of the data and their statistical analysis.
These applications, including program development and
text editing, are executed in parallel to the experiments
on the same computer without inducing any noticeable
effect upon the efficiency of the experiment control.
The response latency of the software is generally within
10 rnsec and seldom exceeds 20 msec.

Taken as a whole, this software system presents an
efficient and practical tool for the everyday tasks of
a behavior laboratory performing routine work and
dynamic research.

REFERENCES

DESSY, R. E., & STARLING, M. K. Fourth generation languages
for laboratory applications. American Laboratory, February
1980.

ELSNER, J., & WEHRLI, R. Interface systems in behavioral
research. Behavior Research Methods& Instrumentation, 1978,
10,239-263.

JENSEN, K., & WIRTH, N. PASCAL-User manualand report.
NewYork: Springer, 1973.

JOHNSON, R. C. Special report: Ada, the ultimate language?
Electronics, February 10, 1981, 127-132.

MARTIN, R. A., & CONNER, R. J. Computer control of operant
oriented laboratories. Behavior Research Methods & Instru
mentation, 1973,7, 131-136.

SNAPPER, A. G. An introduction to state notation and SKED.
Behavior Research Methods& Instrumentation, 1976,S, 69-72.

WIRTH, N. Compilerbau. Stuttgart: Teubner, 1977.
WIRTH, N: MODULA-2. Zurich: ETH, Institut fur Informatik,

1980.

NOTES

1. SKED is a trademark of State Systems, Inc.
2. PDP-ll and RSX-llM are trademarks ofDigital Equipment

Corporation.

