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METHODS & DESIGNS

A guide to LISREL-type structural
equation modeling

RICHARD G, LOMAX
College ofEducation, University ofIllinois, Chicago, Illinois 60680

Recently, researchers in psychology have achieved the statistical sophistication necessary for
building and testing LISREL-type causal models. However, the literature is devoid of any
description of how to proceed in the'LISREL modeling process. Using reading test scores
obtained from empirical studies, causal models were constructed and tested. The guide resulted
from these analyses and features descriptions of (I] a goodness-of-fit test, (2) the use of multiple
indicator variables, (3) evaluation of any possible causal relationship, (4) a "residual" analysis
for detecting measurement problems, (5) a "derivative" analysis for correlated measurement
error, and (6) estimation of the amount of unexplained variability for each dependent latent
variable.

The investigation of formal statistical models of
causality has always been a major focus of science.
The notion of causal modeling has existed since
the formulation of path analysis by Wright (1918,
1921, 1934). Although the value of causal modeling as a
nonexperirnental technique has been known for a num­
ber of years, it is only a recent development that
researchers in psychology have achieved the statistical
sophistication necessary for the implementation and
testing of causal models (Bentler, 1980).

A causal model typically consists of a theoretical
structure involving the relationships among unobservable,
hypothetical constructs referred to as latent variables.
A latent variable may be designated as an independent
variable, a dependent variable, or both, depending upon
the specified structure. Each latent variable, although
not directly measurable, can be evaluated by one or
more observable indicator variables. In utilizing only a
single indicator variable to measure each latent variable,
as is actually the case in path analysis, considerable
measurement error can be introduced into the causal
model. Such a problem can be alleviated through the use
of multiple indicators of each latent variable. Through
some combination of the indicators for a particular
latent variable, in a factor-analytic sense, one may
obtain better measurement of the latent variables.

Causal modeling as defined and developed by Joreskog
(1973, 1977, 1978) is known as the linear structural
relationship model, or LISREL. LlSREL consists of
the structural equation model and the measurement
model. The structural equation model describes the
theoretical causal relationships among the latent vari-
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ables via a set of general linear equations. The measure­
ment model describes the measurement of the latent
variables by the observable indicator variables and
allows evaluation of the measurement properties of such
measures.

The LlSREL system of causal modeling is presently
implemented in the LlSREL IV (Joreskog & Sorbom,
1978) computer program. Since 1972, when LlSREL
was first made available to the research community,
several applications of the technique have appeared in
the psychological literature. However, the literature
is devoid of any description of how to proceed in the
LlSREL-type causal modeling process. Although
Maruyama and McGarvey (1980) discuss the evaluation
of causal models via the LlSREL technique, they fail
to aid the practitioner in two important areas. First,
they do not describe in adequate detail the theory
underlying the LlSREL model, especially with respect
to the following: the estimation both of parameters and
of the population variance-covariance matrix, the
identification problem, and the sequential testing of
models in a confirmatory sense. Second, although the
application presented appears to be sufficient,Maruyama
and McGarvey do not tell the reader how to proceed in
the modeling process. If a researcher's initial model
does not yield an acceptable fit to the data, what should
the next step be? The purpose of this paper is to (1) de­
scribe in detail the theory underlying the LISREL model
and (2) construct a guide to model fitting for prospec­
tive LISREL users. The guide is supported by empirical
work done on a reading comprehension model developed
by Lomax (1980, Note 1).

THETHEORY UNDERLYING THE
LISREL MODEL

The theory supporting the general LISREL model
(see also Joreskog, 1977, 1978) is as follows.
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each of the y and x indicator variable sets of 71 and ~,

respectively. The off-diagonal submatrices ~xy = ~yx

consist only of covariance terms and reflect the relation­
ships between the y and x indicator variable sets. The
elements of ~, then, are obviously functions of the
elements of the matrices Ay, Ax, B, I', <1>, \fI, 8 e , and
e6 • Elements of these eight matrices are of three types:
(I) fixed parameters that have been assigned certain
values a priori, (2) constrained parameters that are
unknown but equal to one or more of the other param­
eters, and (3) free parameters that are unknown and
unconstrained.

The measurement model can be written in a factor­
analytic sense as:
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The Model
Consider, first, the structural equation model. Let

1/(m X 1) and ~(n X 1) be random vectors of the latent
dependent and independent variables, respectively, so
that a system of linear structural equations follows

(I)

where B(m X m) and rem X n) are matrices of coef­
ficients, and ~(m X 1) is a random vector of residuals
due to equation errors (e.g., misspecification error).
Assume that E(71) =Em =0 and that E(n =O. Assume
also that ~ is uncorrelated with ~ and that B is non­
singular (i.e., invertible).

Now consider the measurement model. Since the
vectors 71 and ~ are unobservable, let yep XI) and
x(q XI) be vectors of the observable indicator variables,
so that

z =Af+ e,

where z =(y' x')', f =(71' ,~')', e =(e' ,0'J, and

(5)

and

(2) A= [Ay 0] .
o Ax

The variance-covariance matrix ~ is a supermatrix con­
structed from the four submatrices. The diagonal sub­
matrices ~yy and ~xx consist of both variance and
covariance terms and reflect the relationships within

where e(p X I) and o(q XI) are vectors of the errors of
measurement in y and x, respectively. The vectors y and
x are taken to be measured as deviations from their
respective means. Let Ay(p X m) and Ax(q Xn) be
regression matrices of y on 71 and of x on t respectively.
Assume that the errors of measurement e are uncorre­
lated with the errors of measurement b. Also assume
that the errors of measurement, e and 0, are uncor­
related with T/, t and r

Next consider combining aspects of the structural
equation and measurement models. Let <I>(n X n) and
w(m X m) be the variance-covariance matrices of ~

and ~, respectively, and let 8 e(p X p) and 86 (q X q)
be the variance-covariance matrices of e and 0, respec­
tively. From the above assumptions, it follows that the
variance-covariance matrix ~ [(p +q) X (p +q)] of
z =(y' .x')' is

x =Ax ~ +0,

~ =

[

A
Y

(B-l rcllr'B,-1 +B-1WB,-1 )Ay +8 e

Axcllr'B'-1 Ay

= [~yy ~yx] .

~xy ~xx

(3)

AyW
l
rcllA~J

AxcllA~ +8 6

(4)

Thus, z is a vector of observed indicator variable mea­
surements, A is a matrix of factor loadings on the latent
variables, f is a vector of unobserved latent variables or
common factors, and e is a vector of measurement
errors or unique factors. From this, one can see that
the LISREL model is simply a restricted factor-analysis
model (Joreskog, 1969) in which the factors 71 and ~

satisfy a linear structural equation system of the form
in Equation 1. The restriction is that the observables are
permitted to load only on specified elements of f, which
necessitates fixing the majority of the elements in A to
zero. The restrictions are derived from the hypothesized
measurement model. However, there is no requirement
that m < p, that n < q, and that ee and e6 be diagonal,
as there is in traditional factor analysis. The only require­
ments are that ~ as defined in Equation 4 is nonsingular
(i.e., invertible) and that the model is identified.

Identification and Estimation
Prior to the application of estimation procedures to

the model, one needs to assess the identification prob­
lem. Identification depends on the specific LISREL
model under consideration and on the specification of
fixed, constrained, and free parameters. A specified
structure of Ay, Ax, B, I', cll, w, ee, and e6 generates
one and only one ~, although several structures may
generate the same ~. If more than one structure gener­
ates the same ~, the structures are said to be equiva­
lent. If a parameter has the same value in all equivalent
structures, then that parameter is identified. If all of
the parameters of the model are identified, a consistent
estimator of it can be found. If a parameter is not identi­
fied, it will not be possible to find a consistent estimator
of it. Thus, a model is identified when all parameters



A parameter () is identified if that parameter can be
determined from ~; otherwise, the parameter is not
identified. In some cases, a parameter can be determined
from ~ in different ways, such that the parameter is
said to be overidentified.

Since it has already been assumed that the distribu­
tion of the observed indicator variables is sufficiently
described by the variance-covariance matrix, the esti­
mation problem involves the fitting of ~ as described
by the LISREL model to the sample variance-covariance
matrix S. The fitting function used by Joreskog (1977,
1978) is

F =log I~ I + tr(S~-l) - log lSI -- (p+q), (7)

are uniquely estimable from the data, and not identified
when there is not enough information to uniquely
estimate certain parameters.

Joreskog (1977, 1978) assumes that the distribution
of the observed indicator variables can be sufficiently
well described by the first- and second-order moments so
that information contained in higher order moments can
be ignored. This assumption will be upheld if the distri­
bution is multivariate normal. With the mean vector
unconstrained, the distribution of z =(y' .x')' is described
by the independent parameters in Ay , Ax, B, I', <1>, 'lJ,
ee, and el). Let () be a vector of Order s of all of the
independent, free, and constrained parameters (i.e.,
each distinct constrained parameter is counted only
once). For each fixed parameter (that is, for each
parameter set equal to a constant, typically 0 or 1),
one less parameter need be identified and estimated.
The identification problem, then, is whether or not
() is determined by ~.

For a specific LISREL model, the identification
problem can be evaluated by considering the upper
triangular portion of ~. There are ~(p + V(p + q + 1)
equations in ~ and s unknown elements in (). Therefore
a necessary, but not sufficient, condition for the identi­
fication of all of the parameters is that

s < ~(p + q)(p + q + 1). (6)
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minimization procedure uses the first-order derivatives
and approximations to the second-order derivatives of
F and rapidly converges from some arbitrary starting
point to a local minimum of F. If several minima of F
exist, the procedure does not necessarily converge to the
absolute minimum.

The LISREL computer program (Joreskog & Sorbom,
1978) checks on the identification problem for each of
the s distinct and independent parameters by computing
the information matrix at the starting point of the
iterative procedure. If the matrix is positive definite
(i.e., invertible), the model is identified. If the infor­
mation matrix is singular (i.e., not invertible), the model
is not identified. The matrix is evaluated at each itera­
tion by building up information about the function F.
Once the minimum of F is found, the information
matrix is again computed and yields standard errors
for each of the independent parameters. By starting with
an identified model and allowing a fixed parameter with
a nonzero derivative to become free in a subsequent
model, one guarantees an identified model. At the
minimum of F, all derivatives of the independent param­
eters are zero; the derivatives are also zero for any fixed
parameter that would not be identified if it were allowed
to become free. The constrained parameters sum to zero.
Thus, when allowing a fixed parameter to become free,
the parameter is identified (and thus estimable) only if
its associated derivative is nonzero.

Model Testing
Once the maximum-likelihood estimates of the

independent parameters have been computed, the
goodness of fit of the LISREL model may be tested
in large samples by the likelihood ratio procedure.
Let Ho be the null hypothesis of the LISREL model
under the specification of fixed, constrained, and free
parameters. Consider first the situation in which H1 ,

the alternative hypothesis, is that ~ is any positive
definite matrix. Then minus twice the logarithm of the
likelihood ratio is (N/2)Fo, where Fo is the minimum of
F. If such a model holds, it is distributed in large samples
as chi square, with degrees of freedom.

Next, consider the situation in which Ho is a specific
hypothesis of a LISREL model that is more restrictive
than an alternative H1 . In large samples, Ho can be
tested against HI' If Fo is the minimum of F under
Ho, and F 1 under H1 , then F 1 < Fo , and minus
twice the logarithm of the likelihood ratio becomes
(N/2)(Fo - Fd. Under H,. this function is approxi­
mately distributed as chi square with S1 - So degrees of
freedom, which is the difference in the number of
independent parameters estimated under H 1 and Ho.
Such a set-up allows one to sequentially test a series of
hierarchical hypotheses.

In research that is more exploratory in nature, each

which is minimized with respect to e. Minimizing F
is equivalent to (and more convenient than) maximizing
the logarithm of the likelihood (log L) of ~. Recall
that ()' =«()l> ()2, ... ,es) is a vector of the unknown
elements of the matrices Ay, Ax, B, I', <1>, 'lJ, ee, and
eI). Then F may be regarded as a function F«()) of
()l> ()2,"" ()s (Joreskog, 1973). The procedure in
effect minimizes a scalar function of the difference
between S and ~. If the distribution of z =(y',x')'
is multivariate normal, then maximum-likelihood esti­
mates result, which are efficient in large samples. The
minimization of F with respect to the independent
parameters is accomplished through a modification of
the Fletcher and Powell (1963) iterative procedure, as
described by Gruvaeus and Joreskog (Note 2). The

d =~(p + q)(p + q + 1) - s. (8)
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chi-square value may be utilized as a goodness-of-fit
test. If the value of chi square obtained is large relative
to its degrees of freedom, the fit may be further evalu­
ated through an inspection of (1) the magnitude of the
first-order derivatives of F for the fixed parameters
and (2) the difference between S and ~, the residual
resulting from S - ~. Usually, such an examination
suggests ways in which the LISREL model may be
relaxed by allowing additional fixed parameters to
become free, in order to arrive at a better fitting model.
For the revised model, if the drop in the value of chi
square is large relative to the difference in the degrees
of freedom, it indicates that the changes resulted in a
"significant" improvement in the fit of the model.
However, if the drop in the value of chi square is approx­
imately equal to the difference in the degrees of free­
dom, then the changes resulted in a "minimal" improve­
ment in the fit of the model due to a chance occurrence.
A limitation in using the chi-square index as a goodness­
of-fit test for an individual model is that the chi-square
value is a direct function of sample size. For a large
sample, a "good fit" cannot usually be found using this
index, even though the residuals may be essentially
zero. For a small sample, many competing models may
yield a "good fit." Other indexes that are unrelated to
sample size are described by Bentler and Bonett (1980).

It is not the statistical estimation procedure that
"creates" a causal model. A theory or structure of
relationships among a set of latent variables is first
hypothesized and then tested via statistical techniques.
The primary reason for modifying a LISREL model is
not to obtain a "significantly" better fit to the data.
Model modifications should not be made when they are
inconsistent with the underlying theory, but rather,
only when the changes are meaningful to the researcher.
Thus, the major goal of LISREL-type structural equa­
tion modeling is confirmatory" in the sense of sub­
stan tiating some theory, and exploratory, in the sense
of making finer theoretical distinctions than were ini­
tially hypothesized.

A general problem associated with causal modeling is
that of model misspecification. Specification errors
arise when some of the relevant and important variables
are not included in the model, and they may result in
biased estimates of the structure coefficients and/or
statistical rejection of the model. Procedures for detect­
ing misspecification in structural equation models have
been devised by Saris, dePijper, and Zegwaart (1980).

The Program
The LISREL system of structural equation modeling

is presently implemented in the LISREL IV (Joreskog
& Sorbom, 1978) computer program.' The LISREL
computer program, and thus the LISREL model, is
extremely flexible, in that it can accommodate virtually
any type of causal model. The LISREL model/program
makes allowances for equation errors (i.e., disturbances),

measurement errors, correlated errors of measurement,
and models with reciprocal causation, as well as confir­
matory factor analysis, longitudinal analysis, simultane­
ous analysis in several groups, and covariance structure
analysis.

The LISREL program yields numerous types of
results. Of particular interest to the present discussion
are the following: the matrix to be analyzed, parameter
specifications and starting values (as selected by the
researcher), the LISREL maximum-likelihood estimates
and their standard errors, the results of the goodness­
of-fit test (the chi-square value, degrees of freedom,
and associated probability level), computed z values
(LISREL estimates divided by their standard errors)
for each of the independent parameters estimated, the

A

estimated variance-covariance matrix ~, a matrix of the
"S - L residuals, first-order derivatives of the function

F, and the estimates for the standardized solution. Other
optional output features include tables describing the
behavior of the iterative procedure (which may be usefui
for models that do not converge on or reach a final
solution), correlations among the parameters estimated,
and factor score regressions (i.e., regressions among the
latent variables).

A GUIDE TO LISREL-TYPE
CAUSAL MODELING

This guide represents an initial attempt to construct
a sequential series of steps whereby the prospective
modeler can proceed from an initial hypothesized "gut­
level" model to a final best-fitting model based on theory
and statistical estimation. For each step, examples are
drawn from the reading comprehension model described
by Lomax (1980, Note 1). The procedure is as follows.

Step l-Construct the hypothetical causal or struc­
tural model based upon one's training and experience in
the substantive area. Defme the latent dependent and
independent variables (i.e., 1/ and t respectively).
Define the causal relationships among the latent depen­
dent variables (i.e., B) and between the latent dependent
and independent variables (i.e., I'). In the reading studies,
Lomax (1980, Note 1) considered skills believed to be
necessary for the development of reading comprehension
and assembled them into the causal model, as shown in
Figure 1. The model consisted of phonological, word
recognition, reading rate, and reading comprehension
components. The causal relationships were formulated
through classroom observation of reading behavior and
familiarity with reading curricula.

Step 2-Substantiate the structural model by review­
ing the relevant literature and by attending to possible
alternative models as well. Although in the reading
content area, researchers have been content to examine
the relationships among pairs of components rather than
causal networks, some evidence was found for each of
the relationships in the hypothesized model. However,



Figure 1. A causal model of the component processes of
reading comprehension.

evidence for the influence of reading rate on reading
comprehension was minimal, indicating that such a
relationship may not exist.

Step 3 -Select an appropriate population to be
sampled. In the reading study, the learning-disabled
population was selected because the group was very
heterogeneous with respect to their level of reading
development.

Step 4-Define a set of indicator variables (prefer­
ably three or more) for each of the latent dependent
and independent variables (i.e., y and x, respectively).
From a comprehensive battery of reading tests, 17
relevant indicators were chosen for the analysis. Multiple
indicators per latent construct are useful for evaluating
the relative merits of each measure, as shall be seen in
later steps.

Step 5 --Collect the data.
Step 6 -Decide whether to utilize the correlation

or variance-covariance matrix for analysis, depending
upon the relative metrics of the indicator variables.
When the unit of measurement for the indicator variables
is of no particular importance to the researcher (i.e.,
arbitrary or irrelevant), then only an analysis of the
correlation matrix is typically of interest. Since the
correlation matrix involves a rescaling of the observed
indicator variables, the parameters estimated for the
measurement model (in particular, the factor loadings
Ay and Ax) will be of the same order of magnitude
(i.e., along the same metric). When the same indicator
variables are measured over time (i.e., longitudinal
analysis) or for multiple groups (i.e., simultaneous
analysis of several groups), an analysis of the variance­
covariance matrix is useful so as to capitalize upon the
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metric similarities of the variables. Because of the large
and arbitrary metric differences among the indicators
(e.g., reading rate vs, word recognition), the correlation
matrix was analyzed for the reading study.

Step 7-Construct a detailed figure of the proposed
causal model that allows derivation of the matrix equa­
tions for both the measurement and structural models.
A solution to the identification problem may be useful
to obtain, although the LISREL program does check on
identification. In the measurement model, one indicator
of each latent variable in A should be fixed to a value
of one, which sets the scale for the remaining indicators
and simplifies solution of the identification problem.
The reference indicator to be selected is incidental,
since the importance of the measurement model is the
magnitude of the loadings relative to the reference
indicator. The relative magnitudes of the loadings are
maintained regardless of the reference indicator selected.
If there is only a single indicator for a given latent
variable (that is, the indicator and latent variables are
equivalent, with no measurement error), then the error
variance for that indicator variable must be fixed at zero.
In other words, assume perfect measurement of the
latent variable. It is often desirable in an initial model to
specify '1J, <P, e€, and eli as diagonal matrices for ease
of identification, where only the diagonal elements are
allowed to be free. When '1J is a diagonal matrix, each
diagonal value estimated is equivalent to the amount of
unexplained variance for a particular dependent latent
variable. Note that when these variance-covariance
matrices are full rather than diagonal, starting values for
the diagonal elements must be larger than those for the
off-diagonal elements (otherwise, the model will not
reach a final solution). The free elements in B need to be
given negative starting values so as to allow convergence
on a final solution, although the sign should be reversed
in the reporting of results. Formulate the LISREL
deck set-up. A detail of the reading comprehension
model and the set of matrix equations are shown in
Figure 2 and Table 1, respectively.

Step 8 -Test the initial hypothesized model. If
standardization of the latent variables is desirable,
consider use of the standardized solution rather than the
LISREL maximum-likelihood solution. The initial
reading comprehension model resulted in a poor fit
[x2 (115) =561.411] and necessitated some additional
model-fitting procedures.

Step 9-Examine the measurement portion of the
LISREL model by following Steps 9 and 10. Why investi­
gate aspects of the measurement model prior to those
of the structural model? Since the latent variables are
defined by the indicator variables, the optimal measure­
ment model should be established in the initial stages of
the model-fitting process. Conduct a residual analysis
by (a) tallying the number of large residuals (e.g.,
Irl;;;' .100) for each indicator variable, (b) investigating
those indicators with a large number of these residuals
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Figure 2. Detail of the proposed causal model.

to determine if there are measurement problems (e.g.,
ceiling effects, test administration problems, etc.),
and (c) testing a new model with the problematic
indicators not included, seeking to find a significant
improvement in the fit of the model (for a similar
approach, see Costner & Schoenberg, 1973). As shown
in Table 2, three such measurement problems were
detected in the residual analysis for the reading com­
ponents model and resulted in a better fitting causal
model. These problems were due to a lack of convergent
validity evidence (i.e., construct related) and a severe
ceiling effect that resulted in minimal variability. This is
a benefit of obtaining multiple measurements for each
latent variable.

Step lO-Perfonn a derivative analysis by (a) devising
a list for those pairs of indicator variables for which cor­
related measurement error seems reasonable theoreti­
cally, (b) selecting from these pairs the largest absolute
first-order derivative of 0 e and 0 6 and allowing that
parameter to become free in the next model, and
(c) determining whether the difference in chi-square
values is significant for the two models. If the difference
is significant, return to Step lOb; otherwise, go on to
Step 11.

Step ll-Examine the structural portion of the
LISREL model by following Steps 11-13. Inspect the

resulting z statistic for each of the structure coefficients
(i.e., Band I') to see if they are significantly different
from zero. Then, fix the nonsignificant parameters to
be zero and test a subsequent model for which the
difference in chi-square values should be nonsignificant
(due to essentially zero structure coefficients). For the
reading comprehension model, (33 (i.e., the influence of
rate on comprehension) was initially estimated to be
nonsignificant and was set equal to zero for the sub­
sequent model. No significant difference was found
between the models, and thus the notion that (33 was
indeed equal to zero was supported. Recall that there
was minimal empirical support for the influence of rate
on reading comprehension.

Step 12-Review the first-order derivatives for the
parameters of Band r previously fixed at zero. Select
the parameter of largest absolute magnitude (unless the
structure coefficient runs counter to empirical find­
ings) and allow that parameter to become free in a sub­
sequent model. Determine if the chi-square difference is
significant relative to the difference in degrees of free­
dom. Continue as necessary. As shown in Table 3 by the
value -.276, this process leads to the discovery of
(34, that is, the direct influence of reading rate upon
word recognition skill, which appears to be theoretically
plausible.
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Table I
Matrix Equations for the Initial Model

Y246 Al a '246

Y413 A2 a '413

Y422 A
3 a '422

Y414 a A
4 '414

Y415 a AS 9 r} '415

Y450 - a A
6 '450

Y416 a a A
7 [."3 '416

Y417 a a A
8 '417

Y418 a a A
9 '418

Y419 a a
\0 '419

Y420 a a
\1 '420

Y421
a a A

12 '421

x424 An 6424

x
427 A14 6427

x430
. A15 <1 + 6

430

x433 '16 6
433

x436 '17 6436

recursive (reciprocal) causal relationship can be hypoth­
esized and evaluated; (4) the standardized solution is
preferable to the LISREL maximum-likelihood solu­
tion if standardization of the latent variables is desirable;
(5) a "residual" analysis can be conducted to detect
measurement problems in the indicator variables; (6) a
"derivative" analysis can be performed to determine
those indicators for which there is correlated measure­
ment error; and (7) the amount of unexplained vari­
ability is estimable for each latent variable. In theory,
LISREL is extremely flexible in allowing for virtually
any possible causal relationship. In practice, LISREL

Number of
Residuals

.100

IIodel '3

Number of Large
Residuals After
Removing 417,

419, 436

IIodel 02

a

Number of
Residuals

.100

Table 2
Residual Analysis for Models 2 and 3

414

422

413

246

417

450

419

418

416

415

Indicator
Variable

'fI a: diagonal¢I - diagonal

Structural Model:

Measurement Model:

420

421

Table 3
First-order Derivatives of {3 and r for Model 4

Step 13-Be sure that (a) the final structural model
is best fitting in a statistical sense and, more important,
(b) that the model is consistent with what is known
theoretically (i.e., that each path either has some
empirical base or that the causal relationship is unknown
or uninvestigated). Evidence for the influence of rate on
comprehension (i.e., 133) was minimal, whereas the
influence of rate on word recognition (i.e., 134) was
unknown. The standardized solution for the final read­
ing comprehension model is shown in Figure 3.

Step 14-Interpret and discuss the implications of the
final model.

424

427

430

433

TOTAL 60/2 • 30 16/2 • 8

BETA

a

20/2 = 10

SUMMARY EQ.
ETA 1
-0. 000

ETA 2

-0.093
ETA 3

-0.276

0.000 -0.020The LISREL model is very useful in a causal model­
building context. LISREL includes the following fea­
tures to investigate causal models: (1) A goodness-of­
fit test allows the testing of individual models, as well as
testing for improvement across models; (2) the use of
multiple indicator variables allows an assessment of
measurement error; (3) any possible recursive or non-

EQ. 2

EQ. 3

EQ. 1

EQ. 2

EQ. 3

-0. 000

GAMMA

KSI 1
-0. 000

0.143

0.101

-0.000 -0.085

0.000
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(416

Figure 3. Standardized solution for the final model.

X~l • 194.898

is somewhat complicated for use by the typical researcher.
The guide described here should help to bridge the
gap between theoretical and practical use and enable
researchers in psychology to implement the LISREL
causal modeling technique.
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