Behavior Research Methods & Instrumentation
1981, Vol. 13 (5}, 657-666

COMPUTER TECHNOLOGY

APL functions for interactive data analysis:
Principal components analysis

SELBY EVANS, JERRY D. NEIDEFFER, and FRED H. GAGE
Texas Christian University, Fort Worth, Texas 76129

APL functions to support principal components analysis are presented: a general-purpose
function to obtain eigen values and eigen vectors, a more specialized function to convert these
into the results commonly given by principal components analysis, and a user interface function
that accesses filed data, offers flexibility in data selection, and produces labeled output. A
brief introduction to the logic and uses of principal components analysis is included. General-
purpose support functions to simplify file use and to increase the range of options available

to the user are also provided.

Principal components analysis is a valuable analytic
tool for the exploratory analysis of multivariate data. It
provides an efficient description of the dimensionality of
data with multiple dependent variables. From this
description, the investigator may be able to identify one
or a few groups of variables that represent most of the
variance in the entire set. This information may be
used to reduce the number of variables under investiga-
tion by selecting or creating one variable to represent
each group.

Principal components analysis also provides evidence
on whether variables that purport to measure the same
underlying phenomenon actually do so. If they do,
analysis of the set should show all the variables correlat-
ing strongly with the first principal component. If two
independent phenomena are represented, the second
may be identified in variables correlated with the second
principal component.

The value of principal components analysis as an
exploratory tool is enhanced by use in the interactive
mode. With data sets typical of laboratory research, the
results are usually available in less than 3 min (on a
moderately loaded Sigma-9). The user can execute
several analyses, use them as a basis for decisions about
subsequent analyses, and complete the subsequent
analyses in a 1-h work session.

The availability of principal components analyses in
an interactive mode is also useful for instruction or
self-education. Students and other prospective users may
acquaint themselves with the typical results of principal
components analysis of their data by exploring the
consequences of variations in the analyses: for example,
deletion of variables, analysis of subsets of subjects, and
replication of the analysis on randomly selected subsets.

Programming of principal components analysis is
facilitated by the powerful matrix operations offered by
APL. It can be further simplified by support functions

Copyright 1981 Psychonomic Society, Inc.

657

that allow the program to focus on the central objective.
In this paper several support functions are presented
that serve that purpose.

For exploratory data analysis, the user needs to be
able to move freely from one function to another in
analyzing the same data set. This facility can be provided
by adopting suitable conventions for data structures or
files and designing support functions compatible with
these conventions. The conventions we use are as fol-
lows: (1) Data are stored in files, each file component
carrying a data table as a two-dimensional array. (2) Col-
umns represent variables. (3) Rows represent subjects, or
the equivalent dimension of the data over which summa-
tion is to be done in forming means, correlations, and
the like. (4) Tables represent collections of subjects likely
to be analyzed as a unit: experimental groups or types
of subjects. (5) Data subsets are distinguished by integers
in one or more columns, Column 2 being used for the
most important subset. (6) File conventions require that
file components be numbered by consecutive integers
starting with 1.

Data files conforming to these conventions can be
prepared by forming tables with TABLE (Evans, Gage, &
Neideffer, 1980) and appending them to the file. The
data file can be labeled with the LABEL option in
GRAPHICS (Evans, Neideffer, & Gage, 1980). (A report
now in preparation will provide functions for entering a
set of raw data, correcting it, organizing it into a file
containing one or more tables, and labeling the file.)

SUPPORT FUNCTIONS

Two groups of support functions are described in
this section. APL codes for the functions are presented
in Figure 1. The first two, PARAM and SRD, are designed
to support data analysis functions such as the one given
in this report. The others are general-purpose file func-

0005-7878/81/050657-10801.25/0



658 EVANS, NEIDEFFER, AND GAGE

0  PARAM
1 DIMS+25 50 3;CTR+0,24 jNVL+DAFL+SETE+0pSETC+2
2 OPFILE+«'TEMPO' ; OND+80 ; TYPE+1
v
0 R«SRD F
1  F+,(R+FREAD 1,F)(;SETC]¢SETE+,SETE
2  SRN+' N=',,'I5'AFMT 14pR+(Fv0=pSETE)¥R
v
0 I<FKEEP X;E
1 FDROP X(11,I+«Xx[21-(FLAST X[11])
v
0 L«FEXIST N
1 L«Vv/(0 11+FLIBI29)A.=11¢N
v
0 L«F FALTIE N
1 +*NDx102pL+(V/Fe' ,')/'FSTIE®
2 (0zpL«{(~FEXIST F)/'FCREATE')/'CREATING ',F
3 ND:e'F ', (L,(0=pL)/'FTIE'),' N
4  L«FLAST N
5 AMONADIC € IS THE EXECUTE FUNCTION IN SIGMA-9 APL
v
0 L+«F FATIE N;P;Q:;Y;R
1  FUNTIE(NeFNUMS)/N
2 +0x10=pF+(~QA1pQ«F=*/")/F,L+10
3 BT Pe( 1+Q«F1' /' )+F
4  L+L,P FALTIE 1tN
5  N*«1+N
6  +BTx12SpF+Q+F
v

Figure 1. APL code for support functions described in the text. The function FLAST
is described by Evans, Neideffer, and Gage (1980). The other functions are available in
most systems that have an APL file capability. The names of these functions vary slightly

across systems.

tions' that support any file handling with APL. They
take care of routine operations with less user attention
and less opportunity for error than is typical of the
standard file functions. They are designed to be used
with the file convention (Convention 6) given in the
introduction. If components are routinely appended and
dropped only by FKEEP (see below), files will adhere to
this convention.

PARAM

PARAM specifies initial values for parameters used by
functions in this report and others in this series. It
would be used to initialize a library copy of a work
space or to reset parameters in an active work space
after they have been changed by the user. Here, PARAM
also serves to identify and give standard values for param-
eters and their effects in one place.

DIMS controls the shape of the array used in plotting.
The standard value produces 25 rows and 50 columns.
CTR determines the minimum magnitude of correlations
to be displayed. SETE carries integers to select subsets
of the data, as described in connection with SRD below.
Its standard or default value is the empty vector, which
turns off set selection. SETC specifies the column to be
used in selecting elements given in SETE; Column 2
is selected by the standard setting. OPFILE carries the
name of the file to receive output. Other variables speci-

fied in PARAM are included because they are used by
functions to be presented in future reports.

R<SRDF

SRD provides for the selection of subsets of the rows
of a data table (assumed to represent subjects). From the
user’s standpoint, the selection is accomplished by
specifying the global variable SETE to contain one or
more positive integers designating the subset. To support
this selection, data tables must have at least one column
with integers representing set membership. For example,
integers in Column 2 of the data table might identify
experimental or demographic groups. In order to analyze
a particular group, the user would assign to SETE the
value of the integer identifying that group. To analyze
several groups as a single subset, the user would assign
to SETE a list of integers, each identifying one of the
groups.

The column to be used for subset selection can be
determined by specifying the global variable SETC to
contain the number of the column to be used. The
standard setting provided by PARAM causes set selec-
tion based on Column 2.

SRD is useful when several data-analytic functions are
to be included in the same system. It avoids redundant
code, with consequent saving of programmer effort and
available work space. From the user’s standpoint, it



insures that all functions follow the same conventions.
Indeed, one setting of SETE and SETC in a work space
controls all functions executed in that work space,
provided they all use SRD.

From the programmer’s standpoint, SRD replaces
the standard file read function, FREAD. The right
argument, F, carries only the number of the component
to be read, not the file tie number, because SRD is
written under the assumption that the primary data file
is tied to the number 1. SRD delivers in R the indicated
data table. If set selection is operating, any rows that do
not belong in the set are deleted before the result is
delivered.

SRD also leaves a global variable, SRN, which is a
character vector indicating the number of rows retained.
If appropriate, this vector may be included in the
analytic output to document the number of cases.
Adequate documentation of the analytic procedures
also requires identifying the set column and the SETE
values used to select the subset, as illustrated in the user
interface program described later in this report. Subse-
quent reports will present support functions that rou-
tinely provide this documentation.

L <« FEXISTN

FEXIST determines whether a file with the name
given in the right argument, N, exists in the user’s
account. The result, L, is a 1 if the file exists and a 0
otherwise.

The code for this function is provided to define the
function in terms of the standard file functions and to
insure that it can be produced on any system with stan-
dard file functions. The method is not particularly effic-
ient, primarily because of the time required for FLIB to
get a list of files in the user’s library. Note that the first
11 columns are dropped from the result of FLIB and that
a take operation is used to adjust N to have 11 elements,
with trailing blanks as needed. These steps conform to
Sigma-9 APL characteristics in which the first 11 col-
umns of the result of FLIB carry the account number
and the remaining 11 columns carry the file name.
Other systems may differ somewhat in the location and
length of the file names. The operations in FEXIST
would have to be adjusted accordingly.

Some systems have a FEXIST function already
available. Sigma-9 users will find one in the work space
FILAIDS in the APL1 account. Users whose systems do
not provide FEXIST may prefer to write their own in
terms of primitive file functions. For example, on some
systems, the standard FTIE will generate an error mes-
sage that can be used to determine that the file does not
exist.

C < F FALTIEN

FALTIE is a general-purpose file-tying function
that relieves the user and the programmer of attention to
several frequently occurring details. It ties the file
named in F to the number given in N. If the file does not

APL FUNCTIONS 659

exist, FALTIE creates it and reports that action. If the
file name refers to an account number, FALTIE makes a
shared (read-only) tie, as would normally be required
to access a file in another account. FALTIE delivers in
C the number of the last component in the file. In con-
junction with conventions described earlier, this number
indicates the number of components in the file and is
often needed to support iteration over the file or selec-
tion of components at the end of the file.

In Sigma-9 APL, the monadic epsilon causes the text
vector in its right argument to be executed as an APL
expression. FALTIE forms the appropriate text vector
on the basis of logical tests and then executes it (Line 3).
Some other systems (such as APLSV and those pat-
terned after it) use a different symbol for the execute
function, which would have to be substituted for the
epsilon. A few older systems (such as APL/360) may not
offer the execute function. APL programmers will be
able to determine whether the function is available and
which symbol is used by consulting their local system
manual. If the function is not available, programmers
should have no difficulty rewriting the function to use
logical tests to branch around unneeded operations, just
as FALTIE eliminates them with a logical compress.
FALTIE recognizes a period or a blank space as indicat-
ing the presence of an account number in F. These are
commonly used separators between file names and
account numbers. If some other separator were used on
a particular system, Line I of FALTIE would need to be
modified to include that separator in the test.

Some users may prefer to write FALTIE in terms of
the primitive file functions; if this is done, FTIE, FSTIE,
and FCREATE can be eliminated from the file functions
in the work space.

L <F FATIEN

FATIE serves as a general-purpose file-tying function
that augments the capabilities of FALTIE with pro-
visions for automatically untying a set of files and for
making multiple ties at one time, With FATIE, virtually
all file-tying operations are handled with a single line of
code. FATIE first unties all the files tied to the numbers
listed in the right argument, N. It then ties the file
names listed in F (separated by a slash) to the numbers
given in N. Names and numbers are taken in the same
order. The result, in L, is the number of the last com-
ponent in each file, in order matching the names. Pro-
grammers may prefer to combine FALTIE and FATIE
into a single function. The functions are given separately
here to simplify programming and testing.

A useful convention in programming with FATIE is
to give the integers from 1 to 9 (iota 9) as the right
argument when a function first calls FATIE. With this
convention, the first nine integers are reserved for use by
functions and are always untied before the function
starts to make its own ties. By using tie numbers greater
than nine, users can establish ties that are protected
from interference by functions.



660 EVANS, NEIDEFFER, AND GAGE

D < FKEEP F

FKEEP deletes components from a file with more
convenience and safety than is offered by the standard
file functions. The right argument, F, is a two-element
vector carrying, in order, the file tie number and the
number of components to be kept. Components with
numbers greater than the second value in F are dropped.
The file can be emptied by indicating that zero com-
ponents are to be kept.

FKEEP makes simple the most frequently needed
operations in dropping file components: clearing a file
completely and dropping the most recently appended
components. Since the function will only drop from the
high-numbered end of the file, it avoids the risk posed
by more general functions that the user will inadvertently
drop components from the wrong end of the file.
FKEEDP relies upon and helps to enforce the file conven-
tion described in the introduction.

PRINCIPAL COMPONENTS ANALYSIS

In this section, we provide a brief introduction to
the logic and terminology of principal components
analysis. The discussion is intended to help the pro-
grammer understand what the functions do and to give
the prospective user an intuitive picture of what the
analysis is designed to accomplish. Users who want
further background should refer to texts in multivariate
statistics, such as Green (1978) or Tatsuoka (1971).
The presentation here may help prospective users to
determine what principal components analysis has to
offer in their research.

Consider a set of data representing two intercorre-
lated variables. If these are expressed as standardized
variables and plotted, the result is an ellipse centered at
the origin and slanted with respect to the original
axes. An ellipse has its own, self-defined frame of
reference, its major and minor axes. We could lay down
transparent graph paper with the axes over the axes of
the ellipse. If we read off the locations of the data points
in reference to the new axes, we would have a new pair
of variables describing the data points. These variables
might be called “factor” scores or component variates.
(The term “variate” is used here to maintain a distinc-
tion between the original variables and those more
abstract variates that are derived as composites of the
original variables.)

Clearly, these variates, the result of a rigid rotation
of the axes, would contain the same information as did
the original variables. In fact, we could recover the
values on the original variables by reversing the rotation.

The component variates would express the original
information in a different, possibly more useful, form.
The two variates would be essentially uncorrelated.
Since the information in the original variables is fully
conserved (can be recovered by inverse rotation), one
might reasonably ask what happened to the correlation.
Considering the ellipse in terms of its own axes shows

that the correlation has been converted into a dis-
crepancy between the variances on the major and minor
axes. The greater the correlation is, the greater the dis-
crepancy. Two correlated variables of equal variance are
replaced by two uncorrelated variates of unequal vari-
ance. The variance common to the two original vari-
ables has been collected or aggregated into one variate
associated with the major axis of the ellipse.

In this illustration, the new variances could be com-
puted in the usual way. A principal components analysis
would also find the variances, but in a different way.
The variances would be the eigen values of the corre-
lation matrix.

If the variance on the minor axis were relatively
small, we might decide to discard that variance and
describe the data points entirely in terms of the loca-
tions on the major axis, that is, in terms of the first
principal component. In that case, we could not com-
pletely reconstruct the original data. The retained com-
ponent would, however, reconstruct the approximate
location of the data points on each original axis. The
reconstruction would locate each data point within a
small region of uncertainty, analogous to a confidence
interval.

Since much of the variance on the minor axis would
probably be error variance, a researcher might be pleased
to discard it in exchange for a reduction in the number
of dimensions used to describe the data. Discarding data
in this way is quite comparable to replacing repeated
observations with their average. Indeed, averaging such
data could be regarded as creating the first principal
component by assuming equal weights (and equal vari-
ances) for all variables.

The logic for the two-dimensional case can be extended
to higher dimensionality. In a three-dimensional case,
the resulting ellipsoid would look something like a loaf
of French bread. The appropriate axes would again be
intuitively obvious. But without three-dimensional
graph paper, we would find it difficult to read off the
coordinates of the points. Fortunately, if we know the
angles of rotation, the new coordinates can be computed
directly from the old ones.

Each new coordinate is found by multiplying the
three original coordinates by appropriate weights (trig-
onometric functions of the angles of rotation) and
adding the result. Thus, for determining the location of
any point on the major axis of the eilipsoid, there is a
vector, a set of three weights. Multiplying the point’s
original coordinates by the weights and summing gives
the location, or projection, of the point on the major
axis. The operation is conveniently represented in vector
notation; it is the inner product of that point’s original
coordinates and the weights.

Such a vector of weights could be determined in
various ways. It could be arbitrarily formed by setting
each weight to 1/3. In that case, the three scores for
each subject would be replaced by their average. The
result would not be the first principal component, of



course, although it might be a fair approximation with
strongly intercorrelated variables.

So far, we have discussed geometric rotations of
standard variables plotted in space. We have also described
an equivalent algebraic rotation applied to the original
coordinates, that is, to the normalized data matrix. The
geometric discussion although intuitively simpler, has
run out of dimensions. The algebraic rotation can be
extended to as many dimensions (variables) as are
offered by the data. We need only to introduce a new
procedure, more general than French bread, for finding
the vectors of weights to accomplish the rotation.
Technically, these are the eigen vectors of norma-
lized data matrix.

Finding the eigen vectors is most easily done with
the symmetric correlation matrix (the variance-covariance
matrix for the normalized data). Fortunately, its eigen
vectors are the same as those of the normalized data
matrix. Its eigen values, although different from those of
the data matrix, represent the variances on the com-
ponent axes.

The main task of principal components analysis is
to find the eigen values and eigen vectors of the correla-
tion matrix. This information is then combined to
produce results such as the correlations of the original
variables with the component variates, the proportion
of variance accounted for by each component, and
perhaps the new variates themselves. In the final output,
the components are ordered so that the component
accounting for the most variance is first, the component
accounting for the second largest amount of variance is
second, and so forth. The components account for
distinct, additive portions of-the variance in the original
data; the variates representing the components are
uncorrelated.

The most commonly reported output of a principal
components analysis is the table of correlations between
the original variables and the component variates. These
correlations are sometimes called “loadings,” but noth-
ing in the present context suggests a need for calling
correlations by another name. Inspection of these
correlations is useful in determining what variables are
best represented by each component.

Principal components analysis is often treated in
association with factor analysis. Actually, it represents
a different model, and its use in factor analysis is open
to question (Lee & Comrey, 1979). We use principal
components analysis as a data reduction technique and
associate it with discriminant function analysis, multiple
regression, and canonical correlation.

When principal components analysis is used as a
putative factor-analytic technique, the retained com-
ponents are usually subjected to secondary rotation by a
program such as varimax (Kaiser, 1958). The rationale is
that the results of principal components analysis are
difficult to interpret, whereas rotation produces more
interpretable results. When principal components analysis
is used to explore and describe the dimensionality of a
data set, the objectives are quite different from those of

APL FUNCTIONS 661

factor analysis. The characteristics of the data set and
the kind of interpretation required may be quite dif-
ferent from the experience of factor analysis. The
need for a secondary rotation from the principal com-
ponents solution has to be evaluated in the context of
these differences.

Rotating from a principal components solution
poses problems that one might prefer to avoid. Not
only is the choice of rotation procedure open to dispute,
but so, also, is the number of components to rotate.
(See the discussions by Green, 1978, and by Lee &
Comrey, 1979.) Two researchers using the same data and
the same analytic procedure could produce substantially
different results by differing in their criteria for how
many variates to retain. The unrotated principal com-
ponents solution is insensitive to such a choice, because
the deletion of components does not affect those
retained. Since the comparison of principal components
solutions results poses fewer uncertainties, it is probably
good practice, even if secondary rotation is deemed
necessary, to publish the principal components solution
as well.

We have a varimax function in our system and have
found that secondary rotation is sometimes useful in
working with questionnaire data. With laboratory data,
however, we find that the results of a principal com-
ponents analysis are usually able to support such inter-
pretation as may be needed in that research domain. In
interpreting a principal components analysis, users
should keep in mind that the results are determined by
the variables that went into the analysis. A different mix
of variables could substantially change the result.

Although principal components analysis has not been
widely used with laboratory data, there are studies to
illustrate its application and results. Gage (1978) and
Gage and Lieberman (1978) used it to identify empirical
variables that would be good candidates for indexes of
social dominance. These studies started by selecting sets
of empirical variables commonly used in the literature
as measures of social dominance. The variables were
observed concurrently in social dominance paradigms.
The resulting data were subjected to a principal com-
ponents analysis. In both studies, the analyses identified
several empirical variables that correlated strongly with
the first principal component and thus could be treated
as measuring the same underlying phenomenon. Both
studies included replications indicating that the selection
of variables on the basis of the principal components
analysis could be replicated.

The analyses also identified commonly used mea-
sures of dominance that did not correlate well with the
first principal component. Such measures could not
safely be treated as measuring the phenomenon mea-
sured by the first principal component; indeed, such
measures could lead to quite different conclusions.

A methodological paper on the psychophysics of
image quality (Evans & Attaya, 1978) illustrates the
use of principal components analysis to reduce the
dimensionality of both physical and subjective variables.



662 EVANS, NEIDEFFER, AND GAGE

Other studies illustrate the application of principal
components analysis in the definition of aggressive
behavior (Crabtree & Moyer, 1973), in the analysis of
operant data (Gage et al., 1979), and in data represent-
ing the consequences and treatment of brain damage
(Gage et al., 1980).

In laboratory research with good control over extra-
neous sources of variance, the typical correlations
between related measures should be much greater than
in field research. When the research is planned on the
basis of good prior knowledge about the relationships
between measures and laboratory manipulations, the
strength and interpretability of the principal com-
ponents analysis is likely to be enhanced. We find that
it is not unusual to obtain correlations of .75 or greater
in laboratory studies of constructs for which related
variables have been suggested from previous research.

FUNCTIONS FOR PRINCIPAL
COMPONENTS ANALYSIS

Two functions, EIG and PRN, provide the basic
results of a principal components analysis. APL code for
these functions is given in Figure 2.

E<EIGR

EIG computes the eigen values and eigen vectors of
a real symmetric matrix, R. The result, E, carries the
eigen values as the first row and the eigen vectors as the
columns with the first row removed. In other words,
Column 1 of E carries the first eigen value as its first
element and the corresponding eigen vector as the
remaining elements. The elements of the eigen vectors
correspond to the original variables in the order repre-
sented in the correlation matrix. The eigen values are not
ordered by magnitude as they emerge from EIG. When
EIG is used as the basis of a principal components
analysis, it is up to the calling function to arrange the
eigen values (which are the variances of the components)
in order of decreasing magnitude. The same rearrange-
ment, of course, must be applied to the eigen vectors.

The algorithm for EIG is Jacobi’s method, described
by Hemmerly (1967), among others. It finds all of the
eigen values and eigen vectors by an iterative procedure
that progressively rotates the correlation matrix into a
matrix containing the eigen values in the diagonal and
near-zero elements elsewhere. How near the off-diagonal
elements are to zero is determined by the criterion in
Line 4. As given in the function, it is .00001. This is
probably more stringent than necessary, considering the
typical precision in correlation data.

The progressive rotation is accomplished by finding
at each iteration a rotation that will reduce to zero the
largest off-diagonal element of the matrix. That rotation
is applied to the matrix and is accumulated as one step
in a successive matrix product in the matrix Q, which is
initialized as an identity matrix. (The rotation is actually

applied only to the rows and columns that include the
element to be reduced to zero. Since the matrix is
symmetric about the diagonal, the element appears
twice.) When the function completes its work, the
cumulated product in Q is the matrix of eigen vectors.
The rotated correlation matrix contains the eigen values
in its diagonal. The function thus finds matrices that
satisfy the relation given in Line 17 of EIG.

Reducing an element to zero does not permanently
eliminate it. It may become large again as a result of
later rotations. For some matrices (not typical correla-
tion matrices), the process will not converge on the
criterion. In that case, EIG will carry the iterations to
300, or to 1.25 times the number of distinct off-diagonal
entries. It will then terminate with the notice “NOT
MEETING CRITERION.” Failure to meet criterion
may indicate the violation of certain technical assump-
tions required for the analytic procedure.

These assumptions will normally be met in statistical
work if two precautions are taken. First, one should
avoid analyzing a set of variables in which one variable
is completely predictable from some combination of
the others. The most common source of this problem is
the use of averages or sums of other variables in the
analysis. Less commonly, the problem arises when the
variables are required to have a fixed sum across each
subject, as with proportions. Second, one should avoid
analyzing a correlation matrix unless the number of sub-
jects is greater than the number of variables in the
analysis. Preferably, the number of subjects will be two
or three times the number of variables. The best pre-
caution of all, of course, is to recognize that results are
tentative until replicated.

Since the Jacobi method finds all eigen values and
eigen vectors, it requires more computer time than does
the method described by Cooley and Lohnes (1971).
It is simple to program, however, and computer time is
not usually a scarce commodity in an APL environment.
Computation times are discussed in connection with
the illustration given later in this report.

Comment lines at the bottom of EIG are given to
assist the programmer in determining that the function is
operating correctly and to provide an indication of the
technical meaning of eigen values and eigen vectors.
Line 16 specifies a condition that is commonly given as
the definition for eigen values and eigen vectors. Line 17
states that the eigen vectors convert the correlation
matrix into the diagonal matrix of eigen values. Line 18
states that the eigen values and eigen vectors reconstruct
the correlation matrix. All three lines represent mathe-
matical equalities restated to reflect the fact that the
obtained values are approximations to some level of
precision rather than true equalities. Thus they say, not
that the values are equal, but that the values differ in
magnitude by less than some small amount.

Many APL systems have functions similar to EIG
somewhere in the public libraries. For programmers who



APL FUNCTIONS 663

0 R«EIG M3N;Q3I3sT3K3L3C3SsU3V3LIT
1 I«ppMe Mo <Mer1§«[ /pQeQol, (N«12g«pR+M)p0
2 LIT+300M[1.25%xNx0.5%xN-1
3 ST:L+L+NxO=LeN|C+(M\C=T«[ /C«|M/ ,R)11
4 +0Tx11E 5>T
5 T+-R[K<TC+N; L]
6 S+2xY«(+/(T,U«0.5xR[K3;K1-R(L3;L1)*2)%0.5
7 Se{(T+Sx(C+((V+|U)#S8)*0.5))%x1=-2xy<0
8 +0Tx1v/1=|2pU«2 2pU,S,C,U«C,=S
9 RLV; 1+U+.xR[V«K,L;]
10 RO VI«R[sVI+. xU«qU
11 QL;v1«QL;v1+.xU
12 +8Tx10=p0«(LIT<I+«I+1)/"NOT MEETING CRITERION'
13 OT:I,0pR«(1 14R),[11Q;' ITERATIONS'
14 ALET M BE THE ORIGINAL MATRIX
15 ALET L«(Te.=T+«11+pR)x(pQ)pRI[1;]
16 A.0001>|(M+,xQ)=@+.xL
17 A.0001>|L-(QQ)+.xM+.xg
18 A.0001>|M-Q@+.xL+.x%Q
v
OUTPUT OF EIG
2,76445 1,85833 0.00002 0,02189 0.35530
0.55207 0.02270 0.31647 0.,40523 0.65600
0.08205 0.70679 ~0.41442 ~0,42897 0.37141
T0.45073 0.48568 0.74893 ~0.,00552 0.00463
“0.58679 0.07265 ~0.39732 0.64022 0.28749
T0.37551 0.50869 0.09661 ~0.,49178 0.59080
0 Q+S PREN R;D:W
1 W+ 1+(DLR«YD«(Q«EIG R)[1;11<145+5,1)11
2 D+ 1+41,502)>,1 0+PV«D,[0.5)+\D+{W+D[R«W+R] )%+ /D
3 PV«D/PV
4 Q+@x(p@«(1 0+Q)L;D/R1)ptW*0,5

v

Figure 2. APL code for EIG and PRN, basic functions for principal components analysis.
An example of the output of EIG, which would be delivered to PRN in Line 1, is also given.
See text for identification of the original data and final results associated with this example.

want to use one of these functions, the notes at the
bottom of EIG may be useful to verify that the function
is working correctly and that the output is being correctly
interpreted. Future versions of APL may include an
eigen-vector function as a primitive (Iverson, 1980), just
as APL presently includes matrix inversion.

F<TPRNR

PRN produces a principal components analysis of
the correlation matrix R. T is a control parameter
specifying the smallest eigen value to be retained in the
solution. Optionally, T may carry a second element
specifying the maximum proportion of variance to be
retained in the solution. In honoring this request, PRN
will take just enough eigen values to exceed the specified
proportion of variance. In combining the two criteria,
PRN takes the result that leads to the smaller number of
components.

The result, F, is a matrix carrying the multiplicative
weights to rotate the normalized data matrix and so
form the principal components. The role of these weights
is as described in the earlier section on principal com-

ponents analysis. The rows of F correspond to the
original variables in R. Each column of F contains the
weights to form one principal component. The com-
ponent variates can be formed by postmultiplying the
normalized data matrix by F. A global variable, PV, is
also formed; it carries as its first row the proportion of
variance accounted for by each component; the second
row carries the cumulative proportion of variance. The
columns of F and PV are arranged so that the proportion
of variance accounted for by successive components is
in descending order.

The weights delivered by PRN are adjusted to pro-
duce standardized variates, that is, variates of unit
variance. The adjustment is made in Line 4, in which the
vectors are divided by the square roots of the corre-
sponding eigen values. The adjustment simplifies subse-
quent use of the variates by placing them on the same
standard scale. Programmers should note this adjust-
ment, however, since they might (from the previous
discussion) expect the component variances to be equal
to the eigen values.

To aid in developing these functions, an example of



664 EVANS, NEIDEFFER, AND GAGE

the output of EIG is given at the bottom of Figure 2.
The input to EIG was the intercorrelation matrix from
the first five variables produced by CORGEN (Evans
et al., 1980). This output of EIG was delivered to PRN,
which delivered its output to PRINAN (below) to pro-
duce the final results illustrated later in this report.

PRINAN

PRINAN is a user interface function to provide
principal components analysis. It permits the selection
of a table from a labeled file and the selection of data
columns for analysis. With appropriate setting of param-
eters, it also permits the selection of subsets of rows in
the data table. PRINAN produces as output the correla-
tion between the original variables and the retained
components. Additional rows give the proportion of
variance in the correlation matrix accounted for by each
component and the cumulative proportion of variance
accounted for by each component and its predecessors.
An additional column gives the proportion of variance
in each original variable accounted for by the retained
components. APL code for PRINAN is given in Figure 3.

If at least two components are retained, PRINAN
produces a plot of the correlations between the original
variables and the first two components. It then offers
to make the variates. If the answer is yes, PRINAN
makes a new file containing the data table just processed,
with component variates as additional columns. (If the
table is reduced by set selection, only the rows that
were processed are transferred. All columns are trans-

'WHAT FILE:®
+0x10zp0«("
TB+DAFL ,FREAD 1,L~2

"TABLES: t L LJATBN+($0,T«(A/!

R«(14pCLN«C[1T-1;]1)p7%a
'COLUMNS: ',,R,CLN;p,"

WO EWN O

ferred.) Finally, PRINAN labels the file as described in
the report on GRAPHICS (Evans, Neideffer, & Gage,
1980), permitting the user to go immediately to graphic
displays or to other functions that require labeled files.
Examination of plots relating original variables to the
component variates is frequently informative.

PRINAN requires a labeled file following conventions
described in the introduction. Unlike GRAPHICS,
PRINAN is not written to provide labeling. It merely
detects the need, reports it, and terminates. Program-
mers can replace this part of the PRINAN code with the
code used in GRAPHICS if they want to provide auto-
matic labeling. A report now in preparation will present
a function to provide routine labeling as part of the
process of building a new data file.

A commonly suggested criterion for the smallest
eigen value to retain is unity. This value is the most
generous that could be permitted by considerations of
parsimony, since it means that a component will be
retained if it accounts for as much variance as is repre-
sented by one of the original variables. Evidence reviewed
by Green (1978) suggests that this criterion may be too
generous.

We prefer to be more conservative, using 1.3 in the
function illustrated here. This issue is probably academic,
however, since the other limit, 75% of the variance,
usually determines the number of components. Such a
limit, as noted by Green (1978), may be justified on
the grounds that the remaining variance, even if reliable,
may not be important enough to consider. Our choice

PRINAN;L;HD3STR; Ty ATBNiCLN;TAB;CL3ySCL;N;C3;P3Ry PV F; SD3VRIMX
'21pC«+FREAD 1,L«14+((DAFL+M)," /TEMPO' )FATIE\9)/'LABEL!"

'=C)11)+C;A,"TABLE NUMBER:'
TB+«TB,b5, ,ATBN(TAB+~(1tpATBN)L1p0;]

LIST COLUMNS FOR ANALYSIS:'
C+CLN[CL<«D;1,{1]2 "842 3p'PVRCPV'
STR+(0%2p ,SETE)/('SETS ', ,'I4'AFMT SETE),', FROM ',,CLNLSETC;]

10 R+R+,xP«1.3 0.75 PRN R+1 MVST(SRD TAB)[;CL]

11 N(T/1pP+"' '=N+,"BI8'AFMT 0,-11+pFl+'P’'

12 P+«'BF8 2" AFMT((RXCTR<|R) ,+/R*2) ,[1]PV,0

13 BOP'PCA' ,SRN,,A, (¥, 8¢'PVRY),[1]C,P

14  >NDx12>14pPVAR+.xQR RECONSTRUCTS THE CORRELATION MATRIX

15  SCL+®2 2p 1 1

16 BOP("8+'F2'),(DIMS SPLOT RL3121), 304+'F1!
17  ND:»0x1'Y'2140M,0«'MAKE COMPONENT VARIATES?'

18 (O+«'PCA' ,3pDAFL)FATIE 3
19 FKEEP 3 0

20 (R,(0 MVST(R<SRD TAB)}[;CL]1)+.xF)FAPE 3

21 (DAFL,'PCA' ,STR,SRN)FAPE 3

22 ((FREAD 1,L-1),( 1+L#F),[0.5]11+[ #F)FAPE 3

23 N«CLN,[11($8,1+pF)p8+N
24 (Nv,[1]
v

*,[1]ATBN[TAB; 1)FAPE 3

Figure 3, APL code for PRINAN, a user interface function for principal components analysis. The formatting func-
tion, delta format, is probably available in the APL library of most systems. The form of the name may vary slightly

from system to system.



of 75% is based on observations that suggest that the
data we investigate typically contain about 60% to
75% reliable variance. Other users might prefer other
proportions, depending on estimates of reliable variance
in their data.

The last column of PRINAN’s output gives the
proportion of variance in each variable accounted for
by the retained components. Since the component
variates are uncorrelated, this value is simply the sum
of the squared correlations with that variable. This
column is useful in detecting original variables that are
not well represented by the retained components.

PRINAN uses the following functions described in
previous reports (Evans, Gage, & Neideffer, 1980;
Evans, Neideffer, & Gage, 1980): MVST, BOP, FAPE,

APL FUNCTIONS 665

SPLOT. Users may wish to display the correlation
matrix computed in preparation for the principal com-
ponents analysis. The labeling conventions of PRINAN
are the same as those of CORRELATE (Evans, Gage, &
Neideffer, 1980). Thus the code for that function can
be used as a guide for inserting code to prepare an
output form of the correlation matrix.

The output of PRINAN is illustrated in Figure 4.
The data were the first five columns of the array pro-
duced by CORGEN (Evans, Gage, & Neideffer, 1980).
Only five columns were used because the deterministic
process of CORGEN leads to a correlation matrix that
does not meet the requirements for principal com-
ponents analysis when all the columns are used.

If the analysis in Figure 4 represented a real study,

PARAM
SETE+1
PRINAN
WHAT FILE:
PCADEMO
CREATING TEMPO
TABLES: T1
TABLE NUMBER:
0:
1
COLUMNS:
ITM: SET: Vi1 V2 V3 vu Vs
43 V7 V8
LIST COLUMNS FOR ANALYSIS:
O:
3 456 7
23 ITERATIONS
1
PUSH RET
PCADEMO, SETS 1, FROM SET:
CTR=0.24
PCADEMO: PCA TEST DATA
71
PCA N= 30
P1 P2 PVR
V1 0.92 0.84
V2 0.96 0.95
V3 0.75 0.66 1.00
140 ~0.98 0.96
Vs “0.62 “0.69 0.87
PVR 0.55% 0.37
cpv 0.55 0.92
2
PUSH RET
No
MAKE COMPONENT VARIATES?
"o

Figure 4. [llustration of the use of PRINAN for principal components analysis. The parameters are first
set to standard values by invoking PARAM. Then SETE is set to the value 1. This setting is made here to
illustrate the use of set selection and the documentation in the output. All of the “subjects” in the
illustrative data set were identified with a 1, so that set selection had no consequence for the results.
The output is explained in the text. Note that the user entered NO after the second PUSH RET request.
This action caused the output function, BOP, to suppress typed output of the plot described in the
text. The plot was formed, however, and filed in the second component of the output file, as indicated

by the number 2 just above the PUSH RET request.



666 EVANS, NEIDEFFER, AND GAGE

the user would probably note that the five original
variables can be reduced to two, with very little loss in
the proportion of variance accounted for. The investi-
gator might select Variable 4 and Variable 2 to represent
the two components and proceed with further analyses
using only these variables. Alternatively, the researcher
might convert Variables 1 and 4 to standard scores,
multiply Variable 4 by —1, and then add (or average) the
two variables. This result would probably have a greater
percentage of reliable variance than either of the original
variables. As a third choice, the researcher might let
PRINAN create the component variates.

The analysis in Figure 4, carried through to the
creation of a new file with the component variates,
required about 2.5 min (clock time) on a moderately
loaded Sigma-9. It used .04 min of CPU time. In a 32K
work space, PRINAN analyzed a data set of 240 subjects
and 10 variables. This task required 1.5 min of clock
time without making the new file. It required .2 min of
CPU time.

The output of EIG can be validated by testing for the
conditions given in Lines 16, 17, and 18, as well as by
comparing its results with those in Figure 2. The output
of PRINAN can be checked by comparison with the
results in Figure 4. The computation of the component
variates can be validated by computing the intercorrela-
tion matrix of the original variables and the component
variates. The correlations obtained in this way should be
the same as those given in PRINAN’s output table. The
component variates should have means of zero, variances
of unity, and zero intercorrelations with each other.

Applications of principal components analysis in
research from a variety of behavioral data sources
demonstrate its general utility. With an eigen vector
function and support functions to handle file access and
to provide other amenities, one can easily prepare pro-
grams for discriminant function analysis and canonical
correlation. Both of these can be accomplished by a
slightly more complicated eigen vector procedure.
Reports on these and other analytic functions are in
preparation. All of these functions use the same file
conventions and permit the user to move freely from
one analytic technique to another. This flexibility
enhances the usefulness of all the functions.

REFERENCES

Coorey, W. W., & Loungs, P. R. Multivariate data analysis.
New York: Wiley, 1971.

CRABTREE, J. M., & MovEg, K. E. Sex differences in fighting
and defense induced in rats by shock and d-amphetamine during
morphine abstinence. Physiology & Behavior, 1973, 11, 337-343.

Evans, 8., & Atrava, W. A, Research methods and strategies
in the psychophysics of image quality. Photographic Science
and Engineering, 1978, 22, 92-97.

Evans, 8., Gagg, F. H., & NEIDEFFER, J. D. APL programs for
interactive data analysis: Data entry and correlation. Behavior
Research Methods & Instrumentation, 1980, 12, 372-375.

Evans, 8., NEIDEFFER, J. D., & Gacg, F. H. APL functions
for interactive data analysis: Graphics and labels. Behavior
Research Methods & Instrumentation, 1980, 12, 541-545.

Gagk, F. H. A multivariate approach to the analysis of social
dominance. Behavioral Biology, 1978, 23, 38-51.

Gagg, F. H., ArMsTRONG, D. R., & THOMPSON, R. G. Behavioral
kinetics: A method for deriving qualitative and quantitative
changes in sensory responsiveness following septal nuclei
damage. Physiology & Behavior, 1980, 24, 479-484.

GAGE, F. H,, Evans, S. H., & Ovrton, D. S. Multivariate analyses
of performance in a DRL paradigm. Animal Learning &
Behavior, 1979, 7, 323-327.

Gagg, F. H,, & LiBerMAN, A. F. A multivariate analysis of
social dominance in children. Aggressive Behavior, 1978, 4,
219-229.

GREeEN, P. E. Analyzing multivariate data. Hinsdale, I1l: Dryden
Press, 1978.

HemMmEeRLY, W. J. Statistical computations on a digital computer.
Waltham, Mass: Blaisdell, 1967.

Iverson, K. E. Notation as a tool of thought. Communications
of the Association for Computing Machinery, 1980, 23, 444-465.

Kaisgr, H. F. The varimax criterion for analytic rotation in factor
analysis. Psychometrica, 1958, 23, 187-200.

Lgg, H. B., & ComRreY, A. L. Distortions in a commonly used
factor analytic procedure. Multivariate Behavioral Research,
1979, 14, 301-321.

TaTsvoka, M. M. Multivariate analysis: Techniques for
educational and psychological research. New York: Wiley, 1971,

NOTE

1. Sigma-9 users can get a copy of a documented work space
containing these and other file functions written in terms of the
primitive file function and forming a set adequate to support
most file use. The set requires about 2K bytes of work space, as
contrasted with about 4K for the standard set in FILES.APL1.
For further information, contact the first author.

(Received for publication June 22, 1981;
revision accepted August 6, 1981.)



